1
|
Pejler G, Zhao XO, Fagerström E, Paivandy A. Blockade of endolysosomal acidification suppresses TLR3-mediated proinflammatory signaling in airway epithelial cells. J Allergy Clin Immunol 2024; 154:940-951. [PMID: 38906273 DOI: 10.1016/j.jaci.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Endolysosomal compartments are acidic and contain low pH-dependent proteases, and these conditions are exploited by respiratory viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus, for escaping into the cytosol. Moreover, endolysosomes contain various pattern recognition receptors (PRRs), which respond to virus-derived pathogen-associated molecular patterns (PAMPs) by production of proinflammatory cytokines/chemokines. However, excessive proinflammatory responses can lead to a potentially lethal cytokine storm. OBJECTIVES Here we investigated the endosomal PRR expression profile in primary human small airway epithelial cells (HSAECs), and whether blockade of endolysosomal acidification affects their cytokine/chemokine production after challenge with virus-derived stimulants. METHODS HSAECs were exposed to stimulants mimicking virus-derived PAMPs, either in the absence or presence of compounds causing blockade of endolysosomal acidification, followed by measurement of cytokine expression and release. RESULTS We show that Toll-like receptor 3 (TLR3) is the major endosomal PRR expressed by HSAECs, and that TLR3 expression is strongly induced by TLR3 agonists, but not by a range of other PRR agonists. We also demonstrate that TLR3 engagement with its agonists elicits a robust proinflammatory cytokine/chemokine response, which is profoundly suppressed through blockade of endolysosomal acidification, by bafilomycin A1, monensin, or niclosamide. Using TLR3 reporter cells, it was confirmed that TLR3 signaling is strongly induced by Poly(I:C) and that blockade of endolysosomal acidification efficiently blocked TLR3 signaling. Finally, we show that blockade of endolysosomal acidification causes a reduction in the levels of TLR3 mRNA and protein. CONCLUSIONS These findings show that blockade of endolysosomal acidification suppresses TLR3-dependent cytokine and chemokine production in HSAECs.
Collapse
Affiliation(s)
- Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Xinran O Zhao
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ella Fagerström
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Aida Paivandy
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Kidner RQ, Goldstone EB, Rodefeld HJ, Brokaw LP, Gonzalez AM, Ros-Rocher N, Gerdt JP. Exogenous lipid vesicles induce endocytosis-mediated cellular aggregation in a close unicellular relative of animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.593945. [PMID: 38798415 PMCID: PMC11118469 DOI: 10.1101/2024.05.14.593945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Capsaspora owczarzaki is a protozoan that may both reveal aspects of animal evolution and also curtail the spread of schistosomiasis, a neglected tropical disease. Capsaspora exhibits a chemically regulated aggregative behavior that resembles cellular aggregation in some animals. This behavior may have played a key role in the evolution of animal multicellularity. Additionally, this aggregative behavior may be important for Capsaspora 's ability to colonize the intermediate host of parasitic schistosomes and potentially prevent the spread of schistosomiasis. Both applications demand elucidation of the molecular mechanism of Capsaspora aggregation. Toward this goal, we first determined the necessary chemical properties of lipid cues that activate aggregation. We found that a wide range of abundant zwitterionic lipids induced aggregation, revealing that the aggregative behavior could be activated by diverse lipid-rich conditions. Furthermore, we demonstrated that aggregation in Capsaspora requires clathrin-mediated endocytosis, highlighting the potential significance of endocytosis-linked cellular signaling in recent animal ancestors. Finally, we found that aggregation was initiated by post-translational activation of cell-cell adhesion-not transcriptional regulation of cellular adhesion machinery. Our findings illuminate the chemical, molecular and cellular mechanisms that regulate Capsaspora aggregative behavior-with implications for the evolution of animal multicellularity and the transmission of parasites.
Collapse
|
3
|
Vaughan HJ, Est-Witte S, Dockery LT, Urello MA, Boyd J, Keyser BD, Zhuang L, Marelli M, Christie RJ. A high-throughput lysosome trafficking assay guides ligand selection and elucidates differences in CD22-targeted nanodelivery. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2351791. [PMID: 38817250 PMCID: PMC11138227 DOI: 10.1080/14686996.2024.2351791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024]
Abstract
Targeted nanoparticles offer potential to selectively deliver therapeutics to cells; however, their subcellular fate following endocytosis must be understood to properly design mechanisms of drug release. Here we describe a nanoparticle platform and associated cell-based assay to observe lysosome trafficking of targeted nanoparticles in live cells. The nanoparticle platform utilizes two fluorescent dyes loaded onto PEG-poly(glutamic acid) and PEG-poly(Lysine) block co-polymers that also comprise azide reactive handles on PEG termini to attach antibody-based targeting ligands. Fluorophores were selected to be pH-sensitive (pHrodo Red) or pH-insensitive (Alexafluor 488) to report when nanoparticles enter low pH lysosomes. Dye-labelled block co-polymers were further assembled into polyion complex micelle nanoparticles and crosslinked through amide bond formation to form stable nano-scaffolds for ligand attachment. Cell binding and lysosome trafficking was determined in live cells by fluorescence imaging in 96-well plates and quantification of red- and green-fluorescence signals over time. The platform and assay was validated for selection of optimal antibody-derived targeting ligands directed towards CD22 for nanoparticle delivery. Kinetic analysis of uptake and lysosome trafficking indicated differences between ligand types and the ligand with the highest lysosome trafficking efficiency translated into effective DNA delivery with nanoparticles bearing the optimal ligand.
Collapse
Affiliation(s)
- Hannah J. Vaughan
- Biologics Engineering, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Lance T. Dockery
- Biologics Engineering, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Morgan A. Urello
- Biologics Engineering, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Jonathan Boyd
- Discovery Sciences, BioPharma R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Li Zhuang
- Biologics Engineering, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Marcello Marelli
- Biologics Engineering, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - R. James Christie
- Biologics Engineering, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
4
|
Leighton SE, Wong RS, Lucaciu SA, Hauser A, Johnston D, Stathopulos PB, Bai D, Penuela S, Laird DW. Cx31.1 can selectively intermix with co-expressed connexins to facilitate its assembly into gap junctions. J Cell Sci 2024; 137:jcs261631. [PMID: 38533727 PMCID: PMC11058089 DOI: 10.1242/jcs.261631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Connexins are channel-forming proteins that function to facilitate gap junctional intercellular communication. Here, we use dual cell voltage clamp and dye transfer studies to corroborate past findings showing that Cx31.1 (encoded by GJB5) is defective in gap junction channel formation, illustrating that Cx31.1 alone does not form functional gap junction channels in connexin-deficient mammalian cells. Rather Cx31.1 transiently localizes to the secretory pathway with a subpopulation reaching the cell surface, which is rarely seen in puncta reminiscent of gap junctions. Intracellular retained Cx31.1 was subject to degradation as Cx31.1 accumulated in the presence of proteasomal inhibition, had a faster turnover when Cx43 was present and ultimately reached lysosomes. Although intracellularly retained Cx31.1 was found to interact with Cx43, this interaction did not rescue its delivery to the cell surface. Conversely, the co-expression of Cx31 dramatically rescued the assembly of Cx31.1 into gap junctions where gap junction-mediated dye transfer was enhanced. Collectively, our results indicate that the localization and functional status of Cx31.1 is altered through selective interplay with co-expressed connexins, perhaps suggesting Cx31.1 is a key regulator of intercellular signaling in keratinocytes.
Collapse
Affiliation(s)
- Stephanie E. Leighton
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Robert S. Wong
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Sergiu A. Lucaciu
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Alexandra Hauser
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Danielle Johnston
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Peter B. Stathopulos
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Donglin Bai
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
- Western's Bone and Joint Institute, The Dr. Sandy Kirkley Centre for Musculoskeletal Research, University Hospital, London, ON N6A 5B9, Canada
- Division of Experimental Oncology, Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada
| | - Dale W. Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
5
|
Ouyang Y, Nauwynck HJ. Molecular basis for the different PCV2 susceptibility of T-lymphoblasts in Landrace and Piétrain pigs. Vet Res 2024; 55:22. [PMID: 38374131 PMCID: PMC10875804 DOI: 10.1186/s13567-024-01275-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Clinically, Landrace pigs are more susceptible to porcine circovirus-associated diseases (PCVADs) than Piétrain pigs. We previously found that porcine circovirus type 2 (PCV2) can infect T-lymphoblasts. The present study examined the replication kinetics of six PCV2 strains in the lymphoblasts of Landrace and Piétrain pigs. The results showed that T-lymphoblasts from Landrace pigs are much more susceptible to PCV2 infection than those from Piétrain pigs. In addition, PCV2 replication was strain-dependent. PCV2 binding to T-lymphoblasts was partially mediated by chondroitin sulfate (CS) and dermatan sulfate (DS). Phosphacan, an effective internalization mediator in monocytes that contains several CS chains, was also demonstrated to be involved in PCV2 internalization. Viral binding and internalization were not different between the two breeds, however, the subsequent step, the disassembly was. Although inhibition of serine proteases blocked PCV2 replication in both Landrace and Piétrain pigs, this only occurred at a neutral pH in Piétrain pigs, whereas this occurred also at a low pH in Landrace. This suggested that more proteases can cleave PCV2 in Landrace lymphoblasts than in Piétrain lymphoblasts, explaining the better replication. Through co-localization studies of viral particles with endo-lysosomal markers, and quantitative analysis of organelle sizes during viral internalization, it was observed that PCV2 may exhibit a higher propensity for viral escape from late endosomes in Landrace pigs (smaller) compared to Piétrain pigs. These results provide new understandings of the different PCV2 susceptibility in Landrace and Piétrain pigs.
Collapse
Affiliation(s)
- Yueling Ouyang
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.
| | - Hans J Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Maity HK, Samanta K, Deb R, Gupta VK. Revisiting Porcine Circovirus Infection: Recent Insights and Its Significance in the Piggery Sector. Vaccines (Basel) 2023; 11:1308. [PMID: 37631876 PMCID: PMC10457769 DOI: 10.3390/vaccines11081308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Porcine circovirus (PCV), a member of the Circoviridae family within the genus Circovirus, poses a significant economic risk to the global swine industry. PCV2, which has nine identified genotypes (a-i), has emerged as the predominant genotype worldwide, particularly PCV2d. PCV2 has been commonly found in both domestic pigs and wild boars, and sporadically in non-porcine animals. The virus spreads among swine populations through horizontal and vertical transmission routes. Despite the availability of commercial vaccines for controlling porcine circovirus infections and associated diseases, the continuous genotypic shifts from a to b, and subsequently from b to d, have maintained PCV2 as a significant pathogen with substantial economic implications. This review aims to provide an updated understanding of the biology, genetic variation, distribution, and preventive strategies concerning porcine circoviruses and their associated diseases in swine.
