1
|
Human Cytomegalovirus IE2 Both Activates and Represses Initiation and Modulates Elongation in a Context-Dependent Manner. mBio 2022; 13:e0033722. [PMID: 35579393 PMCID: PMC9239164 DOI: 10.1128/mbio.00337-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) immediate-early 2 (IE2) protein is a multifunctional transcription factor that is essential for lytic HCMV infection. IE2 functions as an activator of viral early genes, negatively regulates its own promoter, and is required for viral replication. The mechanisms by which IE2 executes these distinct functions are incompletely understood. Using PRO-Seq, which profiles nascent transcripts, and a recently developed DFF-chromatin immunoprecipitation (DFF-ChIP; employs chromatin digestion by the endonuclease DNA fragmentation factor prior to IP) approach that resolves occupancy and local chromatin environment, we show that IE2 controls viral gene transcription in three distinct capacities during late HCMV infection and reveal mechanisms that involve direct binding of IE2 to viral DNA. IE2 represses a subset of viral promoters by binding within their core promoter regions and blocking the assembly of preinitiation complexes (PICs). Remarkably, IE2 forms a repressive complex at the major immediate-early promoter region involving direct association of IE2 with nucleosomes and TBP. IE2 stimulates transcription by binding nearby, but not within, core promoter regions. In addition, IE2 functions as a direct roadblock to transcription elongation. At one locus, this function of IE2 appears to be important for the synthesis of a spliced viral RNA. Consistent with the minimal observed effects of IE2 depletion on host gene transcription, IE2 does not functionally engage the host genome. Our results reveal mechanisms of transcriptional control by IE2, uncover a previously unknown function of IE2 as a Pol II elongation modulator, and demonstrate that DFF-ChIP is a useful tool for probing transcription factor occupancy and interactions between transcription factors and nucleosomes at high resolution.
Collapse
|
2
|
Hong YM, Min SY, Kim D, Kim S, Seo D, Lee KH, Han SH. Human MicroRNAs Attenuate the Expression of Immediate Early Proteins and HCMV Replication during Lytic and Latent Infection in Connection with Enhancement of Phosphorylated RelA/p65 (Serine 536) That Binds to MIEP. Int J Mol Sci 2022; 23:ijms23052769. [PMID: 35269913 PMCID: PMC8911160 DOI: 10.3390/ijms23052769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
Attenuating the expression of immediate early (IE) proteins is essential for controlling the lytic replication of human cytomegalovirus (HCMV). The human microRNAs (hsa-miRs), miR-200b-3p and miR-200c-3p, have been identified to bind the 3′-untranslated region (3′-UTR) of the mRNA encoding IE proteins. However, whether hsa-miRs can reduce IE72 expression and HCMV viral load or exhibit a crosstalk with the host cellular signaling machinery, most importantly the NF-κB cascade, has not been evaluated. In this study, argonaute-crosslinking and immunoprecipitation-seq revealed that miR-200b-3p and miR-200c-3p bind the 3′-UTR of UL123, which is a gene that encodes IE72. The binding of these miRNAs to the 3′-UTR of UL123 was verified in transfected cells stably expressing GFP. We used miR-200b-3p/miR-200c-3p mimics to counteract the downregulation of these miRNA after acute HCMV infection. This resulted in reduced IE72/IE86 expression and HCMV VL during lytic infection. We determined that IE72/IE86 alone can inhibit the phosphorylation of RelA/p65 at the Ser536 residue and that p-Ser536 RelA/p65 binds to the major IE promoter/enhancer (MIEP). The upregulation of miR-200b-3p and miR-200c-3p resulted in the phosphorylation of RelA/p65 at Ser536 through the downregulation of IE, and the binding of the resultant p-Ser536 RelA/p65 to MIEP resulted in a decreased production of pro-inflammatory cytokines. Overall, miR-200b-3p and miR-200c-3p—together with p-Ser536 RelA/p65—can prevent lytic HCMV replication during acute and latent infection
Collapse
Affiliation(s)
- Yeon-Mi Hong
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
| | - Seo Yeon Min
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
| | - Dayeong Kim
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
| | - Subin Kim
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
| | - Daekwan Seo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Kyoung Hwa Lee
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
| | - Sang Hoon Han
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
- Correspondence: ; Tel.: +82-2-2019-3319; Fax: +82-2-3463-3882
| |
Collapse
|
3
|
Beelontally R, Wilkie GS, Lau B, Goodmaker CJ, Ho CMK, Swanson CM, Deng X, Wang J, Gray NS, Davison AJ, Strang BL. Identification of compounds with anti-human cytomegalovirus activity that inhibit production of IE2 proteins. Antiviral Res 2016; 138:61-67. [PMID: 27956134 PMCID: PMC5244968 DOI: 10.1016/j.antiviral.2016.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/04/2016] [Accepted: 12/05/2016] [Indexed: 01/01/2023]
