1
|
Williams AD, Leung VW, Tang JW, Hidekazu N, Suzuki N, Clarke AC, Pearce DA, Lam TTY. Ancient environmental microbiomes and the cryosphere. Trends Microbiol 2024:S0966-842X(24)00253-1. [PMID: 39487079 DOI: 10.1016/j.tim.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 11/04/2024]
Abstract
In this review, we delineate the unique set of characteristics associated with cryosphere environments (namely, ice and permafrost) which present both challenges and opportunities for studying ancient environmental microbiomes (AEMs). In a field currently reliant on several assumptions, we discuss the theoretical and empirical feasibility of recovering microbial nucleic acids (NAs) from ice and permafrost with varying degrees of antiquity. We also summarize contamination control best practices and highlight considerations for the latest approaches, including shotgun metagenomics, and downstream bioinformatic authentication approaches. We review the adoption of existing software and provide an overview of more recently published programs, with reference to their suitability for AEM studies. Finally, we summarize outstanding challenges and likely future directions for AEM research.
Collapse
Affiliation(s)
- Alexander D Williams
- Laboratory of Data Discovery for Health Limited (D(2)4H), 12/F, Building 19W, 19 Science Park West Avenue, Hong Kong Science Park, Hong Kong Special Administrative Region of China; State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China.
| | - Vivian W Leung
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Julian W Tang
- Respiratory Sciences, University of Leicester, Leicester, UK; Clinical Microbiology, University Hospitals of Leicester, Leicester, UK
| | - Nishimura Hidekazu
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai 983-8520, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Chuou 2-20-1, Kurashiki, Okayama 710-0046, Japan
| | - Andrew C Clarke
- School of Biosciences, University of Nottingham, College Road, Sutton Bonington, LE12 5RD, UK
| | - David A Pearce
- Department of Applied Science, Faculty of Health and Life Sciences, Northumbria University at Newcastle, Newcastle, NE1 8ST, UK; British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - Tommy Tsan-Yuk Lam
- Laboratory of Data Discovery for Health Limited (D(2)4H), 12/F, Building 19W, 19 Science Park West Avenue, Hong Kong Science Park, Hong Kong Special Administrative Region of China; State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
2
|
Houldcroft CJ, Underdown S. Infectious disease in the Pleistocene: Old friends or old foes? AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 182:513-531. [PMID: 38006200 DOI: 10.1002/ajpa.24737] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 11/26/2023]
Abstract
The impact of endemic and epidemic disease on humans has traditionally been seen as a comparatively recent historical phenomenon associated with the Neolithisation of human groups, an increase in population size led by sedentarism, and increasing contact with domesticated animals as well as species occupying opportunistic symbiotic and ectosymbiotic relationships with humans. The orthodox approach is that Neolithisation created the conditions for increasing population size able to support a reservoir of infectious disease sufficient to act as selective pressure. This orthodoxy is the result of an overly simplistic reliance on skeletal data assuming that no skeletal lesions equated to a healthy individual, underpinned by the assumption that hunter-gatherer groups were inherently healthy while agricultural groups acted as infectious disease reservoirs. The work of van Blerkom, Am. J. Phys. Anthropol., vol. suppl 37 (2003), Wolfe et al., Nature, vol. 447 (2007) and Houldcroft and Underdown, Am. J. Phys. Anthropol., vol. 160, (2016) has changed this landscape by arguing that humans and pathogens have long been fellow travelers. The package of infectious diseases experienced by our ancient ancestors may not be as dissimilar to modern infectious diseases as was once believed. The importance of DNA, from ancient and modern sources, to the study of the antiquity of infectious disease, and its role as a selective pressure cannot be overstated. Here we consider evidence of ancient epidemic and endemic infectious diseases with inferences from modern and ancient human and hominin DNA, and from circulating and extinct pathogen genomes. We argue that the pandemics of the past are a vital tool to unlock the weapons needed to fight pandemics of the future.
Collapse
Affiliation(s)
| | - Simon Underdown
- Human Origins and Palaeoenvironmental Research Group, School of Social Sciences, Oxford Brookes University, Oxford, UK
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Jankovic M, Cirkovic V, Stamenkovic G, Loncar A, Todorovic M, Stanojevic M, Siljic M. Detection of the Xanthi Chryso-like Virus in New Geographical Area and a Novel Arthropod Carrier. Trop Med Infect Dis 2023; 8:tropicalmed8040225. [PMID: 37104350 PMCID: PMC10144253 DOI: 10.3390/tropicalmed8040225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Here, we report on a serendipitous finding of a chryso-like virus associated with Culex pipiens mosquitos in the course of study aimed to detect and characterize West Nile virus (WNV) circulating in mosquitos in Serbia, Southern Europe. Upon initial detection of unexpected product in a PCR protocol for partial WNV NS5 gene amplification, further confirmation and identification was obtained through additional PCR and Sanger sequencing experiments. Bioinformatic and phylogenetic analysis identified the obtained sequences as Xanthi chryso-like virus (XCLV). The finding is particular for the fact that it associates XCLV with a new potential vector species and documents a novel geographical area of its distribution.