Collapse
Affiliation(s)
- Hemanta Kumar Maity
- Department of Avian Science, Faculty of Veterinary & Animal Science, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Kartik Samanta
- Department of Avian Science, Faculty of Veterinary & Animal Science, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Rajib Deb
- ICAR-National Research Center on Pig, Rani, Guwahati 781131, Assam, India
| | - Vivek Kumar Gupta
- ICAR-National Research Center on Pig, Rani, Guwahati 781131, Assam, India
| |
Collapse
|
7
|
Park SW, Park IB, Kang SJ, Bae J, Chun T. Interaction between host cell proteins and open reading frames of porcine circovirus type 2. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:698-719. [PMID: 37970506 PMCID: PMC10640953 DOI: 10.5187/jast.2023.e67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/28/2023] [Accepted: 07/09/2023] [Indexed: 11/17/2023]
Abstract
Postweaning multisystemic wasting syndrome (PMWS) is caused by a systemic inflammation after porcine circovirus type 2 (PCV2) infection. It was one of the most economically important pathogens affecting pig production worldwide before PCV2 vaccine was first introduced in 2006. After the development of a vaccine against PCV2a type, pig farms gradually restored enormous economic losses from PMWS. However, vaccine against PCV2a type could not be fully effective against several different PCV2 genotypes (PCV2b - PCV2h). In addition, PCV2a vaccine itself could generate antigenic drift of PCV2 capsid. Therefore, PCV2 infection still threats pig industry worldwide. PCV2 infection was initially found in local tissues including reproductive, respiratory, and digestive tracks. However, PCV2 infection often leads to a systemic inflammation which can cause severe immunosuppression by depleting peripheral lymphocytes in secondary lymphoid tissues. Subsequently, a secondary infection with other microorganisms can cause PMWS. Eleven putative open reading frames (ORFs) have been predicted to encode PCV2 genome. Among them, gene products of six ORFs from ORF1 to ORF6 have been identified and characterized to estimate its functional role during PCV2 infection. Acquiring knowledge about the specific interaction between each PCV2 ORF protein and host protein might be a key to develop preventive or therapeutic tools to control PCV2 infection. In this article, we reviewed current understanding of how each ORF of PCV2 manipulates host cell signaling related to immune suppression caused by PCV2.
Collapse
Affiliation(s)
- Si-Won Park
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - In-Byung Park
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - Seok-Jin Kang
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - Joonbeom Bae
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - Taehoon Chun
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| |
Collapse
|
8
|
Su R, Gu J, Sun J, Zang J, Zhao Y, Zhang T, Chen Y, Chong G, Yin W, Zheng X, Liu B, Huang L, Ruan S, Dong H, Li Y, Li Y. CaCO 3 powder-mediated biomineralization of antigen nanosponges synergize with PD-1 blockade to potentiate anti-tumor immunity. J Nanobiotechnology 2023; 21:120. [PMID: 37024939 PMCID: PMC10080855 DOI: 10.1186/s12951-023-01870-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Antigen self-assembly nanovaccines advance the minimalist design of therapeutic cancer vaccines, but the issue of inefficient cross-presentation has not yet been fully addressed. Herein, we report a unique approach by combining the concepts of "antigen multi-copy display" and "calcium carbonate (CaCO3) biomineralization" to increase cross-presentation. Based on this strategy, we successfully construct sub-100 nm biomineralized antigen nanosponges (BANSs) with high CaCO3 loading (38.13 wt%) and antigen density (61.87%). BANSs can be effectively uptaken by immature antigen-presenting cells (APCs) in the lymph node upon subcutaneous injection. Achieving efficient spatiotemporal coordination of antigen cross-presentation and immune effects, BANSs induce the production of CD4+ T helper cells and cytotoxic T lymphocytes, resulting in effective tumor growth inhibition. BANSs combined with anti-PD-1 antibodies synergistically enhance anti-tumor immunity and reverse the tumor immunosuppressive microenvironment. Overall, this CaCO3 powder-mediated biomineralization of antigen nanosponges offer a robust and safe strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Runping Su
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jingjing Gu
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Juanjuan Sun
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Jie Zang
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Yuge Zhao
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Tingting Zhang
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Yingna Chen
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Gaowei Chong
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Weimin Yin
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Xiao Zheng
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Bingbing Liu
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Li Huang
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Shuangrong Ruan
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Haiqing Dong
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Yan Li
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Yongyong Li
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, P. R. China.
| |
Collapse
|
9
|
Panny L, Akrhymuk I, Bracci N, Woodson C, Flor R, Elliott I, Zhou W, Narayanan A, Campbell C, Kehn-Hall K. Venezuelan equine encephalitis virus E1 protein interacts with PDIA6 and PDI inhibition reduces alphavirus production. Antiviral Res 2023; 212:105560. [PMID: 36822370 DOI: 10.1016/j.antiviral.2023.105560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
Venezuelan equine encephalitis virus (VEEV) is an alphavirus transmitted by mosquitos that can cause a febrile illness and induce severe neurological complications in humans and equine populations. Currently there are no FDA approved vaccines or antiviral treatments to combat VEEV. Proteomic techniques were utilized to create an interactome of the E1 fusion glycoprotein of VEEV. VEEV E1 interacted with a number of cellular chaperone proteins including protein disulfide isomerase family A member 6 (PDIA6). PDI inhibition through LOC14 and/or nitazoxanide treatment effectively decreased production of VEEV and other alphaviruses in vitro, including eastern equine encephalitis virus, Sindbis virus, and chikungunya virus. Decreased oxidoreductive capabilities of PDIs through LOC14 or nitazoxanide treatment impacted both early and late events in viral replication, including the production of non-infectious virions and decreased VEEV E1 disulfide bond formation. Results from this study identified PDIs as critical regulators of alphavirus replication and potential therapeutic targets.
Collapse
Affiliation(s)
- Lauren Panny
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Ivan Akrhymuk
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Nicole Bracci
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Caitlin Woodson
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Rafaela Flor
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Isaac Elliott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Aarthi Narayanan
- Department of Biology, George Mason University, Fairfax, VA, 22030, USA
| | | | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA.
| |
Collapse
|
10
|
Porcine Circovirus Type 2 Hijacks Host IPO5 to Sustain the Intracytoplasmic Stability of Its Capsid Protein. J Virol 2022; 96:e0152222. [PMID: 36409110 PMCID: PMC9749456 DOI: 10.1128/jvi.01522-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nuclear entrance and stability of porcine circovirus type 2 (PCV2), the smallest virus in mammals, are crucial for its infection and replication. However, the mechanisms are not fully understood. Here, we found that the PCV2 virion maintains self-stability via the host importin 5 (IPO5) during infection. Coimmunoprecipitation combined with mass spectrometry and glutathione S-transferase pulldown assays showed that the capsid protein (Cap) of PCV2 binds directly to IPO5. Fine identification demonstrated that the N-terminal residue arginine24 of Cap is the most critical to efficient binding to the proline709 residue of IPO5. Detection of replication ability further showed that IPO5 supports PCV2 replication by promoting the nuclear import of incoming PCV2 virions. Knockdown of IPO5 delayed the nuclear transport of incoming PCV2 virions and significantly decreased the intracellular levels of overexpressed PCV2 Cap, which was reversed by treatment with a proteasome inhibitor or by rescuing IPO5 expression. Cycloheximide treatment showed that IPO5 increases the stability of the PCV2 Cap protein. Taken together, our findings demonstrated that during infection, IPO5 facilitates PCV2 replication by directly binding to the nuclear localization signal of Cap to block proteasome degradation. IMPORTANCE Circovirus is the smallest virus to cause immune suppression in pigs. The capsid protein (Cap) is the only viral structural protein that is closely related to viral infection. The nuclear entry and stability of Cap are necessary for PCV2 replication. However, the molecular mechanism maintaining the stability of Cap during nuclear trafficking of PCV2 is unknown. Here, we report that IPO5 aggregates within the nuclear periphery and combines with incoming PCV2 capsids to promote their nuclear entry. Concurrently, IPO5 inhibits the degradation of newly synthesized Cap protein, which facilitates the synthesis of virus proteins and virus replication. These findings highlight a mechanism whereby IPO5 plays a dual role in PCV2 infection, which not only enriches our understanding of the virus replication cycle but also lays the foundation for the subsequent development of antiviral drugs.
Collapse
|
11
|
Advances in Crosstalk between Porcine Circoviruses and Host. Viruses 2022; 14:v14071419. [PMID: 35891399 PMCID: PMC9315664 DOI: 10.3390/v14071419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Porcine circoviruses (PCVs), including PCV1 to PCV4, are non-enveloped DNA viruses with a diameter of about 20 nm, belonging to the genus Circovirus in the family Circoviridae. PCV2 is an important causative agent of porcine circovirus disease or porcine circovirus-associated disease (PCVD/PCVAD), which is highly prevalent in pigs and seriously affects the swine industry globally. Furthermore, PCV2 mainly causes subclinical symptoms and immunosuppression, and PCV3 and PCV4 were detected in healthy pigs, sick pigs, and other animals. Although the pathogenicity of PCV3 and PCV4 in the field is still controversial, the infection rates of PCV3 and PCV4 in pigs are increasing. Moreover, PCV3 and PCV4 rescued from infected clones were pathogenic in vivo. It is worth noting that the interaction between virus and host is crucial to the infection and pathogenicity of the virus. This review discusses the latest research progress on the molecular mechanism of PCVs–host interaction, which may provide a scientific basis for disease prevention and control.
Collapse
|
12
|
Shahsavandi S, Ebrahimi MM, Ghadiri MB, Samiee MR. Tween 80 improves the infectivity of BCL1 cell-adapted infectious bursal disease virus. J Virol Methods 2022; 304:114502. [DOI: 10.1016/j.jviromet.2022.114502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 10/19/2022]
|
13
|
Purification of Porcine Circovirus Type 2 Using an Affinity Chromatography Based on a Neutralizing Monoclonal Antibody against Viral Capsid Protein. Pathogens 2021; 10:pathogens10121564. [PMID: 34959519 PMCID: PMC8708674 DOI: 10.3390/pathogens10121564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 12/01/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is a DNA virus without an envelope. The viral particle is icosahedral and has a diameter of approximately 17 nm. In order to obtain the purified virus, a broad-spectrum monoclonal antibody 3A5 against PCV2 was coupled to CNBr-activated SepharoseTM 4B, and an affinity chromatography was established for PCV2 purification. A total of 6.5 mg of purified PCV2a/LG with 97% purity was obtained from 120 mL of the viral culture medium, and only PCV2 was detected by electron microscopy. No significant changes in the antigenic characteristics of the purified virus were detected by a capture enzyme-linked immunosorbent assay (ELISA). Furthermore, the titer of the purified PCV2 was 100 times higher than that of the unpurified virus. This affinity chromatography method was also used to purify PCV2b/LN590516 and PCV2d/SD446F16, and the purified viruses were detected by electron microscopy, capture ELISA, and virus titration, respectively. The results showed that these two strains can be successfully purified, but the yield is lower than that of the PCV2a strain. In addition, the purified virus could be used to study the viral adsorption and invasion of PK15 cells using indirect immunofluorescence assays. A large number of PCV2 signals were detected to transfer from the cellular surface to the periphery of the nucleus of the PK15 cells after 30 min of adsorption of the PCV2 to the PK15 cells. The affinity chromatography is a simple and convenient tool to obtain PCV2 with high purity. It could be applied for virus structure analysis, antibody preparation, and viral adsorption and invasion research.