Abstract
Using a high throughput screening methodology we surveyed a collection of largely uncharacterized validated or suspected kinase inhibitors for anti-human cytomegalovirus (HCMV) activity. From this screen we identified three structurally related 5-aminopyrazine compounds (XMD7-1, -2 and -27) that inhibited HCMV replication in virus yield reduction assays at low micromolar concentrations. Kinase selectivity assays indicated that each compound was a kinase inhibitor capable of inhibiting a range of cellular protein kinases. Western blotting and RNA sequencing demonstrated that treatment of infected cells with XMD7 compounds resulted in a defect in the production of the major HCMV transcriptional transactivator IE2 proteins (IE2-86, IE2-60 and IE2-40) and an overall reduction in transcription from the viral genome. However, production of certain viral proteins was not compromised by treatment with XMD7 compounds. Thus, these novel anti-HCMV compounds likely inhibited transcription from the viral genome and suppressed production of a subset of viral proteins by inhibiting IE2 protein production. High throughput screening identified novel kinase inhibitors that inhibit HCMV protein production. 5-aminopyrazine compounds (XMD7-1, -2 and -27) have anti-HCMV activity. XMD7 compounds inhibited production of HCMV IE2 proteins.
Collapse
Affiliation(s)
- Rooksarr Beelontally
- Institute of Infection & Immunity, St George's, University of London, London, UK
| | - Gavin S Wilkie
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Betty Lau
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Charles J Goodmaker
- Institute of Infection & Immunity, St George's, University of London, London, UK
| | - Catherine M K Ho
- Institute of Infection & Immunity, St George's, University of London, London, UK
| | - Chad M Swanson
- Department of Infectious Diseases, King's College London, London, UK
| | - Xianming Deng
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jinhua Wang
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nathanael S Gray
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Blair L Strang
- Institute of Infection & Immunity, St George's, University of London, London, UK; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Multiple Transcripts Encode Full-Length Human Cytomegalovirus IE1 and IE2 Proteins during Lytic Infection. J Virol 2016; 90:8855-65. [PMID: 27466417 DOI: 10.1128/jvi.00741-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/18/2016] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Expression of the human cytomegalovirus (HCMV) IE1 and IE2 proteins is critical for the establishment of lytic infection and reactivation from viral latency. Defining the mechanisms controlling IE1 and IE2 expression is therefore important for understanding how HCMV regulates its replicative cycle. Here we identify several novel transcripts encoding full-length IE1 and IE2 proteins during HCMV lytic replication. Two of the alternative major immediate early (MIE) transcripts initiate in the first intron, intron A, of the previously defined MIE transcript, while others extend the 5' untranslated region. Each of the MIE transcripts associates with polyribosomes in infected cells and therefore contributes to IE1 and IE2 protein levels. Surprisingly, deletion of the core promoter region of the major immediate early promoter (MIEP) from a plasmid containing the MIE genomic locus did not completely abrogate IE1 and IE2 expression. Instead, deletion of the MIEP core promoter resulted in increased expression of alternative MIE transcripts, suggesting that the MIEP suppresses the activity of the alternative MIE promoters. While the canonical MIE mRNA was the most abundant transcript at immediate early times, the novel MIE transcripts accumulated to levels equivalent to that of the known MIE transcript later in infection. Using two HCMV recombinants, we found that sequences in intron A of the previously defined MIE transcript are required for efficient IE1 and IE2 expression and viral replication. Together, our results identify new regulatory sequences controlling IE1 and IE2 expression and suggest that multiple transcription units act in concert to regulate IE1 and IE2 expression during lytic infection. IMPORTANCE The HCMV IE1 and IE2 proteins are critical regulators of HCMV replication, both during primary infection and reactivation from viral latency. This study expands our understanding of the sequences controlling IE1 and IE2 expression by defining novel transcriptional units controlling the expression of full-length IE1 and IE2 proteins. Our results suggest that alternative promoters may allow for IE1 and IE2 expression when MIEP activity is limiting, as occurs in latently infected cells.