Collapse
Affiliation(s)
- Marko Jankovic
- Faculty of Medicine, Institute of Microbiology and Immunology, Department of Virology, University of Belgrade, 1 Dr Subotića Starijeg Street, 11000 Belgrade, Serbia
| | - Valentina Cirkovic
- Group for Medical Entomology, Centre of Excellence for Food and Vector Borne Zoonoses, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia
| | - Gorana Stamenkovic
- Department for Genetic Research, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Ana Loncar
- Institute for Biocides and Medical Ecology, 11000 Belgrade, Serbia
| | - Marija Todorovic
- Faculty of Medicine, Institute of Microbiology and Immunology, Department of Virology, University of Belgrade, 1 Dr Subotića Starijeg Street, 11000 Belgrade, Serbia
| | - Maja Stanojevic
- Faculty of Medicine, Institute of Microbiology and Immunology, Department of Virology, University of Belgrade, 1 Dr Subotića Starijeg Street, 11000 Belgrade, Serbia
| | - Marina Siljic
- Faculty of Medicine, Institute of Microbiology and Immunology, Department of Virology, University of Belgrade, 1 Dr Subotića Starijeg Street, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
van der Kuyl AC. Historic and Prehistoric Epidemics: An Overview of Sources Available for the Study of Ancient Pathogens. EPIDEMIOLOGIA 2022; 3:443-464. [PMID: 36547255 PMCID: PMC9778136 DOI: 10.3390/epidemiologia3040034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
Abstract
Since life on earth developed, parasitic microbes have thrived. Increases in host numbers, or the conquest of a new species, provide an opportunity for such a pathogen to enjoy, before host defense systems kick in, a similar upsurge in reproduction. Outbreaks, caused by "endemic" pathogens, and epidemics, caused by "novel" pathogens, have thus been creating chaos and destruction since prehistorical times. To study such (pre)historic epidemics, recent advances in the ancient DNA field, applied to both archeological and historical remains, have helped tremendously to elucidate the evolutionary trajectory of pathogens. These studies have offered new and unexpected insights into the evolution of, for instance, smallpox virus, hepatitis B virus, and the plague-causing bacterium Yersinia pestis. Furthermore, burial patterns and historical publications can help in tracking down ancient pathogens. Another source of information is our genome, where selective sweeps in immune-related genes relate to past pathogen attacks, while multiple viruses have left their genomes behind for us to study. This review will discuss the sources available to investigate (pre)historic diseases, as molecular knowledge of historic and prehistoric pathogens may help us understand the past and the present, and prepare us for future epidemics.
Collapse
Affiliation(s)
- Antoinette C. van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; ; Tel.: +31-205-666-778
- Amsterdam Institute for Infection and Immunity, 1100 DD Amsterdam, The Netherlands
| |
Collapse
|
5
|
Nishimura L, Fujito N, Sugimoto R, Inoue I. Detection of Ancient Viruses and Long-Term Viral Evolution. Viruses 2022; 14:v14061336. [PMID: 35746807 PMCID: PMC9230872 DOI: 10.3390/v14061336] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/22/2022] Open
Abstract
The COVID-19 outbreak has reminded us of the importance of viral evolutionary studies as regards comprehending complex viral evolution and preventing future pandemics. A unique approach to understanding viral evolution is the use of ancient viral genomes. Ancient viruses are detectable in various archaeological remains, including ancient people's skeletons and mummified tissues. Those specimens have preserved ancient viral DNA and RNA, which have been vigorously analyzed in the last few decades thanks to the development of sequencing technologies. Reconstructed ancient pathogenic viral genomes have been utilized to estimate the past pandemics of pathogenic viruses within the ancient human population and long-term evolutionary events. Recent studies revealed the existence of non-pathogenic viral genomes in ancient people's bodies. These ancient non-pathogenic viruses might be informative for inferring their relationships with ancient people's diets and lifestyles. Here, we reviewed the past and ongoing studies on ancient pathogenic and non-pathogenic viruses and the usage of ancient viral genomes to understand their long-term viral evolution.