Collapse
|
14
|
Arango Duque G, Dion R, Matte C, Fabié A, Descoteaux J, Stäger S, Descoteaux A. Sec22b Regulates Inflammatory Responses by Controlling the Nuclear Translocation of NF-κB and the Secretion of Inflammatory Mediators. THE JOURNAL OF IMMUNOLOGY 2021; 207:2297-2309. [PMID: 34580108 DOI: 10.4049/jimmunol.2100258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/17/2021] [Indexed: 01/24/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) regulate the vesicle transport machinery in phagocytic cells. Within the secretory pathway, Sec22b is an endoplasmic reticulum-Golgi intermediate compartment (ERGIC)-resident SNARE that controls phagosome maturation and function in macrophages and dendritic cells. The secretory pathway controls the release of cytokines and may also impact the secretion of NO, which is synthesized by the Golgi-active inducible NO synthase (iNOS). Whether ERGIC SNARE Sec22b controls NO and cytokine secretion is unknown. Using murine bone marrow-derived dendritic cells, we demonstrated that inducible NO synthase colocalizes with ERGIC/Golgi markers, notably Sec22b and its partner syntaxin 5, in the cytoplasm and at the phagosome. Pharmacological blockade of the secretory pathway hindered NO and cytokine release, and inhibited NF-κB translocation to the nucleus. Importantly, RNA interference-mediated silencing of Sec22b revealed that NO and cytokine production were abrogated at the protein and mRNA levels. This correlated with reduced nuclear translocation of NF-κB. We also found that Sec22b co-occurs with NF-κB in both the cytoplasm and nucleus, pointing to a role for this SNARE in the shuttling of NF-κB. Collectively, our data unveiled a novel function for the ERGIC/Golgi, and its resident SNARE Sec22b, in the production and release of inflammatory mediators.
Collapse
Affiliation(s)
- Guillermo Arango Duque
- INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, Quebec, Canada
| | - Renaud Dion
- INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, Quebec, Canada
| | - Christine Matte
- INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, Quebec, Canada
| | - Aymeric Fabié
- INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, Quebec, Canada
| | - Julien Descoteaux
- INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, Quebec, Canada
| | - Simona Stäger
- INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, Quebec, Canada
| | - Albert Descoteaux
- INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, Quebec, Canada
| |
Collapse
|
15
|
Herrera R, Rosbe K, Tugizov SM. Inactivation of HIV-1 in Polarized Infant Tonsil Epithelial Cells by Human Beta-Defensins 2 and 3 Tagged with the Protein Transduction Domain of HIV-1 Tat. Viruses 2021; 13:v13102043. [PMID: 34696473 PMCID: PMC8538026 DOI: 10.3390/v13102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Mother-to-child transmission (MTCT) of HIV-1 may occur during pregnancy, labor, and breastfeeding; however, the molecular mechanism of MTCT of virus remains poorly understood. Infant tonsil mucosal epithelium may sequester HIV-1, serving as a transient reservoir, and may play a critical role in MTCT. Innate immune proteins human beta-defensins 2 (hBD-2) and -3 may inactivate intravesicular virions. To establish delivery of hBD-2 and -3 into vesicles containing HIV-1, we tagged hBDs with the protein transduction domain (PTD) of HIV-1 Tat, which facilitates an efficient translocation of proteins across cell membranes. Our new findings showed that hBD-2 and -3 proteins tagged with PTD efficiently penetrated polarized tonsil epithelial cells by endocytosis and direct penetration. PTD-initiated internalization of hBD-2 and -3 proteins into epithelial cells led to their subsequent penetration of multivesicular bodies (MVB) and vacuoles containing HIV-1. Furthermore, PTD played a role in the fusion of vesicles containing HIV-1 with lysosomes, where virus was inactivated. PTD-initiated internalization of hBD-2 and -3 proteins into ex vivo tonsil tissue explants reduced the spread of virus from epithelial cells to CD4+ T lymphocytes, CD68+ macrophages, and CD1c+ dendritic cells, suggesting that this approach may serve as an antiviral strategy for inactivating intraepithelial HIV-1 and reducing viral MTCT.
Collapse
Affiliation(s)
- Rossana Herrera
- Department of Medicine, University of California–San Francisco, 513 Parnassus Ave., San Francisco, CA 94143, USA;
| | - Kristina Rosbe
- Department of Otolaryngology, University of California–San Francisco, San Francisco, CA 94115, USA;
| | - Sharof M. Tugizov
- Department of Medicine, University of California–San Francisco, 513 Parnassus Ave., San Francisco, CA 94143, USA;
- Correspondence: ; Tel.: +1-(415)-514-3177; Fax: +1-(415)-476-9364
| |
Collapse
|
16
|
Day RA, Sletten EM. Experimental Perspectives on Direct Visualization of Endosomal Rupture. Chembiochem 2021; 22:3277-3282. [PMID: 34519410 DOI: 10.1002/cbic.202100379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/10/2021] [Indexed: 11/05/2022]
Abstract
Endosomal escape continues to be a limiting factor in the therapeutic use of nanomaterials. Assays to visualize endosomal escape often do not decouple the endosomal/lysosomal disruption from the release of payload into the cytosol. Here, we discuss three approaches to directly probe endosomal/lysosomal rupture: calcein dye dilution, lysosome size quantification and endosome/lysosome membrane integrity visualized with a genetically engineered cell line. We apply the three assays to endosomes/lysosomes ruptured via osmotic pressure and photochemical internalization.
Collapse
Affiliation(s)
- Rachael A Day
- Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095, USA
| | - Ellen M Sletten
- Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095, USA
| |
Collapse
|
17
|
Su R, Chong G, Dong H, Gu J, Zang J, He R, Sun J, Zhang T, Zhao Y, Zheng X, Yang Y, Li Y, Li Y. Nanovaccine biomineralization for cancer immunotherapy: a NADPH oxidase-inspired strategy for improving antigen cross-presentation via lipid peroxidation. Biomaterials 2021; 277:121089. [PMID: 34481292 DOI: 10.1016/j.biomaterials.2021.121089] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/22/2022]
Abstract
Current efforts to develop novel vaccine nanotechnologies to increase cytotoxic T lymphocytes have met the challenges of the limited efficacy of antigen cross-presentation. Recent studies have uncovered a unique biological mechanism by which activation of the NADPH oxidase 2 (NOX2) complex, a major source of reactive oxygen species (ROS), enhances the cross-presentation by antigen-presenting cells (APCs). Inspired by the NOX2 mechanism, we devise biomineralized nanovaccines named NVscp, which are developed by in situ growth of calcium peroxide on nanovaccines self-assembled with the model antigen ovalbumin. The ~80 nm NVscp efficiently flow to the draining lymph nodes, where they accumulate within APC endo-/lysosomes, and generate a rapid burst of ROS in response to the acidic endo-/lysosomal environment with the subsequent endo-/lysosomal lipid peroxidation. Accompanied by the process, NVscp stimulate distinct APCs maturation and antigen presentation to T lymphocytes. Notably, high levels of antigen-specific CD8+ T cell responses, accompanied by the induction of CD4+ T helper cells, are achieved. More importantly, NVscp significantly increase the ratios of intratumoral CD8+ T/regulatory T cells and achieve prominent tumor therapy effects. The NOX2-inspired biomineralized NVscp represent an effective and easily applicable strategy that enables the strong cross-presentation of exogenous vaccine antigens.
Collapse
Affiliation(s)
- Runping Su
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Gaowei Chong
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Haiqing Dong
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Jingjing Gu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Jie Zang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Ruiqing He
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Juanjuan Sun
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Tingting Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Yuge Zhao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Xiao Zheng
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Yan Yang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Yan Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Yongyong Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China.
| |
Collapse
|
18
|
Activity of Lymphostatin, A Lymphocyte Inhibitory Virulence Factor of Pathogenic Escherichia coli, is Dependent on a Cysteine Protease Motif. J Mol Biol 2021; 433:167200. [PMID: 34400181 PMCID: PMC8505758 DOI: 10.1016/j.jmb.2021.167200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/16/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022]
Abstract
LifA shares a cysteine protease motif with bacterial toxins and secreted effectors. C1480A substituted LifA has reduced inhibitory activity against T cells. LifA is cleaved in T cells and this requires C1480 and endosome acidification.
Lymphostatin (LifA) is a 366 kDa protein expressed by attaching & effacing Escherichia coli. It plays an important role in intestinal colonisation and inhibits the mitogen- and antigen-stimulated proliferation of lymphocytes and the synthesis of proinflammatory cytokines. LifA exhibits N-terminal homology with the glycosyltransferase domain of large clostridial toxins (LCTs). A DTD motif within this region is required for lymphostatin activity and binding of the sugar donor uridine diphosphate N-acetylglucosamine. As with LCTs, LifA also contains a cysteine protease motif (C1480, H1581, D1596) that is widely conserved within the YopT-like superfamily of cysteine proteases. By analogy with LCTs, we hypothesised that the CHD motif may be required for intracellular processing of the protein to release the catalytic N-terminal domain after uptake and low pH-stimulated membrane insertion of LifA within endosomes. Here, we created and validated a C1480A substitution mutant in LifA from enteropathogenic E. coli strain E2348/69. The purified protein was structurally near-identical to the wild-type protein. In bovine T lymphocytes treated with wild-type LifA, a putative cleavage product of approximately 140 kDa was detected. Appearance of the putative cleavage product was inhibited in a concentration-dependent manner by bafilomycin A1 and chloroquine, which inhibit endosome acidification. The cleavage product was not observed in cells treated with the C1480A mutant of LifA. Lymphocyte inhibitory activity of the purified C1480A protein was significantly impaired. The data indicate that an intact cysteine protease motif is required for cleavage of lymphostatin and its activity against T cells.