Collapse
|
5
|
Ho CMK, Donovan-Banfield IZ, Tan L, Zhang T, Gray NS, Strang BL. Inhibition of IKKα by BAY61-3606 Reveals IKKα-Dependent Histone H3 Phosphorylation in Human Cytomegalovirus Infected Cells. PLoS One 2016; 11:e0150339. [PMID: 26930276 PMCID: PMC4773098 DOI: 10.1371/journal.pone.0150339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/14/2016] [Indexed: 11/18/2022] Open
Abstract
Protein kinase inhibitors can be used as tools to identify proteins and pathways required for virus replication. Using virus replication assays and western blotting we found that the widely used protein kinase inhibitor BAY61-3606 inhibits replication of human cytomegalovirus (HCMV) strain AD169 and the accumulation of HCMV immediate-early proteins in AD169 infected cells, but has no effect on replication of HCMV strain Merlin. Using in vitro kinase assays we found that BAY61-3606 is a potent inhibitor of the cellular kinase IKKα. Infection of cells treated with siRNA targeting IKKα indicated IKKα was required for efficient AD169 replication and immediate-early protein production. We hypothesized that IKKα was required for AD169 immediate-early protein production as part of the canonical NF-κB signaling pathway. However, although BAY61-3606 inhibited phosphorylation of the IKKα substrate IκBα, we found no canonical or non-canonical NF-κB signaling in AD169 infected cells. Rather, we observed that treatment of cells with BAY61-3606 or siRNA targeting IKKα decreased phosphorylation of histone H3 at serine 10 (H3S10p) in western blotting assays. Furthermore, we found treatment of cells with BAY61-3606, but not siRNA targeting IKKα, inhibited the accumulation of histone H3 acetylation (H3K9ac, H3K18ac and H3K27ac) and tri-methylation (H3K27me3 and H3K36me3) modifications. Therefore, the requirement for IKKα in HCMV replication was strain-dependent and during replication of an HCMV strain requiring IKKα, IKKα-dependent H3S10 phosphorylation was associated with efficient HCMV replication and immediate-early protein production. Plus, inhibition of HCMV replication by BAY61-3606 is associated with acetylation and tri-methylation modifications of histone H3 that do not involve IKKα.