Collapse
Affiliation(s)
- Luca Nishimura
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| | - Naoko Fujito
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| | - Ryota Sugimoto
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
| | - Ituro Inoue
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
- Correspondence: ; Tel.: +81-55-981-6795
| |
Collapse
|
6
|
Roossinck MJ. The Ups and Downs of an Out-of-the-Box Scientist with a Curious Mind. Annu Rev Virol 2022; 9:19-38. [PMID: 35512631 DOI: 10.1146/annurev-virology-100520-013446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
My early life was challenging, and not conducive to the study of science, but my first introduction to viruses was an epiphany for me. I spent the whole of my career dedicated to understanding viruses, driven largely by curiosity. This led me down many different avenues of study, and to work with many wonderful colleagues, most of whom remain friends. Some highlights of my career include the discovery of a mutualistic three-way symbiosis involving a virus, a fungus, and a plant; genetic mapping of a pathogenicity gene in tomato; uncovering a virus in 1,000-year-old corncobs; exploring virus biodiversity in wild plants; and establishing a system to use a fungal virus to understand the epidemiology of its host. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Marilyn J Roossinck
- Department of Plant Pathology and Environmental Microbiology, Center for Infectious Disease Dynamics, Pennsylvania State University, State College, Pennsylvania, USA;
| |
Collapse
|
7
|
Vendrell-Mir P, Perroud PF, Haas FB, Meyberg R, Charlot F, Rensing SA, Nogué F, Casacuberta JM. A vertically transmitted amalgavirus is present in certain accessions of the bryophyte Physcomitrium patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1786-1797. [PMID: 34687260 DOI: 10.1111/tpj.15545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
In the last few years, next-generation sequencing techniques have started to be used to identify new viruses infecting plants. This has allowed to rapidly increase our knowledge on viruses other than those causing symptoms in economically important crops. Here we used this approach to identify a virus infecting Physcomitrium patens that has the typical structure of the double-stranded RNA endogenous viruses of the Amalgaviridae family, which we named Physcomitrium patens amalgavirus 1, or PHPAV1. PHPAV1 is present only in certain accessions of P. patens, where its RNA can be detected throughout the cell cycle of the plant. Our analysis demonstrates that PHPAV1 can be vertically transmitted through both paternal and maternal germlines, in crosses between accessions that contain the virus with accessions that do not contain it. This work suggests that PHPAV1 can replicate in genomic backgrounds different from those that actually contain the virus and opens the door for future studies on virus-host coevolution.
Collapse
Affiliation(s)
- Pol Vendrell-Mir
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Bellaterra, Barcelona, 08193, Spain
| | - Pierre-François Perroud
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Fabian B Haas
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Rabea Meyberg
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Florence Charlot
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Josep M Casacuberta
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Bellaterra, Barcelona, 08193, Spain
| |
Collapse
|
8
|
Rieux A, Campos P, Duvermy A, Scussel S, Martin D, Gaudeul M, Lefeuvre P, Becker N, Lett JM. Contribution of historical herbarium small RNAs to the reconstruction of a cassava mosaic geminivirus evolutionary history. Sci Rep 2021; 11:21280. [PMID: 34711837 PMCID: PMC8553777 DOI: 10.1038/s41598-021-00518-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/13/2021] [Indexed: 12/30/2022] Open
Abstract
Emerging viral diseases of plants are recognised as a growing threat to global food security. However, little is known about the evolutionary processes and ecological factors underlying the emergence and success of viruses that have caused past epidemics. With technological advances in the field of ancient genomics, it is now possible to sequence historical genomes to provide a better understanding of viral plant disease emergence and pathogen evolutionary history. In this context, herbarium specimens represent a valuable source of dated and preserved material. We report here the first historical genome of a crop pathogen DNA virus, a 90-year-old African cassava mosaic virus (ACMV), reconstructed from small RNA sequences bearing hallmarks of small interfering RNAs. Relative to tip-calibrated dating inferences using only modern data, those performed with the historical genome yielded both molecular evolution rate estimates that were significantly lower, and lineage divergence times that were significantly older. Crucially, divergence times estimated without the historical genome appeared in discordance with both historical disease reports and the existence of the historical genome itself. In conclusion, our study reports an updated time-frame for the history and evolution of ACMV and illustrates how the study of crop viral diseases could benefit from natural history collections.