Collapse
|
19
|
Dobrovolskaite A, Madan M, Pandey V, Altomare DA, Phanstiel O. The discovery of indolone GW5074 during a comprehensive search for non-polyamine-based polyamine transport inhibitors. Int J Biochem Cell Biol 2021; 138:106038. [PMID: 34252566 DOI: 10.1016/j.biocel.2021.106038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 01/15/2023]
Abstract
The native polyamines putrescine, spermidine, and spermine are essential for cell development and proliferation. Polyamine levels are often increased in cancer tissues and polyamine depletion is a validated anticancer strategy. Cancer cell growth can be inhibited by the polyamine biosynthesis inhibitor difluoromethylornithine (DFMO), which inhibits ornithine decarboxylase (ODC), the rate-limiting enzyme in the polyamine biosynthesis pathway. Unfortunately, cells treated with DFMO often replenish their polyamine pools by importing polyamines from their environment. Several polyamine-based molecules have been developed to work as polyamine transport inhibitors (PTIs) and have been successfully used in combination with DFMO in several cancer models. Here, we present the first comprehensive search for potential non-polyamine based PTIs that work in human pancreatic cancer cells in vitro. After identifying and testing five different categories of compounds, we have identified the c-RAF inhibitor, GW5074, as a novel non-polyamine based PTI. GW5074 inhibited the uptake of all three native polyamines and a fluorescent-polyamine probe into human pancreatic cancer cells. GW5074 significantly reduced pancreatic cancer cell growth in vitro when treated in combination with DFMO and a rescuing dose of spermidine. Moreover, GW5074 alone reduced tumor growth when tested in a murine pancreatic cancer mouse model in vivo. In summary, GW5074 is a novel non-polyamine-based PTI that potentiates the anticancer activity of DFMO in pancreatic cancers.
Collapse
Affiliation(s)
- Aiste Dobrovolskaite
- Department of Medical Education, College of Medicine, University of Central Florida, Orlando, 32827, United States
| | - Meenu Madan
- Department of Medical Education, College of Medicine, University of Central Florida, Orlando, 32827, United States
| | - Veethika Pandey
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, 32827, United States
| | - Deborah A Altomare
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, 32827, United States
| | - Otto Phanstiel
- Department of Medical Education, College of Medicine, University of Central Florida, Orlando, 32827, United States.
| |
Collapse
|
20
|
Luo R, Huan C, Gao Q, Pan H, Chen P, Liu X, Gao S. AlphaB-crystallin promotes porcine circovirus type 2 replication in a cell proliferation-dependent manner. Virus Res 2021; 301:198435. [PMID: 33961899 DOI: 10.1016/j.virusres.2021.198435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/06/2021] [Accepted: 04/21/2021] [Indexed: 11/20/2022]
Abstract
Porcine circovirus type 2 (PCV2) is the primary causative agent of postweaning multisystemic wasting syndrome (PMWS) and causes heavy economic losses to the porcine industry worldwide. In this study, PK-15 cells were infected with PCV2 for 48 h, then harvested and subjected to label-free quantitative proteomic mass spectrometry. In total, 1212 proteins were differentially expressed in PCV2-infected cells compared with mock-infected cells, including 796 upregulated and 416 downregulated proteins. Gene ontology analysis showed that these differentially expressed proteins were involved in biological processes, cellular components and molecular functions, and these categories included cellular processes, environmental information processing, genetic information processing, disease, metabolism, and body systems. Enrichment analysis of the KEGG pathway showed that innate immune responses were significantly enriched. AlphaB-crystallin (CRYAB) interacts with desmin and cytoplasmic actin to prevent protein misfolding and aggregation, helping to maintain cytoskeletal integrity and promoting cell proliferation. In this study, CRYAB was found to effect the replication of PCV2, as verified by qRT-PCR, TCID50 determination and western blot analysis. Overexpression of CRYAB significantly upregulated PCV2 capsid protein and increased viral titers in both PK-15 cells and culture supernatants, whereas the opposite results were obtained in CRYAB knockdown cells. Furthermore, we revealed that the promotion of PCV2 replication by CRYAB was dependent on cell proliferation. To our knowledge, this is the first report of the effect of CRYAB on PCV2 replication and our findings contribute to a greater understanding of the mechanism of PCV2 replication and pathogenesis, as well as the host's response to PCV2 infection.
Collapse
Affiliation(s)
- Rongdi Luo
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Changchao Huan
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Qingqing Gao
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Haochun Pan
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Pengxiang Chen
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiufan Liu
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Song Gao
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
21
|
Shi R, Hou L, Wei L, Quan R, Zhou B, Jiang H, Wang J, Zhu S, Song J, Wang D, Liu J. Porcine Circovirus Type 3 Enters Into PK15 Cells Through Clathrin- and Dynamin-2-Mediated Endocytosis in a Rab5/Rab7 and pH-Dependent Fashion. Front Microbiol 2021; 12:636307. [PMID: 33679671 PMCID: PMC7928314 DOI: 10.3389/fmicb.2021.636307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/26/2021] [Indexed: 01/20/2023] Open
Abstract
Porcine circovirus type 3 (PCV3) invades multiple tissues and organs of pigs of different ages and are widely spread throughout pig farms, emerging as an important viral pathogen that can potentially damage the pig industry worldwide. Since PCV3 is a newly discovered virus, many aspects of its life cycle remain unknown. Porcine kidney epithelial cells are important host targets for PCV3. Here, we used systematic approaches to dissect the molecular mechanisms underlying the cell entry and intracellular trafficking of PCV3 in PK15 cells, a cell line of porcine kidney epithelial origin. A large number of PCV3 viral particles were found to colocalize with clathrin but not caveolin-1 after entry, and PCV3 infection was significantly decreased when treated with chlorpromazine, dynasore, knockdown of clathrin heavy chain expression via RNA interference, or overexpression of a dominant-negative mutant of EPS15 in PCV3-infected cells. After internalization, the viral particles were further observed to colocalize with Rab5 and Rab7, and knockdown of both expression by RNA interference significantly inhibited PCV3 replication. We also found that PCV3 infection was impeded by ammonium chloride treatment, which indicated the requirement of an acidic environment for viral entry. Taken together, our findings demonstrate that PCV3 enters PK15 cells through a clathrin- and dynamin-2-mediated endocytic pathway, which requires early and late endosomal trafficking, as well as an acidic environment, providing an insightful theoretical basis for further understanding the PCV3 life cycle and its pathogenesis.
Collapse
Affiliation(s)
- Ruihan Shi
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lei Hou
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.,College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Li Wei
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Bin Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Haijun Jiang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shanshan Zhu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jue Liu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.,College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
22
|
Saito T, Tsukahara T, Suzuki T, Nojima I, Tadano H, Kawai N, Kubo T, Hirohashi Y, Kanaseki T, Torigoe T, Li L. Spatiotemporal metabolic dynamics of the photosensitizer talaporfin sodium in carcinoma and sarcoma. Cancer Sci 2020; 112:550-562. [PMID: 33190360 PMCID: PMC7894003 DOI: 10.1111/cas.14735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 12/28/2022] Open
Abstract
Photodynamic therapy (PDT) using the photosensitizer talaporfin sodium (talaporfin) is a new mode of treatment for cancer. However, the metabolic mechanism of talaporfin has not been clarified. Thus, we investigated the uptake, transportation, and elimination mechanisms of talaporfin in carcinoma and sarcoma. The results showed that talaporfin co‐localized in early endosomes and lysosomes. Talaporfin uptake was via clathrin‐ and caveolae‐dependent endocytosis and a high amount of intracellular ATP was essential. Inhibition of lysosomal enzymes maintained intracellular talaporfin levels. Inhibition of K‐Ras signaling reduced talaporfin uptake in carcinoma and sarcoma cell lines. Talaporfin was taken up by clathrin‐ and caveolae‐dependent endocytosis, translocated from early endosomes to lysosomes, and finally degraded by lysosomes. We also demonstrated that ATP is essential for the uptake of talaporfin and that activation of K‐Ras is involved as a regulatory mechanism. These results provide new insights into the metabolism of talaporfin in cancer cells for the enhancement of PDT for carcinoma and sarcoma.
Collapse
Affiliation(s)
- Takuma Saito
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Graduate School of Photonic Science, Chitose Institute for Science and Technology, Sapporo, Japan
| | - Tomohide Tsukahara
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takeshi Suzuki
- Department of Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Iyori Nojima
- Division of Cell Bank, Biomedical Research, Education and Instrumentation Center, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroki Tadano
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Division of Internal Medicine, Sapporo Self-Defense Forces Hospital, Sapporo, Japan
| | - Noriko Kawai
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Terufumi Kubo
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takayuki Kanaseki
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Liming Li
- Graduate School of Photonic Science, Chitose Institute for Science and Technology, Sapporo, Japan
| |
Collapse
|
23
|
Ferreira T, Kulkarni A, Bretscher C, Richter K, Ehrlich M, Marchini A. Oncolytic H-1 Parvovirus Enters Cancer Cells through Clathrin-Mediated Endocytosis. Viruses 2020; 12:v12101199. [PMID: 33096814 PMCID: PMC7594094 DOI: 10.3390/v12101199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
H-1 protoparvovirus (H-1PV) is a self-propagating virus that is non-pathogenic in humans and has oncolytic and oncosuppressive activities. H-1PV is the first member of the Parvoviridae family to undergo clinical testing as an anticancer agent. Results from clinical trials in patients with glioblastoma or pancreatic carcinoma show that virus treatment is safe, well-tolerated and associated with first signs of efficacy. Characterisation of the H-1PV life cycle may help to improve its efficacy and clinical outcome. In this study, we investigated the entry route of H-1PV in cervical carcinoma HeLa and glioma NCH125 cell lines. Using electron and confocal microscopy, we detected H-1PV particles within clathrin-coated pits and vesicles, providing evidence that the virus uses clathrin-mediated endocytosis for cell entry. In agreement with these results, we found that blocking clathrin-mediated endocytosis using specific inhibitors or small interfering RNA-mediated knockdown of its key regulator, AP2M1, markedly reduced H-1PV entry. By contrast, we found no evidence of viral entry through caveolae-mediated endocytosis. We also show that H-1PV entry is dependent on dynamin, while viral trafficking occurs from early to late endosomes, with acidic pH necessary for a productive infection. This is the first study that characterises the cell entry pathways of oncolytic H-1PV.
Collapse
Affiliation(s)
- Tiago Ferreira
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Centre, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; (T.F.); (C.B.)
| | - Amit Kulkarni
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, 84 Val Fleuri, L-1526 Luxembourg, Luxembourg;
| | - Clemens Bretscher
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Centre, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; (T.F.); (C.B.)
| | - Karsten Richter
- Core Facility Electron Microscopy, German Cancer Research Centre, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
| | - Marcelo Ehrlich
- Laboratory of Signal Transduction and Membrane Biology, The Shumins School for Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel;
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Centre, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; (T.F.); (C.B.)