Collapse
Affiliation(s)
- Catherine M. K. Ho
- Institute of Infection & Immunity, St George’s, University of London, Cranmer Terrace, London, SW17 0RE, United Kingdom
| | - I’ah Z. Donovan-Banfield
- Institute of Infection & Immunity, St George’s, University of London, Cranmer Terrace, London, SW17 0RE, United Kingdom
| | - Li Tan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, United States of America
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Longwood Ave, Boston, MA 02115, United States of America
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, United States of America
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Longwood Ave, Boston, MA 02115, United States of America
| | - Nathanael S. Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, United States of America
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Longwood Ave, Boston, MA 02115, United States of America
| | - Blair L. Strang
- Institute of Infection & Immunity, St George’s, University of London, Cranmer Terrace, London, SW17 0RE, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Spector DJ. UL84-independent replication of human cytomegalovirus strains conferred by a single codon change in UL122. Virology 2015; 476:345-354. [PMID: 25577152 DOI: 10.1016/j.virol.2014.12.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/11/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
Abstract
The UL84 gene of human cytomegalovirus (HCMV) is thought to be involved in the initiation of viral DNA replication, and is essential for replication of strains AD169 and Towne. Hence, discovery that strain TB40-BAC4 is viable in the absence of UL84 presented an enigma requiring an explanation. Data reported here show that strain TR also tolerated loss of UL84, whereas strains FIX, Merlin, Ph, and Toledo did not. UL84-independent growth required the viral replication origin. The genetic locus in TB40 that controls UL84 dependence was mapped to codon 388 of the UL122 gene, which encodes the immediate early 2 (IE2) 86kD protein. Introduction of this TB40-BAC4 variant (H388D) into FIX and Toledo clones converted these strains to UL84 independence. These results provide genetic evidence in virus-infected cells that supports the hypothesis that UL122 participates in the initiation of viral DNA replication by a mechanism involving transcription-mediated activation of the origin.
Collapse
Affiliation(s)
- David J Spector
- Department of Microbiology and Immunology, College of Medicine, The Pennsylvania State University, H107, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
7
|
Dynamic and nucleolin-dependent localization of human cytomegalovirus UL84 to the periphery of viral replication compartments and nucleoli. J Virol 2014; 88:11738-47. [PMID: 25078694 DOI: 10.1128/jvi.01889-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein-protein and protein-nucleic acid interactions within subcellular compartments are required for viral genome replication. To understand the localization of the human cytomegalovirus viral replication factor UL84 relative to other proteins involved in viral DNA synthesis and to replicating viral DNA in infected cells, we created a recombinant virus expressing a FLAG-tagged version of UL84 (UL84FLAG) and used this virus in immunofluorescence assays. UL84FLAG localization differed at early and late times of infection, transitioning from diffuse distribution throughout the nucleus to exclusion from the interior of replication compartments, with some concentration at the periphery of replication compartments with newly labeled DNA and the viral DNA polymerase subunit UL44. Early in infection, UL84FLAG colocalized with the viral single-stranded DNA binding protein UL57, but colocalization became less prominent as infection progressed. A portion of UL84FLAG also colocalized with the host nucleolar protein nucleolin at the peripheries of both replication compartments and nucleoli. Small interfering RNA (siRNA)-mediated knockdown of nucleolin resulted in a dramatic elimination of UL84FLAG from replication compartments and other parts of the nucleus and its accumulation in the cytoplasm. Reciprocal coimmunoprecipitation of viral proteins from infected cell lysates revealed association of UL84, UL44, and nucleolin. These results indicate that UL84 localization during infection is dynamic, which is likely relevant to its functions, and suggest that its nuclear and subnuclear localization is highly dependent on direct or indirect interactions with nucleolin. Importance: The protein-protein interactions among viral and cellular proteins required for replication of the human cytomegalovirus (HCMV) DNA genome are poorly understood. We sought to understand how an enigmatic HCMV protein critical for virus replication, UL84, localizes relative to other viral and cellular proteins required for HCMV genome replication and replicating viral DNA. We found that UL84 localizes with viral proteins, viral DNA, and the cellular nucleolar protein nucleolin in the subnuclear replication compartments in which viral DNA replication occurs. Unexpectedly, we also found localization of UL84 with nucleolin in nucleoli and showed that the presence of nucleolin is involved in localization of UL84 to the nucleus. These results add to previous work showing the importance of nucleolin in replication compartment architecture and viral DNA synthesis and are relevant to understanding UL84 function.