Collapse
Affiliation(s)
- Adrien Rieux
- CIRAD, UMR PVBMT, 97410, St Pierre, La Réunion, France.
| | - Paola Campos
- CIRAD, UMR PVBMT, 97410, St Pierre, La Réunion, France
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 Rue Cuvier, CP 50, 75005, Paris, France
| | | | - Sarah Scussel
- CIRAD, UMR PVBMT, 97410, St Pierre, La Réunion, France
| | - Darren Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, Cape Town, South Africa
| | - Myriam Gaudeul
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 Rue Cuvier, CP 50, 75005, Paris, France
- Herbier national (P), Muséum national d'Histoire Naturelle, CP39, 57 Rue Cuvier, 75005, Paris, France
| | | | - Nathalie Becker
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 Rue Cuvier, CP 50, 75005, Paris, France
| | | |
Collapse
|
9
|
Abstract
The RNA-dependent RNA polymerase (RdRp) of all known double-stranded RNA viruses is located within the viral particle and is responsible for the transcription and replication of the viral genome. Through an RT-PCR assay, we determined that purified virions, in vitro translated RdRp proteins, and purified recombinant RdRp proteins of partitiviruses also have reverse transcriptase (RT) function. We show that partitivirus RdRps 1) synthesized DNA from homologous and heterologous dsRNA templates; 2) are active using both ssRNA and dsRNA templates; and 3) are active at lower temperatures compared to an optimal reaction temperature of commercial RT enzymes. This finding poses an intriguing question: why do partitiviruses, with dsRNA genomes, have a polymerase with RT functions? In comparison, 3Dpol, the RdRp of poliovirus, did not show any RT activity. Our findings lead us to propose a new evolutionary model for RNA viruses where the RdRp of dsRNA viruses could be the ancestor of RdRps.
Collapse
Affiliation(s)
- Mahtab Peyambari
- Center for Infectious Disease Dynamics, Millennium Science Complex, Pennsylvania State University, University Park, PA, USA
| | | | - Marilyn J Roossinck
- Center for Infectious Disease Dynamics, Millennium Science Complex, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
10
|
Calvignac-Spencer S, Düx A, Gogarten JF, Patrono LV. Molecular archeology of human viruses. Adv Virus Res 2021; 111:31-61. [PMID: 34663498 DOI: 10.1016/bs.aivir.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The evolution of human-virus associations is usually reconstructed from contemporary patterns of genomic diversity. An intriguing, though still rarely implemented, alternative is to search for the genetic material of viruses in archeological and medical archive specimens to document evolution as it happened. In this chapter, we present lessons from ancient DNA research and incorporate insights from virology to explore the potential range of applications and likely limitations of archeovirological approaches. We also highlight the numerous questions archeovirology will hopefully allow us to tackle in the near future, and the main expected roadblocks to these avenues of research.
Collapse
Affiliation(s)
- Sébastien Calvignac-Spencer
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany; Viral Evolution, Robert Koch-Institute, Berlin, Germany.
| | - Ariane Düx
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany; Viral Evolution, Robert Koch-Institute, Berlin, Germany
| | - Jan F Gogarten
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany; Viral Evolution, Robert Koch-Institute, Berlin, Germany
| | - Livia V Patrono
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany
| |
Collapse
|
11
|
Campos PE, Groot Crego C, Boyer K, Gaudeul M, Baider C, Richard D, Pruvost O, Roumagnac P, Szurek B, Becker N, Gagnevin L, Rieux A. First historical genome of a crop bacterial pathogen from herbarium specimen: Insights into citrus canker emergence. PLoS Pathog 2021; 17:e1009714. [PMID: 34324594 PMCID: PMC8320980 DOI: 10.1371/journal.ppat.1009714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 06/14/2021] [Indexed: 12/30/2022] Open
Abstract
Over the past decade, ancient genomics has been used in the study of various pathogens. In this context, herbarium specimens provide a precious source of dated and preserved DNA material, enabling a better understanding of plant disease emergences and pathogen evolutionary history. We report here the first historical genome of a crop bacterial pathogen, Xanthomonas citri pv. citri (Xci), obtained from an infected herbarium specimen dating back to 1937. Comparing the 1937 genome within a large set of modern genomes, we reconstructed their phylogenetic relationships and estimated evolutionary parameters using Bayesian tip-calibration inferences. The arrival of Xci in the South West Indian Ocean islands was dated to the 19th century, probably linked to human migrations following slavery abolishment. We also assessed the metagenomic community of the herbarium specimen, showed its authenticity using DNA damage patterns, and investigated its genomic features including functional SNPs and gene content, with a focus on virulence factors.