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, 84 Val Fleuri, L-1526 Luxembourg, Luxembourg;
- Correspondence: or ; Tel.: +49-6221-424969 or +352-26-970-856
| |
Collapse
|
24
|
Kuwahara T, Funakawa K, Komori T, Sakurai M, Yoshii G, Eguchi T, Fukuda M, Iwatsubo T. Roles of lysosomotropic agents on LRRK2 activation and Rab10 phosphorylation. Neurobiol Dis 2020; 145:105081. [PMID: 32919031 DOI: 10.1016/j.nbd.2020.105081] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/12/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2), the major causative gene product of autosomal-dominant Parkinson's disease, is a protein kinase that phosphorylates a subset of Rab GTPases. Since pathogenic LRRK2 mutations increase its ability to phosphorylate Rab GTPases, elucidating the mechanisms of how Rab phosphorylation is regulated by LRRK2 is of great importance. We have previously reported that chloroquine-induced lysosomal stress facilitates LRRK2 phosphorylation of Rab10 to maintain lysosomal homeostasis. Here we reveal that Rab10 phosphorylation by LRRK2 is potently stimulated by treatment of cells with a set of lysosome stressors and clinically used lysosomotropic drugs. These agents commonly promoted the formation of LRRK2-coated enlarged lysosomes and extracellular release of lysosomal enzyme cathepsin B, the latter being dependent on LRRK2 kinase activity. In contrast to the increase in Rab10 phosphorylation, treatment with lysosomotropic drugs did not increase the enzymatic activity of LRRK2, as monitored by its autophosphorylation at Ser1292 residue, but rather enhanced the molecular proximity between LRRK2 and its substrate Rab GTPases on the cytosolic surface of lysosomes. Lysosomotropic drug-induced upregulation of Rab10 phosphorylation was likely a downstream event of Rab29 (Rab7L1)-mediated enzymatic activation of LRRK2. These results suggest a regulated process of Rab10 phosphorylation by LRRK2 that is associated with lysosomal overload stress, and provide insights into the novel strategies to halt the aberrant upregulation of LRRK2 kinase activity.
Collapse
Affiliation(s)
- Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Kai Funakawa
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tadayuki Komori
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Maria Sakurai
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Gen Yoshii
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tomoya Eguchi
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
25
|
Day RA, Estabrook DA, Wu C, Chapman JO, Togle AJ, Sletten EM. Systematic Study of Perfluorocarbon Nanoemulsions Stabilized by Polymer Amphiphiles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38887-38898. [PMID: 32706233 PMCID: PMC8341393 DOI: 10.1021/acsami.0c07206] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Perfluorocarbon (PFC) nanoemulsions, droplets of fluorous solvent stabilized by surfactants dispersed in water, are simple yet versatile nanomaterials. The orthogonal nature of the fluorous phase promotes the formation of nanoemulsions through a simple, self-assembly process while simultaneously encapsulating fluorous-tagged payloads for various applications. The size, stability, and surface chemistry of PFC nanoemulsions are controlled by the surfactant. Here, we systematically study the effect of the hydrophilic portion of polymer surfactants on PFC nanoemulsions. We find that the hydrophilic block length and identity, the overall polymer hydrophilic/lipophilic balance, and the polymer architecture are all important factors. The ability to modulate these parameters enables control over initial size, stability, payload retention, cellular internalization, and protein adsorption of PFC nanoemulsions. With the insight obtained from this systematic study of polymer amphiphiles stabilizing PFC nanoemulsions, design features required for the optimal material are obtained.
Collapse
Affiliation(s)
- Rachael A Day
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Daniel A Estabrook
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Carolyn Wu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - John O Chapman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Alyssa J Togle
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
26
|
An optimized procedure for quantitative analysis of mitophagy with the mtKeima system using flow cytometry. Biotechniques 2020; 69:249-256. [PMID: 32806949 DOI: 10.2144/btn-2020-0071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Mitophagy is the process by which mitochondria are selectively targeted and removed via autophagic machinery to maintain mitochondrial homeostasis in the cell. Recently, flow cytometry-based assays that utilize the fluorescent mtKeima reporter system have allowed for quantitative assessment of mitophagy at a single-cell level. However, clear guidelines for appropriate flow cytometry workflow and downstream analysis are lacking and studies using flow cytometry in mtKeima-expressing cells often display incorrect and arbitrary binary mitophagic or nonmitophagic cutoffs that prevent proper quantitative analyses. In this paper we propose a novel method of mtKeima data analysis that preserves subtle differences present within flow cytometry data in a manner that ensures reproducibility.
Collapse
|
27
|
Chen L, Chen H, Dong S, Huang W, Chen L, Wei Y, Shi L, Li J, Zhu F, Zhu Z, Wang Y, Lv X, Yu X, Li H, Wei W, Zhang K, Zhu L, Qu C, Hong J, Hu C, Dong J, Qi R, Lu D, Wang H, Peng S, Hao G. The Effects of Chloroquine and Hydroxychloroquine on ACE2-Related Coronavirus Pathology and the Cardiovascular System: An Evidence-Based Review. FUNCTION 2020; 1:zqaa012. [PMID: 38626250 PMCID: PMC7454642 DOI: 10.1093/function/zqaa012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 01/08/2023] Open
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a serious threat to global public health and there is currently no effective antiviral therapy. It has been suggested that chloroquine (CQ) and hydroxychloroquine (HCQ), which were primarily employed as prophylaxis and treatment for malaria, could be used to treat COVID-19. CQ and HCQ may be potential inhibitors of SARS-CoV-2 entry into host cells, which are mediated via the angiotensin-converting enzyme 2 (ACE2), and may also inhibit subsequent intracellular processes which lead to COVID-19, including damage to the cardiovascular (CV) system. However, paradoxically, CQ and HCQ have also been reported to cause damage to the CV system. In this review, we provide a critical examination of the published evidence. CQ and HCQ could potentially be useful drugs in the treatment of COVID-19 and other ACE2 involved virus infections, but the antiviral effects of CQ and HCQ need to be tested in more well-designed clinical randomized studies and their actions on the CV system need to be further elucidated. However, even if it were to turn out that CQ and HCQ are not useful drugs in practice, further studies of their mechanism of action could be helpful in improving our understanding of COVID-19 pathology.
Collapse
Affiliation(s)
- Li Chen
- Department of Medicine, Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Haiyan Chen
- Department of Endemic Disease, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Shan Dong
- Guangzhou First People’s Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou 510180, China
| | - Wei Huang
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Li Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yuan Wei
- Center for Scientific Research and Institute of Exercise and Health, Guangzhou Sports University, Guangzhou 510500, China
| | - Liping Shi
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jinying Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Fengfeng Zhu
- Department of Hepatobiliary and Pancreas Surgery, The First Affiliated Hospital Of University of South China, Hengyang 421001, China
| | - Zhu Zhu
- Department of Hepatobiliary and Pancreas Surgery, The First Affiliated Hospital Of University of South China, Hengyang 421001, China
| | - Yiyang Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xiuxiu Lv
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xiaohui Yu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Hongmei Li
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Wei Wei
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Keke Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Lihong Zhu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Chen Qu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Chaofeng Hu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jun Dong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Renbin Qi
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Daxiang Lu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People’s Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People’s Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Shuang Peng
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Guang Hao
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
28
|
Qin Y, Ting F, Kim MJ, Strelnikov J, Harmon J, Gao F, Dose A, Teng BB, Alipour MA, Yao Z, Crooke R, Krauss RM, Medina MW. Phosphatidylinositol-(4,5)-Bisphosphate Regulates Plasma Cholesterol Through LDL (Low-Density Lipoprotein) Receptor Lysosomal Degradation. Arterioscler Thromb Vasc Biol 2020; 40:1311-1324. [PMID: 32188273 DOI: 10.1161/atvbaha.120.314033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE TMEM55B (transmembrane protein 55B) is a phosphatidylinositol-(4,5)-bisphosphate (PI[4,5]P2) phosphatase that regulates cellular cholesterol, modulates LDLR (low-density lipoprotein receptor) decay, and lysosome function. We tested the effects of Tmem55b knockdown on plasma lipids in mice and assessed the roles of LDLR lysosomal degradation and change in (PI[4,5]P2) in mediating these effects. Approach and Results: Western diet-fed C57BL/6J mice were treated with antisense oligonucleotides against Tmem55b or a nontargeting control for 3 to 4 weeks. Hepatic Tmem55b transcript and protein levels were reduced by ≈70%, and plasma non-HDL (high-density lipoprotein) cholesterol was increased ≈1.8-fold (P<0.0001). Immunoblot analysis of fast protein liquid chromatography (FPLC) fractions revealed enrichment of ApoE-containing particles in the LDL size range. In contrast, Tmem55b knockdown had no effect on plasma cholesterol in Ldlr-/- mice. In primary hepatocytes and liver tissues from Tmem55b knockdown mice, there was decreased LDLR protein. In the hepatocytes, there was increased lysosome staining and increased LDLR-lysosome colocalization. Impairment of lysosome function (incubation with NH4Cl or knockdown of the lysosomal proteins LAMP1 or RAB7) abolished the effect of TMEM55B knockdown on LDLR in HepG2 (human hepatoma) cells. Colocalization of the recycling endosome marker RAB11 (Ras-related protein 11) with LDLR in HepG2 cells was reduced by 50% upon TMEM55B knockdown. Finally, knockdown increased hepatic PI(4,5)P2 levels in vivo and in HepG2 cells, while TMEM55B overexpression in vitro decreased PI(4,5)P2. TMEM55B knockdown decreased, whereas overexpression increased, LDL uptake in HepG2 cells. Notably, the TMEM55B overexpression effect was reversed by incubation with PI(4,5)P2. Conclusions: These findings indicate a role for TMEM55B in regulating plasma cholesterol levels by affecting PI(4,5)P2-mediated LDLR lysosomal degradation.
Collapse
Affiliation(s)
- Yuanyuan Qin
- From the Department of Pediatrics, University of California San Francisco, Oakland (Y.Q., F.T., R.M.K., M.W.M.)
| | - Flora Ting
- From the Department of Pediatrics, University of California San Francisco, Oakland (Y.Q., F.T., R.M.K., M.W.M.)
| | - Mee J Kim
- Children's Hospital Oakland Research Institute, CA (M.J.K., J.S., J.H., F.G., A.D.)
| | - Jacob Strelnikov
- Children's Hospital Oakland Research Institute, CA (M.J.K., J.S., J.H., F.G., A.D.)
| | - Joseph Harmon
- Children's Hospital Oakland Research Institute, CA (M.J.K., J.S., J.H., F.G., A.D.)
| | - Feng Gao
- Children's Hospital Oakland Research Institute, CA (M.J.K., J.S., J.H., F.G., A.D.)
| | - Andrea Dose
- Children's Hospital Oakland Research Institute, CA (M.J.K., J.S., J.H., F.G., A.D.)
| | - Ba-Bie Teng
- Center for Human Genetics, University of Texas Health Science Center, Houston (B.-B.T.)
| | - Mohsen Amir Alipour
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ontario, Canada (M.A.A., Z.Y.)
| | - Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ontario, Canada (M.A.A., Z.Y.)
| | | | - Ronald M Krauss
- From the Department of Pediatrics, University of California San Francisco, Oakland (Y.Q., F.T., R.M.K., M.W.M.)
| | - Marisa W Medina
- From the Department of Pediatrics, University of California San Francisco, Oakland (Y.Q., F.T., R.M.K., M.W.M.)
| |
Collapse
|
29
|
Wang Q, Zhou H, Lin H, Ma Z, Fan H. Porcine circovirus type 2 exploits JNK-mediated disruption of tight junctions to facilitate Streptococcus suis translocation across the tracheal epithelium. Vet Res 2020; 51:31. [PMID: 32106883 PMCID: PMC7047418 DOI: 10.1186/s13567-020-00756-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) is considered as the primary pathogen of porcine circovirus-associated disease (PCVAD), which results in significant economic losses worldwide. Clinically, PCV2 often causes disease through coinfection with other bacterial pathogens, including Streptococcus suis (S. suis), and especially the highly prevalent S. suis serotype 2 (SS2). The present study determined that continuous PCV2 infection in piglets down-regulates tight junction proteins (TJ) ZO-1 and occludin in the lungs. Swine tracheal epithelial cells (STEC) were used to explore the mechanisms and consequences of disruption of TJ, and an in vitro tracheal epithelial barrier model was established. Our results show that PCV2 infection in STEC decreases the expression levels of ZO-1 and occludin and increases the permeability of the tracheal epithelial barrier, resulting in easier translocation of SS2. Moreover, Western blot analysis indicates that PCV2 infection activates the JNK/MAPK pathway. The disruption of TJ in SETC and increased permeability of the epithelial barrier induced by PCV2 could be alleviated by inhibition of JNK phosphorylation, which indicates that the JNK/MAPK pathway regulates the expression of ZO-1 and occludin during PCV2 infection. This study allows us to better understand the mechanisms of PCV2 coinfection with bacterial pathogens and provides new insight into controlling the occurrence of PCVAD.