Collapse
|
8
|
Modesto P, Peletto S, Pisoni G, Cremonesi P, Castiglioni B, Colussi S, Caramelli M, Bronzo V, Moroni P, Acutis PL. Evaluation of internal reference genes for quantitative expression analysis by real-time reverse transcription-PCR in somatic cells from goat milk. J Dairy Sci 2013; 96:7932-44. [PMID: 24119819 DOI: 10.3168/jds.2012-6383] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 08/10/2013] [Indexed: 11/19/2022]
Abstract
Reverse transcription (RT) quantitative real-time PCR (qPCR) is the most accurate and easy-to-perform technique to measure the expression level of a selected gene of interest by quantifying mRNA transcripts. The use of reference genes is commonly accepted as the most reliable approach to normalize RT-qPCR data and reduce possible errors generated in the quantification of gene expression. The optimal number and choice of reference genes are experimentally validated for specific tissues or cell types and experimental designs. To date, data on qPCR normalization in goats are scarce and the most suitable reference genes in this species have been identified for only a limited number of tissues. The aim of this study was to determine an optimal combination of stably expressed reference genes in caprine milk somatic cells (MSC) from healthy and infected mammary glands. For the purpose, we performed RT-qPCR for 10 commonly used reference genes from various functional classes and then determined their expression level in MSC from goats intramammary challenged with Staphylococcus aureus and in MSC from healthy controls, with a view to select genes whose stability would be unaffected under infection conditions. The geNorm and NormFinder algorithms were used for validating the reference genes. Furthermore, to demonstrate the importance of normalization of gene expression with appropriate reference genes, we tested the effect of using a combination of the least stable genes for expression analysis evaluation. On the basis of our evaluation, we recommend the use of a panel of reference genes that should include G6PD, YWHAZ, and ACTB for caprine MSC gene expression profiling. The expression of the 2 genes of interest, pentraxin-related protein (PTX3) and secreted phosphoprotein 1 (SPP1), was evaluated by RT-qPCR in all samples collected pre- and postinfection, and the recommended reference genes were used to normalize the data. Our study provides a validated panel of optimal reference genes for the identification of genes differentially expressed by qRT-PCR in caprine MSC. Moreover, we provided a set of intron-spanning primer sequences that could be suitable for gene expression experiments using SYBR Green chemistry on other caprine tissues and cells.
Collapse
Affiliation(s)
- P Modesto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Turin, Italy; Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Università degli Studi di Milano, 20133 Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Isomura H, Stinski MF. Coordination of late gene transcription of human cytomegalovirus with viral DNA synthesis: recombinant viruses as potential therapeutic vaccine candidates. Expert Opin Ther Targets 2012; 17:157-66. [PMID: 23231449 DOI: 10.1517/14728222.2013.740460] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION During productive infection, human cytomegalovirus (HCMV) genes are expressed in a temporal cascade, with temporal phases designated as immediate-early (IE), early, and late. The major IE (MIE) genes, UL123 and UL122 (IE1/IE2), play a critical role in subsequent viral gene expression and the efficiency of viral replication. The early viral genes encode proteins necessary for viral DNA replication. Following viral DNA replication, delayed-early and late viral genes are expressed which encode structural proteins for the virion. The late genes can be divided into two broad classes. At early times the gamma-1 or leaky-late class are expressed at low levels after infection and are dramatically upregulated at late times. In contrast, the gamma-2 or 'true' late genes are expressed exclusively after viral DNA replication. Expression of true late (gamma-2 class) viral genes is completely prevented by inhibition of viral DNA synthesis. AREAS COVERED This review addresses the viral genes required for HCMV late gene transcription. Recombinant viruses that are defective for late gene transcription allow for early viral gene expression and viral DNA synthesis, but not infectious virus production. Since current HCMV prophylaxis is limited by several shortcomings, the use of defective recombinant viruses to induce HCMV cell-mediated and humoral immunity is discussed. EXPERT OPINION HCMV DNA replication and late gene transcription are not completely linked. Viral-encoded trans-acting factors are required. Recombinant viruses proficient in MIE and early viral gene expression and defective in late gene expression may be an alternative therapeutic vaccine candidates for the induction of cell-mediated and humoral immunity.