Collapse
Affiliation(s)
- Paola E. Campos
- CIRAD, UMR PVBMT, Saint-Pierre, La Réunion, France
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, SU, EPHE, UA, Paris, France
| | | | - Karine Boyer
- CIRAD, UMR PVBMT, Saint-Pierre, La Réunion, France
| | - Myriam Gaudeul
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, SU, EPHE, UA, Paris, France
- Herbier national (P), Muséum national d’Histoire naturelle, Paris, France
| | - Claudia Baider
- Ministry of Agro Industry and Food Security, Mauritius Herbarium, R.E. Vaughan Building (MSIRI compound), Agricultural Services, Réduit, Mauritius
| | | | | | - Philippe Roumagnac
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
- CIRAD, UMR PHIM, Montpellier, France
| | - Boris Szurek
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Nathalie Becker
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, SU, EPHE, UA, Paris, France
| | - Lionel Gagnevin
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
- CIRAD, UMR PHIM, Montpellier, France
| | - Adrien Rieux
- CIRAD, UMR PVBMT, Saint-Pierre, La Réunion, France
| |
Collapse
|
12
|
Wang X, Vlok M, Flibotte S, Jan E. Resurrection of a Viral Internal Ribosome Entry Site from a 700 Year Old Ancient Northwest Territories Cripavirus. Viruses 2021; 13:v13030493. [PMID: 33802878 PMCID: PMC8002689 DOI: 10.3390/v13030493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/16/2022] Open
Abstract
The dicistrovirus intergenic region internal ribosome entry site (IGR IRES) uses an unprecedented, streamlined mechanism whereby the IRES adopts a triple-pseudoknot (PK) structure to directly bind to the conserved core of the ribosome and drive translation from a non-AUG codon. The origin of this IRES mechanism is not known. Previously, a partial fragment of a divergent dicistrovirus RNA genome, named ancient Northwest territories cripavirus (aNCV), was extracted from 700-year-old caribou feces trapped in a subarctic ice patch. The aNCV IGR sequence adopts a secondary structure similar to contemporary IGR IRES structures, however, there are subtle differences including 105 nucleotides upstream of the IRES of unknown function. Using filter binding assays, we showed that the aNCV IRES could bind to purified ribosomes, and toeprinting analysis pinpointed the start site at a GCU alanine codon adjacent to PKI. Using a bicistronic reporter RNA, the aNCV IGR can direct translation in vitro in a PKI-dependent manner. Lastly, a chimeric infectious clone swapping in the aNCV IRES supported translation and virus infection. The characterization and resurrection of a functional IGR IRES from a divergent 700-year-old virus provides a historical framework for the importance of this viral translational mechanism.
Collapse
Affiliation(s)
- Xinying Wang
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (X.W.); (M.V.)
| | - Marli Vlok
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (X.W.); (M.V.)
| | - Stephane Flibotte
- UBC/LSI Bioinformatics Facility, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (X.W.); (M.V.)
- Correspondence: ; Tel.: +1-604-827-4226
| |
Collapse
|
13
|
Shahid MS, Sattar MN, Iqbal Z, Raza A, Al-Sadi AM. Next-Generation Sequencing and the CRISPR-Cas Nexus: A Molecular Plant Virology Perspective. Front Microbiol 2021; 11:609376. [PMID: 33584572 PMCID: PMC7874184 DOI: 10.3389/fmicb.2020.609376] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, next-generation sequencing (NGS) and contemporary Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated (Cas) technologies have revolutionized the life sciences and the field of plant virology. Both these technologies offer an unparalleled platform for sequencing and deciphering viral metagenomes promptly. Over the past two decades, NGS technologies have improved enormously and have impacted plant virology. NGS has enabled the detection of plant viruses that were previously undetectable by conventional approaches, such as quarantine and archeological plant samples, and has helped to track the evolutionary footprints of viral pathogens. The CRISPR-Cas-based genome editing (GE) and detection techniques have enabled the development of effective approaches to virus resistance. Different versions of CRISPR-Cas have been employed to successfully confer resistance against diverse plant viruses by directly targeting the virus genome or indirectly editing certain host susceptibility factors. Applications of CRISPR-Cas systems include targeted insertion and/or deletion, site-directed mutagenesis, induction/expression/repression of the gene(s), epigenome re-modeling, and SNPs detection. The CRISPR-Cas toolbox has been equipped with precision GE tools to engineer the target genome with and without double-stranded (ds) breaks or donor templates. This technique has also enabled the generation of transgene-free genetically engineered plants, DNA repair, base substitution, prime editing, detection of small molecules, and biosensing in plant virology. This review discusses the utilities, advantages, applications, bottlenecks of NGS, and CRISPR-Cas in plant virology.