Collapse
Affiliation(s)
- Qing Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hong Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
30
|
Wei X, She G, Wu T, Xue C, Cao Y. PEDV enters cells through clathrin-, caveolae-, and lipid raft-mediated endocytosis and traffics via the endo-/lysosome pathway. Vet Res 2020; 51:10. [PMID: 32041637 PMCID: PMC7011528 DOI: 10.1186/s13567-020-0739-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/07/2020] [Indexed: 12/21/2022] Open
Abstract
With the emergence of highly pathogenic variant strains, porcine epidemic diarrhea virus (PEDV) has led to significant economic loss in the global swine industry. Many studies have described how coronaviruses enter cells, but information on PEDV invasion strategies remains insufficient. Given that the differences in gene sequences and pathogenicity between classical and mutant strains of PEDV may lead to diverse invasion mechanisms, this study focused on the cellular entry pathways and cellular transport of the PEDV GI and GII subtype strains in Vero cells and IPEC-J2 cells. We first characterized the kinetics of PEDV entry into cells and found that the highest invasion rate of PEDV was approximately 33% in the IPEC-J2 cells and approximately 100% in the Vero cells. To clarify the specific endocytic pathways, systematic research methods were used and showed that PEDV enters cells via the clathrin- and caveolae-mediated endocytosis pathways, in which dynamin II, clathrin heavy chain, Eps15, cholesterol, and caveolin-1 were indispensably involved. In addition, lipid raft extraction assay showed that PEDV can also enter cells through lipid raft-mediated endocytosis. To investigate the trafficking of internalized PEDV, we found that PEDV entry into cells relied on low pH and internalized virions reached lysosomes through the early endosome-late endosome-lysosome pathway. The results concretely revealed the entry mechanisms of PEDV and provided an insightful theoretical basis for the further understanding of PEDV pathogenesis and guidance for new targets of antiviral drugs.
Collapse
Affiliation(s)
- Xiaona Wei
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Gaoli She
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Tingting Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China.
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
31
|
Liver sinusoidal endothelial cells contribute to the uptake and degradation of entero bacterial viruses. Sci Rep 2020; 10:898. [PMID: 31965000 PMCID: PMC6972739 DOI: 10.1038/s41598-020-57652-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 12/18/2019] [Indexed: 01/01/2023] Open
Abstract
The liver is constantly exposed to dietary antigens, viruses, and bacterial products with inflammatory potential. For decades cellular uptake of virus has been studied in connection with infection, while the few studies designed to look into clearance mechanisms focused mainly on the role of macrophages. In recent years, attention has been directed towards the liver sinusoidal endothelial cells (LSECs), which play a central role in liver innate immunity by their ability to scavenge pathogen- and damage-associated molecular patterns. Every day our bodies are exposed to billions of gut-derived pathogens which must be efficiently removed from the circulation to prevent inflammatory and/or immune reactions in other vascular beds. Here, we have used GFP-labelled Enterobacteria phage T4 (GFP-T4-phage) as a model virus to study the viral scavenging function and metabolism in LSECs. The uptake of GFP-T4-phages was followed in real-time using deconvolution microscopy, and LSEC identity confirmed by visualization of fenestrae using structured illumination microscopy. By combining these imaging modalities with quantitative uptake and inhibition studies of radiolabelled GFP-T4-phages, we demonstrate that the bacteriophages are effectively degraded in the lysosomal compartment. Due to their high ability to take up and degrade circulating bacteriophages the LSECs may act as a primary anti-viral defence mechanism.
Collapse
|
32
|
Kumari M, Liu CH, Wu WC. Oligochitosan modified albumin as plasmid DNA delivery vector: Endocytic trafficking, polyplex fate, in vivo compatibility. Int J Biol Macromol 2020; 142:492-502. [DOI: 10.1016/j.ijbiomac.2019.09.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 01/12/2023]
|
33
|
Conformational Changes and Nuclear Entry of Porcine Circovirus without Disassembly. J Virol 2019; 93:JVI.00824-19. [PMID: 31341057 DOI: 10.1128/jvi.00824-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/10/2019] [Indexed: 12/29/2022] Open
Abstract
A relatively stable and flexible capsid is critical to the viral life cycle. However, the capsid dynamics and cytosol trafficking of porcine circovirus type 2 (PCV2) during its infectious cycle are poorly understood. Here, we report the structural stability and conformation flexibility of PCV2 virions by genome labeling and the use of three monoclonal antibodies (MAbs) against the native capsid of PCV2. Genome labeling showed that the infectivity of the PCV2 virion was not affected by conjugation with deoxy-5-ethynylcytidine (EdC). Heat stability experiments indicated that PCV2 capsids started to disassemble at 65°C, causing binding incompetence for all antibodies, and the viral genome was released without capsid disassembly upon heating at 60°C. Antibody binding experiments with PCV2 showed that residues 186 to 192 were concealed in the early endosomes of epithelial PK-15 and monocytic 3D4/31 cells with or without chloroquine treatment and then exposed in PK-15 cytosol and the 3D4/31 nucleus. Viral propagation and localization experiments showed that PCV2 replication and cytosol trafficking were not significantly affected by microtubule depolymerization in monocytic 3D4/31 cells treated with nocodazole. These findings demonstrated that nuclear targeting of viral capsids involved conformational changes, the PCV2 genome was released from the assembled capsid, and the transit of PCV2 particles was independent of microtubules in 3D4/31 cells.IMPORTANCE Circovirus is the smallest virus known to replicate autonomously. Knowledge of viral genome release may provide understanding of viral replication and a method to artificially inactivate viral particles. Currently, little is known about the release model of porcine circovirus type 2 (PCV2). Here, we report the release of the PCV2 genome from assembled capsid and the intracellular trafficking of infectious PCV2 by alterations in the capsid conformation. Knowledge of PCV2 capsid stability and dynamics is essential to understanding its infectious cycle and lays the foundation for discovering powerful targets for therapeutic and prophylactic intervention.
Collapse
|
34
|
Yang LX, Wu YN, Wang PW, Su WC, Shieh DB. Iron Release Profile of Silica-Modified Zero-Valent Iron NPs and Their Implication in Cancer Therapy. Int J Mol Sci 2019; 20:E4336. [PMID: 31487938 PMCID: PMC6770483 DOI: 10.3390/ijms20184336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 02/07/2023] Open
Abstract
To evaluate the iron ion release profile of zero-valent iron (ZVI)-based nanoparticles (NPs) and their relationship with lysosomes in cancer cells, silica and mesoporous silica-coated ZVI NPs (denoted as ZVI@SiO2 and ZVI@mSiO2) were synthesized and characterized for the following study of cytotoxicity, intracellular iron ion release, and their underlying mechanisms. ZVI@mSiO2 NPs showed higher cytotoxicity than ZVI@SiO2 NPs in the OEC-M1 oral cancer cell line. In addition, internalized ZVI@mSiO2 NPs deformed into hollow and void structures within the cells after a 24-h treatment, but ZVI@SiO2 NPs remained intact after internalization. The intracellular iron ion release profile was also accordant with the structural deformation of ZVI@mSiO2 NPs. Burst iron ion release occurred in ZVI@mSiO2-treated cells within an hour with increased lysosome membrane permeability, which induced massive reactive oxygen species generation followed by necrotic and apoptotic cell death. Furthermore, inhibition of endosome-lysosome system acidification successfully compromised burst iron ion release, thereby reversing the cell fate. An in vivo test also showed a promising anticancer effect of ZVI@mSiO2 NPs without significant weight loss. In conclusion, we demonstrated the anticancer property of ZVI@mSiO2 NPs as well as the iron ion release profile in time course within cells, which is highly associated with the surface coating of ZVI NPs and lysosomal acidification.
Collapse
Affiliation(s)
- Li-Xing Yang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ya-Na Wu
- Institute of Oral Medicine and Department of Stomatology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 70101, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Pei-Wen Wang
- Institute of Oral Medicine and Department of Stomatology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 70101, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wu-Chou Su
- Department of Internal Medicine, Division of Hematology/Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Dar-Bin Shieh
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan.
- Institute of Oral Medicine and Department of Stomatology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 70101, Taiwan.
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan.
- Center for Micro/Nano Science and Technology, Advanced Optoelectronic Technology Center, Innovation Center for Advanced Medical Device Technology, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
35
|
Strain-Dependent Porcine Circovirus Type 2 (PCV2) Entry and Replication in T-Lymphoblasts. Viruses 2019; 11:v11090813. [PMID: 31480752 PMCID: PMC6783876 DOI: 10.3390/v11090813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 12/25/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is the etiological agent of PCV2-associated diseases (PCVAD). PCV2 targets lymphoblasts, and pigs suffering from PCVAD display lymphocyte depletion in lymphoid tissues. PCV2 infection of lymphoblasts has not been studied. Here, the replication cycle of PCV2 (abortion strain 1121 and PMWS strain Stoon1010) in T-lymphoblasts was examined. The expression of Rep and Cap were found for both viral strains, while progeny virus was detected for Stoon1010 but not for 1121. PCV2 attached to 11–26% (1121-Stoon1010) of the T-lymphoblasts while 2.6–12.7% of cells showed virus internalization. Chondroitin sulfate (CS) was present on 25% of T-lymphoblasts, and colocalized with PCV2 on 31–32% of the PCV2+ cells. Enzymatic removal of CS reduced PCV2 infection. PCV2 infection was decreased by chlorpromazine, cytochalasin D and Clostridium difficile toxin B for both viral strains and by amiloride for 1121 but not for Stoon1010. Inhibiting either endosome acidification or serine proteases strongly reduced PCV2 infection. Three-dimensional analysis of Cap structure demonstrated a better Cap-nucleic acid affinity for Stoon1010 than for 1121. Taken together, PCV2 binds to T-lymphoblasts partially via CS, enters via clathrin-mediated endocytosis, and disassembles under functions of a pH-drop and serine proteases. Strain Stoon1010 displayed an enhanced viral binding, a specific receptor-mediated endocytosis, an increased Cap-nucleic acid affinity, and a more productive infection in T-lymphoblasts than 1121 did, indicating an evolution from 1121 to Stoon1010.