Collapse
Affiliation(s)
- Hiroki Isomura
- Gunma University Graduate School of Medicine, Department of Virology and Preventive Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | | |
Collapse
|
10
|
Strang BL, Bender BJ, Sharma M, Pesola JM, Sanders RL, Spector DH, Coen DM. A mutation deleting sequences encoding the amino terminus of human cytomegalovirus UL84 impairs interaction with UL44 and capsid localization. J Virol 2012; 86:11066-77. [PMID: 22855486 PMCID: PMC3457161 DOI: 10.1128/jvi.01379-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/23/2012] [Indexed: 01/10/2023] Open
Abstract
Protein-protein interactions are required for many biological functions. Previous work has demonstrated an interaction between the human cytomegalovirus DNA polymerase subunit UL44 and the viral replication factor UL84. In this study, glutathione S-transferase pulldown assays indicated that residues 1 to 68 of UL84 are both necessary and sufficient for efficient interaction of UL84 with UL44 in vitro. We created a mutant virus in which sequences encoding these residues were deleted. This mutant displayed decreased virus replication compared to wild-type virus. Immunoprecipitation assays showed that the mutation decreased but did not abrogate association of UL84 with UL44 in infected cell lysate, suggesting that the association in the infected cell can involve other protein-protein interactions. Further immunoprecipitation assays indicated that IRS1, TRS1, and nucleolin are candidates for such interactions in infected cells. Quantitative real-time PCR analysis of viral DNA indicated that the absence of the UL84 amino terminus does not notably affect viral DNA synthesis. Western blotting experiments and pulse labeling of infected cells with [(35)S]methionine demonstrated a rather modest downregulation of levels of multiple proteins and particularly decreased levels of the minor capsid protein UL85. Electron microscopy demonstrated that viral capsids assemble but are mislocalized in nuclei of cells infected with the mutant virus, with fewer cytoplasmic capsids detected. In sum, deletion of the sequences encoding the amino terminus of UL84 affects interaction with UL44 and virus replication unexpectedly, not viral DNA synthesis. Mislocalization of viral capsids in infected cell nuclei likely contributes to the observed decrease in virus replication.
Collapse
Affiliation(s)
- Blair L. Strang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian J. Bender
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Mayuri Sharma
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jean M. Pesola
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca L. Sanders
- Department of Cellular and Molecular Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Deborah H. Spector
- Department of Cellular and Molecular Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - Donald M. Coen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
High-resolution profiling and analysis of viral and host small RNAs during human cytomegalovirus infection. J Virol 2011; 86:226-35. [PMID: 22013051 DOI: 10.1128/jvi.05903-11] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human cytomegalovirus (HCMV) contributes its own set of microRNAs (miRNAs) during lytic infection of cells, likely fine-tuning conditions important for viral replication. To enhance our understanding of this component of the HCMV-host transcriptome, we have conducted deep-sequencing analysis of small RNAs (smRNA-seq) from infected human fibroblast cells. We found that HCMV-encoded miRNAs accumulate to ∼20% of the total smRNA population at late stages of infection, and our analysis led to improvements in viral miRNA annotations and identification of two novel HCMV miRNAs, miR-US22 and miR-US33as. Both of these miRNAs were capable of functionally repressing synthetic targets in transient transfection experiments. Additionally, through cross-linking and immunoprecipitation (CLIP) of Argonaute (Ago)-bound RNAs from infected cells, followed by high-throughput sequencing, we have obtained direct evidence for incorporation of all HCMV miRNAs into the endogenous host silencing machinery. Surprisingly, three HCMV miRNA precursors exhibited differential incorporation of their mature miRNA arms between Ago2 and Ago1 complexes. Host miRNA abundances were also affected by HCMV infection, with significant upregulation observed for an miRNA cluster containing miR-96, miR-182, and miR-183. In addition to miRNAs, we also identified novel forms of virus-derived smRNAs, revealing greater complexity within the smRNA population during HCMV infection.