Collapse
Affiliation(s)
- Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | | | - Zafar Iqbal
- Central Laboratories, King Faisal University, Hofuf, Saudi Arabia
| | - Amir Raza
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Abdullah M. Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
14
|
Jeger MJ. The Epidemiology of Plant Virus Disease: Towards a New Synthesis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1768. [PMID: 33327457 PMCID: PMC7764944 DOI: 10.3390/plants9121768] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Epidemiology is the science of how disease develops in populations, with applications in human, animal and plant diseases. For plant diseases, epidemiology has developed as a quantitative science with the aims of describing, understanding and predicting epidemics, and intervening to mitigate their consequences in plant populations. Although the central focus of epidemiology is at the population level, it is often necessary to recognise the system hierarchies present by scaling down to the individual plant/cellular level and scaling up to the community/landscape level. This is particularly important for diseases caused by plant viruses, which in most cases are transmitted by arthropod vectors. This leads to range of virus-plant, virus-vector and vector-plant interactions giving a distinctive character to plant virus epidemiology (whilst recognising that some fungal, oomycete and bacterial pathogens are also vector-borne). These interactions have epidemiological, ecological and evolutionary consequences with implications for agronomic practices, pest and disease management, host resistance deployment, and the health of wild plant communities. Over the last two decades, there have been attempts to bring together these differing standpoints into a new synthesis, although this is more apparent for evolutionary and ecological approaches, perhaps reflecting the greater emphasis on shorter often annual time scales in epidemiological studies. It is argued here that incorporating an epidemiological perspective, specifically quantitative, into this developing synthesis will lead to new directions in plant virus research and disease management. This synthesis can serve to further consolidate and transform epidemiology as a key element in plant virus research.
Collapse
Affiliation(s)
- Michael J Jeger
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot SL5 7PY, UK
| |
Collapse
|
15
|
Wilcox AH, Delwart E, Díaz-Muñoz SL. Next-generation sequencing of dsRNA is greatly improved by treatment with the inexpensive denaturing reagent DMSO. Microb Genom 2020; 5. [PMID: 31738702 PMCID: PMC6927307 DOI: 10.1099/mgen.0.000315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
dsRNA is the genetic material of important viruses and a key component of RNA interference-based immunity in eukaryotes. Previous studies have noted difficulties in determining the sequence of dsRNA molecules that have affected studies of immune function and estimates of viral diversity in nature. DMSO has been used to denature dsRNA prior to the reverse-transcription stage to improve reverse transcriptase PCR and Sanger sequencing. We systematically tested the utility of DMSO to improve the sequencing yield of a dsRNA virus (Φ6) in a short-read next-generation sequencing platform. DMSO treatment improved sequencing read recovery by over two orders of magnitude, even when RNA and cDNA concentrations were below the limit of detection. We also tested the effects of DMSO on a mock eukaryotic viral community and found that dsRNA virus reads increased with DMSO treatment. Furthermore, we provide evidence that DMSO treatment does not adversely affect recovery of reads from a ssRNA viral genome (influenza A/California/07/2009). We suggest that up to 50 % DMSO treatment be used prior to cDNA synthesis when samples of interest are composed of or may contain dsRNA.
Collapse
Affiliation(s)
- Alexander H Wilcox
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Eric Delwart
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.,Vitalant Research Institute, San Francisco, CA, USA
| | - Samuel L Díaz-Muñoz
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA.,Genome Center, University of California, Davis, CA, USA
| |
Collapse
|
16
|
Asiimwe T, Stewart LR, Willie K, Massawe DP, Kamatenesi J, Redinbaugh MG. Maize lethal necrosis viruses and other maize viruses in Rwanda. PLANT PATHOLOGY 2020; 69:585-597. [PMID: 35874461 PMCID: PMC9291312 DOI: 10.1111/ppa.13134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 12/04/2019] [Indexed: 05/17/2023]
Abstract
Maize lethal necrosis (MLN) is emergent in East Africa, first reported in 2011 in Kenya, and is devastating to maize production in the region. MLN is caused by coinfection of maize with the emergent maize chlorotic mottle virus (MCMV) and any of several maize-infecting potyviruses endemic in East Africa and worldwide. Here, we examined the distribution of MCMV and sugarcane mosaic virus (SCMV), the major viruses contributing to MLN in Rwanda. These and other viruses in maize across Rwanda were further characterized by deep sequencing. When identified, MCMV had high titres and minimal sequence variability, whereas SCMV showed moderate titres and high sequence variability. Deep sequencing also identified maize streak virus and other maize-associated viruses, including a previously described polerovirus, maize yellow mosaic virus, and barley yellow dwarf virus, diverse maize-associated totiviruses, maize-associated pteridovirus, Zea mays chrysovirus 1, and a maize-associated betaflexivirus. Detection of each virus was confirmed in maize samples by reverse transcription polymerase chain reaction.