Collapse
|
36
|
Wang H, Yang L, Qu H, Feng H, Wu S, Bao W. Global Mapping of H3K4 Trimethylation (H3K4me3) and Transcriptome Analysis Reveal Genes Involved in the Response to Epidemic Diarrhea Virus Infections in Pigs. Animals (Basel) 2019; 9:ani9080523. [PMID: 31382472 PMCID: PMC6719071 DOI: 10.3390/ani9080523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/23/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is currently detected as the main pathogen causing severe diarrhea in pig farms. The phenotypic alterations induced by pathogenic infections are usually tightly linked with marked changes in epigenetic modification and gene expression. We performed global mapping of H3K4 trimethylation (H3K4me3) and transcriptomic analyses in the jejunum of PEDV-infected and healthy piglets using chromatin immunoprecipitation sequencing and RNA-seq techniques. A total of 1885 H3K4me3 peaks that are associated with 1723 genes were characterized. Moreover, 290 differentially expressed genes were identified, including 104 up-regulated and 186 down-regulated genes. Several antiviral genes including 2'-5'-oligoadenylate synthetase 1 (OAS1), 2'-5'-oligoadenylate synthetase 2 (OAS2), ephrin B2 (EFNB2), and CDC28 protein kinase regulatory subunit 1B (CKS1B) with higher H3K4me3 enrichment and expression levels in PEDV-infected samples suggested the potential roles of H3K4me3 deposition in promoting their expressions. Transcription factor annotation analysis highlighted the potential roles of two transcription factors interferon regulatory factor 8 (IRF8) and Kruppel like factor 4 (KLF4) in modulating the differential expression of genes involved in PEDV infection. The results provided novel insights into PEDV infection from the transcriptomic and epigenetic layers and revealed previously unknown and intriguing elements potentially involved in the host responses.
Collapse
Affiliation(s)
- Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Li Yang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Huan Qu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Haiyue Feng
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
37
|
Interfering with endolysosomal trafficking enhances release of bioactive exosomes. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 20:102014. [DOI: 10.1016/j.nano.2019.102014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/15/2019] [Accepted: 05/03/2019] [Indexed: 01/08/2023]
|
38
|
Zhang X, Castanotto D, Liu X, Shemi A, Stein CA. Ammonium and arsenic trioxide are potent facilitators of oligonucleotide function when delivered by gymnosis. Nucleic Acids Res 2019. [PMID: 29522198 DOI: 10.1093/nar/gky150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oligonucleotide (ON) concentrations employed for therapeutic applications vary widely, but in general are high enough to raise significant concerns for off target effects and cellular toxicity. However, lowering ON concentrations reduces the chances of a therapeutic response, since typically relatively small amounts of ON are taken up by targeted cells in tissue culture. It is therefore imperative to identify new strategies to improve the concentration dependence of ON function. In this work, we have identified ammonium ion (NH4+) as a non-toxic potent enhancer of ON activity in the nucleus and cytoplasm following delivery by gymnosis. NH4+ is a metabolite that has been extensively employed as diuretic, expectorant, for the treatment of renal calculi and in a variety of other diseases. Enhancement of function can be found in attached and suspension cells, including in difficult-to-transfect Jurkat T and CEM T cells. We have also demonstrated that NH4+ can synergistically interact with arsenic trioxide (arsenite) to further promote ON function without producing any apparent increased cellular toxicity. These small, inexpensive, widely distributed molecules could be useful not only in laboratory experiments but potentially in therapeutic ON-based combinatorial strategy for clinical applications.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Department of Medical Oncology and Experimental Therapeutics, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Daniela Castanotto
- Department of Medical Oncology and Experimental Therapeutics, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Xueli Liu
- Department of Information Science, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Amotz Shemi
- Silenseed, 2 HaMa'ayan Street, Modi'in Technology Park, Modi'in 7177871, Israel
| | - Cy A Stein
- Department of Medical Oncology and Experimental Therapeutics, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| |
Collapse
|
39
|
Affiliation(s)
- Yashpal Singh Malik
- ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Uttar Pradesh India
| | - Raj Kumar Singh
- ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Uttar Pradesh India
| | - Mahendra Pal Yadav
- ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Uttar Pradesh, India, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
| |
Collapse
|
40
|
Yu W, Zhan Y, Xue B, Dong Y, Wang Y, Jiang P, Wang A, Sun Y, Yang Y. Highly efficient cellular uptake of a cell-penetrating peptide (CPP) derived from the capsid protein of porcine circovirus type 2. J Biol Chem 2018; 293:15221-15232. [PMID: 30108178 DOI: 10.1074/jbc.ra118.004823] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/09/2018] [Indexed: 12/24/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is one of the smallest, nonenveloped, single-stranded DNA viruses. The PCV2 capsid protein (Cap) is the sole viral structural protein and main antigenic determinant. Previous sequence analysis has revealed that the N terminus of the PCV2 Cap contains a nuclear localization signal (NLS) enriched in positively charged residues. Here, we report that PCV2's NLS can function as a cell-penetrating peptide (CPP). We observed that this NLS can carry macromolecules, e.g. enhanced GFP (EGFP), into cells when they are fused to the NLS, indicating that it can function as a CPP, similar to the classical CPP derived from HIV type 1 transactivator of transcription protein (HIV TAT). We also found that the first 17 residues of the NLS (NLS-A) have a key role in cellular uptake. In addition to entering cells via multiple endocytic processes, NLS-A was also rapidly internalized via direct translocation enabled by increased membrane permeability and was evenly distributed throughout cells when its concentration in cell cultures was ≥10 μm Of note, cellular NLS-A uptake was ∼10 times more efficient than that of HIV TAT. We inferred that the externalized NLS of the PCV2 Cap may accumulate to a high concentration (≥10 μm) at a local membrane area, increasing membrane permeability to facilitate viral entry into the cell to release its genome into a viral DNA reproduction center. We conclude that NLS-A has potential as a versatile vehicle for shuttling foreign molecules into cells, including pharmaceuticals for therapeutic interventions.
Collapse
Affiliation(s)
- Wanting Yu
- From the Key Laboratory of Animal Vaccine and Protein Engineering and.,Laboratory of Functional Proteomics (LFP) and Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yang Zhan
- From the Key Laboratory of Animal Vaccine and Protein Engineering and.,Laboratory of Functional Proteomics (LFP) and Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Boxin Xue
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Yanpeng Dong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China, and
| | - Yanfeng Wang
- Tsinghua-Peking Joint Center for Life Science, Tsinghua University, Beijing 100084, China
| | - Ping Jiang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China, and
| | - Aibing Wang
- From the Key Laboratory of Animal Vaccine and Protein Engineering and.,Laboratory of Functional Proteomics (LFP) and Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China,
| | - Yi Yang
- From the Key Laboratory of Animal Vaccine and Protein Engineering and .,Laboratory of Functional Proteomics (LFP) and Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
41
|
Hua T, Zhang X, Tang B, Chang C, Liu G, Feng L, Yu Y, Zhang D, Hou J. Tween-20 transiently changes the surface morphology of PK-15 cells and improves PCV2 infection. BMC Vet Res 2018; 14:138. [PMID: 29699558 PMCID: PMC5921416 DOI: 10.1186/s12917-018-1457-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 04/16/2018] [Indexed: 01/09/2023] Open
Abstract
Background Low concentrations of nonionic surfactants can change the physical properties of cell membranes, and thus and in turn increase drug permeability. Porcine circovirus 2 (PCV2) is an extremely slow-growing virus, and PCV2 infection of PK-15 cells yields very low viral titers. The present study investigates the effect of various nonionic surfactants, namely, Tween-20, Tween-28, Tween-40, Tween-80, Brij-30, Brij-35, NP-40, and Triton X-100 on PCV2 infection and yield in PK-15 cells. Result Significantly increased PCV2 infection was observed in cells treated with Tween-20 compared to those treated with Tween-28, Tween-40, Brij-30, Brij-35, NP-40, and Triton X-100 (p < 0.01). Furthermore, 24 h incubation with 0.03% Tween-20 has shown to induce significant cellular morphologic changes (cell membrane underwent slight intumescence and bulged into a balloon, and the number of microvilli decreased), as well as to increase caspase-3 activity and to decrease cell viability in PCV2-infected PK-15 cells cmpared to control group; all these changes were restored to normal after Tween-20 has been washed out from the plate. Conclusion Our data demonstrate that Tween-20 transiently changes the surface morphology of PK-15 cells and improves PCV2 infection. The findings of the present study may be utilized in the development of a PCV2 vaccine.
Collapse
Affiliation(s)
- Tao Hua
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Key lab of Food Quality and Safety of Jiangsu Province-State Key laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Xuehua Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Key lab of Food Quality and Safety of Jiangsu Province-State Key laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Bo Tang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Key lab of Food Quality and Safety of Jiangsu Province-State Key laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Chen Chang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Key lab of Food Quality and Safety of Jiangsu Province-State Key laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Guoyang Liu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Key lab of Food Quality and Safety of Jiangsu Province-State Key laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Lei Feng
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Key lab of Food Quality and Safety of Jiangsu Province-State Key laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Yang Yu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Key lab of Food Quality and Safety of Jiangsu Province-State Key laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Daohua Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China. .,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China. .,Key lab of Food Quality and Safety of Jiangsu Province-State Key laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Jibo Hou
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China. .,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China. .,Key lab of Food Quality and Safety of Jiangsu Province-State Key laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
42
|
Cai Y, Wang XL, Flores AM, Lin T, Guzman RJ. Inhibition of endo-lysosomal function exacerbates vascular calcification. Sci Rep 2018; 8:3377. [PMID: 29467541 PMCID: PMC5821871 DOI: 10.1038/s41598-017-17540-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/23/2017] [Indexed: 11/09/2022] Open
Abstract
Vascular calcification is a pathologic response to mineral imbalances and is prevalent in atherosclerosis, diabetes mellitus, and chronic kidney disease. When located in the media, it is highly associated with increased cardiovascular morbidity and mortality, particularly in patients on dialysis. Vascular calcification is tightly regulated and controlled by a series of endogenous factors. In the present study, we assess the effects of lysosomal and endosomal inhibition on calcification in vascular smooth muscle cells (VSMCs) and aortic rings. We observed that lysosomal function was increased in VSMCs cultured in calcification medium containing 3.5 mM inorganic phosphate (Pi) and 3 mM calcium (Ca2+) for 7 days. We also found that the lysosomal marker lysosome-associated membrane protein 2 was markedly increased and colocalized with osteogenic markers in calcified aortas from vitamin D3-treated rats. Interestingly, both the lysosomal inhibitor chloroquine and the endosomal inhibitor dynasore dose-dependently enhanced Pi + Ca2+-mediated VSMC calcification. Inhibition of lysosomal and endosomal function also promoted osteogenic transformation of VSMCs. Additionally, lysosome inhibition increased Pi-induced medial calcification of aortic rings ex vivo. These data suggest that the endosome-lysosome system may play a protective role in VSMC and medial artery calcification.