Collapse
|
12
|
Marshall B, Zhang M, Atherton SS. The effect of murine cytomegalovirus IE-3 specific shRNA is dependent on intragenic target site due to multiple transcription initiation sites. HERPESVIRIDAE 2011; 2:9. [PMID: 21923934 PMCID: PMC3192721 DOI: 10.1186/2042-4280-2-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 09/18/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND Murine cytomegalovirus (MCMV) is closely related to human cytomegalovirus (HCMV) which is responsible for a variety of diseases, including retinitis, in immunocompromised individuals. Small inhibitory RNA molecules directed against essential viral regulatory genes may prove clinically useful. METHODS Small hairpin RNAs (shRNAs) directed against the essential MCMV immediate early-3 gene (IE-3) were designed and tested in vitro at m.o.i.'s of 2 and 0.2 to determine if virus replication could be inhibited. RESULTS At m.o.i. = 2, a MCMV IE-3 specific shRNA specific for sequences at the beginning of exon 5 inhibited virus replication with a maximum decrease in virus titer of approximately two logs at day 5 p.i. Surprisingly, however, at m.o.i. = 0.2, the same shRNA enhanced virus replication. In the latter case, the main IE-3 product observed in infected cells was not the expected 88 kd full length IE-3 protein observed at high m.o.i. but rather a truncated 45 kd form of this protein. Rapid analysis of 5' cDNA ends (5' RACE) indicated that substantial differences exist in the transcript profile produced by the IE-3 gene at low and high m.o.i. early after infection and that multiple transcripts are produced under both conditions. One such transcript, which originated in exon 5 of the IE-3 gene, was located outside the region targeted by our shRNA and was the major transcript produced at low m.o.i. Targeting of this exon 5 transcript with a second shRNA resulted in inhibition of virus replication at both low and high m.o.i. CONCLUSIONS These studies indicate that IE-3 has a complex transcriptional profile and that shRNA targeting of this and other viral regulatory genes which produce multiple transcripts may have unexpected effects on virus replication.
Collapse
Affiliation(s)
- Brendan Marshall
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA.
| | | | | |
Collapse
|
13
|
Mutation of glutamine to arginine at position 548 of IE2 86 in human cytomegalovirus leads to decreased expression of IE2 40, IE2 60, UL83, and UL84 and increased transcription of US8-9 and US29-32. J Virol 2011; 85:11098-110. [PMID: 21865379 DOI: 10.1128/jvi.05315-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The IE2 86 protein of human cytomegalovirus (HCMV) is essential for productive infection. The mutation of glutamine to arginine at position 548 of IE2 86 causes the virus to grow both slowly and to very low titers, making it difficult to study this mutant via infection. In this study, Q548R IE2 86 HCMV was produced on the complementing cell line 86F/40HA, which allowed faster and higher-titer production of mutant virus. The main defects observed in this mutant were greatly decreased expression of IE2 40, IE2 60, UL83, and UL84. Genome replication and the induction of cell cycle arrest were found to proceed at or near wild-type levels, and there was no defect in transitioning to early or late protein expression. Q548R IE2 86 was still able to interact with UL84. Furthermore, Q548R IE2 40 maintained the ability to enhance UL84 expression in a cotransfection assay. Microarray analysis of Q548R IE2 HCMV revealed that the US8, US9, and US29-32 transcripts were all significantly upregulated. These results further confirm the importance of IE2 in UL83 and UL84 expression as well as pointing to several previously unknown regions of the HCMV genome that may be regulated by IE2.