Collapse
Affiliation(s)
| | - Lucy R. Stewart
- Corn, Soybean and Wheat Quality Research UnitUSDA‐ARSWoosterOHUSA
- Department of Plant PathologyThe Ohio State UniversityWoosterOHUSA
| | - Kristen Willie
- Corn, Soybean and Wheat Quality Research UnitUSDA‐ARSWoosterOHUSA
| | | | | | | |
Collapse
|
17
|
Samarfard S, McTaggart AR, Sharman M, Bejerman NE, Dietzgen RG. Viromes of Ten Alfalfa Plants in Australia Reveal Diverse Known Viruses and a Novel RNA Virus. Pathogens 2020; 9:pathogens9030214. [PMID: 32183134 PMCID: PMC7157637 DOI: 10.3390/pathogens9030214] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/27/2022] Open
Abstract
Alfalfa plants in the field can display a range of virus-like symptoms, especially when grown over many years for seed production. Most known alfalfa viruses have RNA genomes, some of which can be detected using diagnostic assays, but many viruses of alfalfa are not well characterized. This study aims to identify the RNA and DNA virus complexes associated with alfalfa plants in Australia. To maximize the detection of RNA viruses, we purified double-stranded RNA (dsRNA) for high throughput sequencing and characterized the viromes of ten alfalfa samples that showed diverse virus-like symptoms. Using Illumina sequencing of tagged cDNA libraries from immune-captured dsRNA, we identified sequences of the single-stranded RNA viruses, alfalfa mosaic virus (AMV), bean leafroll virus, a new emaravirus tentatively named alfalfa ringspot-associated virus, and persistent dsRNA viruses belonging to the families Amalgaviridae and Partitiviridae. Furthermore, rolling circle amplification and restriction enzyme digestion revealed the complete genome of chickpea chlorosis Australia virus, a mastrevirus (family Geminiviridae) previously reported only from chickpea and French bean that was 97% identical to the chickpea isolate. The sequence data also enabled the assembly of the first complete genome (RNAs 1–3) of an Australian AMV isolate from alfalfa.
Collapse
Affiliation(s)
- Samira Samarfard
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland 4072, Australia;
| | - Alistair R. McTaggart
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, Queensland 4102, Australia;
| | - Murray Sharman
- Department of Agriculture and Fisheries, Ecosciences Precinct, Dutton Park, Queensland 4102, Australia;
| | - Nicolás E. Bejerman
- Instituto de Patología Vegetal–Centro de Investigaciones Agropecuarias–Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Córdoba 5020, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Unidad de Fitopatología y Modelización Agrícola, Córdoba 5020, Argentina
| | - Ralf G. Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland 4072, Australia;
- Correspondence: ; Tel.: +61-7-334-66503
| |
Collapse
|
18
|
Gibbs AJ, Hajizadeh M, Ohshima K, Jones RA. The Potyviruses: An Evolutionary Synthesis Is Emerging. Viruses 2020; 12:E132. [PMID: 31979056 PMCID: PMC7077269 DOI: 10.3390/v12020132] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/28/2022] Open
Abstract
In this review, encouraged by the dictum of Theodosius Dobzhansky that "Nothing in biology makes sense except in the light of evolution", we outline the likely evolutionary pathways that have resulted in the observed similarities and differences of the extant molecules, biology, distribution, etc. of the potyvirids and, especially, its largest genus, the potyviruses. The potyvirids are a family of plant-infecting RNA-genome viruses. They had a single polyphyletic origin, and all share at least three of their genes (i.e., the helicase region of their CI protein, the RdRp region of their NIb protein and their coat protein) with other viruses which are otherwise unrelated. Potyvirids fall into 11 genera of which the potyviruses, the largest, include more than 150 distinct viruses found worldwide. The first potyvirus probably originated 15,000-30,000 years ago, in a Eurasian grass host, by acquiring crucial changes to its coat protein and HC-Pro protein, which enabled it to be transmitted by migrating host-seeking aphids. All potyviruses are aphid-borne and, in nature, infect discreet sets of monocotyledonous or eudicotyledonous angiosperms. All potyvirus genomes are under negative selection; the HC-Pro, CP, Nia, and NIb genes are most strongly selected, and the PIPO gene least, but there are overriding virus specific differences; for example, all turnip mosaic virus genes are more strongly conserved than those of potato virus Y. Estimates of dN/dS (ω) indicate whether potyvirus populations have been evolving as one or more subpopulations and could be used to help define species boundaries. Recombinants are common in many potyvirus populations (20%-64% in five examined), but recombination seems to be an uncommon speciation mechanism as, of 149 distinct potyviruses, only two were clear recombinants. Human activities, especially trade and farming, have fostered and spread both potyviruses and their aphid vectors throughout the world, especially over the past five centuries. The world distribution of potyviruses, especially those found on islands, indicates that potyviruses may be more frequently or effectively transmitted by seed than experimental tests suggest. Only two meta-genomic potyviruses have been recorded from animal samples, and both are probably contaminants.