Collapse
Affiliation(s)
- Yujun Cai
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| | - Xue-Lin Wang
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Alyssa M Flores
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Tonghui Lin
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Raul J Guzman
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
43
|
Carrier-mediated uptake of clonidine in cultured human lung cells. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:361-369. [DOI: 10.1007/s00210-018-1467-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/09/2018] [Indexed: 01/07/2023]
|
44
|
Entry of Human Coronavirus NL63 into the Cell. J Virol 2018; 92:JVI.01933-17. [PMID: 29142129 DOI: 10.1128/jvi.01933-17] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 11/20/2022] Open
Abstract
The first steps of human coronavirus NL63 (HCoV-NL63) infection were previously described. The virus binds to target cells by use of heparan sulfate proteoglycans and interacts with the ACE2 protein. Subsequent events, including virus internalization and trafficking, remain to be elucidated. In this study, we mapped the process of HCoV-NL63 entry into the LLC-Mk2 cell line and ex vivo three-dimensional (3D) tracheobronchial tissue. Using a variety of techniques, we have shown that HCoV-NL63 virions require endocytosis for successful entry into the LLC-MK2 cells, and interaction between the virus and the ACE2 molecule triggers recruitment of clathrin. Subsequent vesicle scission by dynamin results in virus internalization, and the newly formed vesicle passes the actin cortex, which requires active cytoskeleton rearrangement. Finally, acidification of the endosomal microenvironment is required for successful fusion and release of the viral genome into the cytoplasm. For 3D tracheobronchial tissue cultures, we also observed that the virus enters the cell by clathrin-mediated endocytosis, but we obtained results suggesting that this pathway may be bypassed.IMPORTANCE Available data on coronavirus entry frequently originate from studies employing immortalized cell lines or undifferentiated cells. Here, using the most advanced 3D tissue culture system mimicking the epithelium of conductive airways, we systematically mapped HCoV-NL63 entry into susceptible cells. The data obtained allow for a better understanding of the infection process and may support development of novel treatment strategies.
Collapse
|
45
|
Sa Q, Tiwari A, Ochiai E, Mullins J, Suzuki Y. Inducible nitric oxide synthase in innate immune cells is important for restricting cyst formation of Toxoplasma gondii in the brain but not required for the protective immune process to remove the cysts. Microbes Infect 2017; 20:261-266. [PMID: 29287983 DOI: 10.1016/j.micinf.2017.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 01/05/2023]
Abstract
Significantly larger numbers of Toxoplasma gondii cysts were detected in the brains of RAG1-/-NOS2-/- than RAG1-/- mice following infection. In contrast, the cyst numbers markedly decreased in a same manner in both strains of mice after receiving CD8+ immune T cells. Thus, NOS2-mediated innate immunity is important for inhibiting formation of cysts in the brain but not required for the T cell-initiated cyst removal, which is associated with phagocyte accumulation. Treatment with chloroquine, an inhibitor of endolysosomal acidification, partially but significantly inhibited the T cell-mediated cyst removal, suggesting that phagosome-lysosome fusion could be involved in the T. gondii cyst elimination.
Collapse
Affiliation(s)
- Qila Sa
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Ashish Tiwari
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Eri Ochiai
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jeremi Mullins
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Yasuhiro Suzuki
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
46
|
Wang J, Bhattacharyya J, Mastria E, Chilkoti A. A quantitative study of the intracellular fate of pH-responsive doxorubicin-polypeptide nanoparticles. J Control Release 2017; 260:100-110. [PMID: 28576641 DOI: 10.1016/j.jconrel.2017.05.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/13/2017] [Accepted: 05/26/2017] [Indexed: 11/27/2022]
Abstract
Nanoscale carriers with an acid-labile linker between the carrier and drug are commonly used for drug delivery. However, their efficacy is potentially limited by inefficient linker cleavage, and lysosomal entrapment of drugs. To address these critical issues, we developed a new imaging method that spatially overlays the location of a nanoparticle and the released drug from the nanoparticle, on a map of the local intracellular pH that delineates individual endosomes and lysosomes, and the therapeutic intracellular target of the drug-the nucleus. We used this method to quantitatively map the intracellular fate of micelles of a recombinant polypeptide conjugated with doxorubicin via an acid-labile hydrazone linker as a function of local pH and time within live cells. We found that hydrolysis of the acid-labile linker is incomplete because the pH range of 4-7 in the endosomes and lysosomes does not provide complete cleavage of the drug from the nanoparticle, but that once cleaved, the drug escapes the acidic endo-lysosomal compartment into the cytosol and traffics to its therapeutic destination-the nucleus. This study also demonstrated that unlike free drug, which enters the cytosol directly through the cell membrane and then traffics into the nucleus, the nanoparticle-loaded drug almost exclusively traffics into endosomes and lysosomes upon intracellular uptake, and only reaches the nucleus after acid-triggered drug release in the endo-lysosomes. This methodology provides a better and more quantitative understanding of the intracellular behavior of drug-loaded nanoparticles, and provides insights for the design of the next-generation of nanoscale drug delivery systems.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Jayanta Bhattacharyya
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Eric Mastria
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States.
| |
Collapse
|
47
|
Best HL, Neverman NJ, Wicky HE, Mitchell NL, Leitch B, Hughes SM. Characterisation of early changes in ovine CLN5 and CLN6 Batten disease neural cultures for the rapid screening of therapeutics. Neurobiol Dis 2017; 100:62-74. [DOI: 10.1016/j.nbd.2017.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/19/2016] [Accepted: 01/01/2017] [Indexed: 01/12/2023] Open
|
48
|
Wang J, MacEwan SR, Chilkoti A. Quantitative Mapping of the Spatial Distribution of Nanoparticles in Endo-Lysosomes by Local pH. NANO LETTERS 2017; 17:1226-1232. [PMID: 28033711 PMCID: PMC6428044 DOI: 10.1021/acs.nanolett.6b05041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Understanding the intracellular distribution and trafficking of nanoparticle drug carriers is necessary to elucidate their mechanisms of drug delivery and is helpful in the rational design of novel nanoparticle drug delivery systems. The traditional immunofluorescence method to study intracellular distribution of nanoparticles using organelle-specific antibodies is laborious and subject to artifacts. As an alternative, we developed a new method that exploits ratiometric fluorescence imaging of a pH-sensitive Lysosensor dye to visualize and quantify the spatial distribution of nanoparticles in the endosomes and lysosomes of live cells. Using this method, we compared the endolysosomal distribution of cell-penetrating peptide (CPP)-functionalized micelles to unfunctionalized micelles and found that CPP-functionalized micelles exhibited faster endosome-to-lysosome trafficking than unfunctionalized micelles. Ratiometric fluorescence imaging of pH-sensitive Lysosensor dye allows rapid quantitative mapping of nanoparticle distribution in endolysosomes in live cells while minimizing artifacts caused by extensive sample manipulation typical of alternative approaches. This new method can thus serve as an alternative to traditional immunofluorescence approaches to study the intracellular distribution and trafficking of nanoparticles within endosomes and lysosomes.
Collapse
Affiliation(s)
| | | | - Ashutosh Chilkoti
- Corresponding Author. Phone: +1 (919) 660-5373. Fax: +1 (919) 660-5409
| |
Collapse
|
49
|
Unzueta U, Seras-Franzoso J, Céspedes MV, Saccardo P, Cortés F, Rueda F, Garcia-Fruitós E, Ferrer-Miralles N, Mangues R, Vázquez E, Villaverde A. Engineering tumor cell targeting in nanoscale amyloidal materials. NANOTECHNOLOGY 2017; 28:015102. [PMID: 27893441 DOI: 10.1088/0957-4484/28/1/015102] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bacterial inclusion bodies are non-toxic, mechanically stable and functional protein amyloids within the nanoscale size range that are able to naturally penetrate into mammalian cells, where they deliver the embedded protein in a functional form. The potential use of inclusion bodies in protein delivery or protein replacement therapies is strongly impaired by the absence of specificity in cell binding and penetration, thus preventing targeting. To address this issue, we have here explored whether the genetic fusion of two tumor-homing peptides, the CXCR4 ligands R9 and T22, to an inclusion body-forming green fluorescent protein (GFP), would keep the interaction potential and the functionality of the fused peptides and then confer CXCR4 specificity in cell binding and further uptake of the materials. The fusion proteins have been well produced in Escherichia coli in their full-length form, keeping the potential for fluorescence emission of the partner GFP. By using specific inhibitors of CXCR4 binding, we have demonstrated that the engineered protein particles are able to penetrate CXCR4+ cells, in a receptor-mediated way, without toxicity or visible cytopathic effects, proving the availability of the peptide ligands on the surface of inclusion bodies. Since no further modification is required upon their purification, the biological production of genetically targeted inclusion bodies opens a plethora of cost-effective possibilities in the tissue-specific intracellular transfer of functional proteins through the use of structurally and functionally tailored soft materials.
Collapse
Affiliation(s)
- Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain. Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain. CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hyperspectral Imaging Using Intracellular Spies: Quantitative Real-Time Measurement of Intracellular Parameters In Vivo during Interaction of the Pathogenic Fungus Aspergillus fumigatus with Human Monocytes. PLoS One 2016; 11:e0163505. [PMID: 27727286 PMCID: PMC5058474 DOI: 10.1371/journal.pone.0163505] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022] Open
Abstract
Hyperspectral imaging (HSI) is a technique based on the combination of classical spectroscopy and conventional digital image processing. It is also well suited for the biological assays and quantitative real-time analysis since it provides spectral and spatial data of samples. The method grants detailed information about a sample by recording the entire spectrum in each pixel of the whole image. We applied HSI to quantify the constituent pH variation in a single infected apoptotic monocyte as a model system. Previously, we showed that the human-pathogenic fungus Aspergillus fumigatus conidia interfere with the acidification of phagolysosomes. Here, we extended this finding to monocytes and gained a more detailed analysis of this process. Our data indicate that melanised A. fumigatus conidia have the ability to interfere with apoptosis in human monocytes as they enable the apoptotic cell to recover from mitochondrial acidification and to continue with the cell cycle. We also showed that this ability of A. fumigatus is dependent on the presence of melanin, since a non-pigmented mutant did not stop the progression of apoptosis and consequently, the cell did not recover from the acidic pH. By conducting the current research based on the HSI, we could measure the intracellular pH in an apoptotic infected human monocyte and show the pattern of pH variation during 35 h of measurements. As a conclusion, we showed the importance of melanin for determining the fate of intracellular pH in a single apoptotic cell.
Collapse
|