Collapse
Affiliation(s)
- Adrian J. Gibbs
- Emeritus Faculty, Australian National University, Canberra, ACT 2601, Australia
| | - Mohammad Hajizadeh
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Kazusato Ohshima
- Laboratory of Plant Virology, Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, 1-banchi, Honjo-machi, Saga 840-8502, Japan;
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-2410 Korimoto, Kagoshima 890-0065, Japan
| | - Roger A.C. Jones
- Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
19
|
New Ca. Liberibacter psyllaurous haplotype resurrected from a 49-year-old specimen of Solanum umbelliferum: a native host of the psyllid vector. Sci Rep 2019; 9:9530. [PMID: 31267035 PMCID: PMC6606623 DOI: 10.1038/s41598-019-45975-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/18/2019] [Indexed: 11/29/2022] Open
Abstract
Over the last century, repeated emergence events within the Candidatus Liberibacter taxon have produced pathogens with devastating effects. Presently, our knowledge of Ca. Liberibacter diversity, host associations, and interactions with vectors is limited due to a focus on studying this taxon within crops. But to understand traits associated with pathogen emergence it is essential to study pathogen diversity in wild vegetation as well. Here, we explore historical native host plant associations and diversity of the cosmopolitan species, Ca. L. psyllaurous, also known as Ca. L. solanacearum, which is associated with psyllid yellows disease and zebra chip disease, especially in potato. We screened tissue from herbarium samples of three native solanaceous plants collected near potato-growing regions throughout Southern California over the last century. This screening revealed a new haplotype of Ca. L. psyllaurous (G), which, based on our sampling, has been present in the U.S. since at least 1970. Phylogenetic analysis of this new haplotype suggests that it may be closely related to a newly emerged North American haplotype (F) associated with zebra chip disease in potatoes. Our results demonstrate the value of herbarium sampling for discovering novel Ca. Liberibacter haplotypes not previously associated with disease in crops.
Collapse
|
20
|
Evolution of the Piscine orthoreovirus Genome Linked to Emergence of Heart and Skeletal Muscle Inflammation in Farmed Atlantic Salmon ( Salmo salar). Viruses 2019; 11:v11050465. [PMID: 31121920 PMCID: PMC6563308 DOI: 10.3390/v11050465] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 01/09/2023] Open
Abstract
Heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar) was first diagnosed in Norway in 1999. The disease is caused by Piscine orthoreovirus-1 (PRV-1). The virus is prevalent in farmed Atlantic salmon, but not always associated with disease. Phylogeny and sequence analyses of 31 PRV-1 genomes collected over a 30-year period from fish with or without HSMI, grouped the viral sequences into two main monophylogenetic clusters, one associated with HSMI and the other with low virulent PRV-1 isolates. A PRV-1 strain from Norway sampled in 1988, a decade before the emergence of HSMI, grouped with the low virulent HSMI cluster. The two distinct monophylogenetic clusters were particularly evident for segments S1 and M2. Only a limited number of amino acids were unique to the association with HSMI, and they all located to S1 and M2 encoded proteins. The observed co-evolution of the S1-M2 pair coincided in time with the emergence of HSMI in Norway, and may have evolved through accumulation of mutations and/or segment reassortment. Sequences of S1-M2 suggest selection of the HSMI associated pair, and that this segment pair has remained almost unchanged in Norwegian salmon aquaculture since 1997. PRV-1 strains from the North American Pacific Coast and Faroe Islands have not undergone this evolution, and are more closely related to the PRV-1 precursor strains not associated with clinical HSMI.
Collapse
|