Collapse
|
14
|
Lee SB, Lee CF, Ou DSC, Dulal K, Chang LH, Ma CH, Huang CF, Zhu H, Lin YS, Juan LJ. Host-viral effects of chromatin assembly factor 1 interaction with HCMV IE2. Cell Res 2011; 21:1230-47. [PMID: 21445097 DOI: 10.1038/cr.2011.53] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Chromatin assembly factor 1 (CAF1) consisting of p150, p60 and p48 is known to assemble histones onto newly synthesized DNA and thus maintain the chromatin structure. Here, we show that CAF1 expression was induced in human cytomegalovirus (HCMV)-infected cells, concomitantly with global chromatin decondensation. This apparent conflict was thought to result, in part, from CAF1 mislocalization to compartments of HCMV DNA synthesis through binding of its largest subunit p150 to viral immediate-early protein 2 (IE2). p150 interaction with p60 and IE2 facilitated HCMV DNA synthesis. The IE2Q548R mutation, previously reported to result in impaired HCMV growth with unknown mechanism, disrupted IE2/p150 and IE2/histones association in our study. Moreover, IE2 interaction with histones partly depends on p150, and the HCMV-induced chromatin decondensation was reduced in cells ectopically expressing the p150 mutant defective in IE2 binding. These results not only indicate that CAF1 was hijacked by IE2 to facilitate the replication of the HCMV genome, suggesting chromatin assembly plays an important role in herpesviral DNA synthesis, but also provide a model of the virus-induced chromatin instability through CAF1.
Collapse
Affiliation(s)
- Sung-Bau Lee
- Genomics Research Center, Academia Sinica, Taipei 115
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Human cytomegalovirus early protein pUL21a promotes efficient viral DNA synthesis and the late accumulation of immediate-early transcripts. J Virol 2010; 85:663-74. [PMID: 21047969 DOI: 10.1128/jvi.01599-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously reported that a newly annotated gene of human cytomegalovirus (HCMV), UL21a, encodes an early viral protein termed pUL21a. Most notably, the virions of a UL21a deletion virus had markedly reduced infectivity, indicating that UL21a is required to establish an efficient productive infection. In this study, we infected fibroblasts with equal numbers of DNA-containing viral particles and identified where in the viral life cycle pUL21a acted. The UL21a deletion virus entered cells and initiated viral gene expression efficiently; however, it synthesized viral DNA poorly and accumulated several immediate-early (IE) transcripts at reduced levels at late times of infection. The defect in viral DNA synthesis preceded that in gene expression, and inhibition of viral DNA synthesis reduced the late accumulation of IE transcripts in both wild-type and mutant virus-infected cells to equivalent levels. This suggests that reduced viral DNA synthesis is the cause of reduced IE gene expression in the absence of UL21a. The growth of UL21a deletion virus was similar to that of recombinant HCMV in which pUL21a expression was abrogated by stop codon mutations, and the defect was rescued in pUL21a-expressing fibroblasts. pUL21a expression in trans was sufficient to restore viral DNA synthesis and gene expression of mutant virus produced from normal fibroblasts, whereas mutant virus produced from complementing cells still exhibited the defect in normal fibroblasts. Thus, pUL21a does not promote the functionality of HCMV virions; rather, its de novo synthesis facilitates viral DNA synthesis, which is necessary for the late accumulation of IE transcripts and establishment of a productive infection.
Collapse
|
16
|
Spector DJ, Yetming K. UL84-independent replication of human cytomegalovirus strain TB40/E. Virology 2010; 407:171-7. [PMID: 20855098 DOI: 10.1016/j.virol.2010.08.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 08/23/2010] [Accepted: 08/24/2010] [Indexed: 10/19/2022]
Abstract
The UL84 gene of human cytomegalovirus is implicated in the initiation of viral DNA replication during lytic infection. UL84 is essential for replication of a cloned viral origin of lytic replication (oriLyt) in vitro and mutants of strains AD169 or Towne with deletions or insertions in UL84 fail to grow in cells permissive for wild type virus. Here we show that UL84 is dispensable for replication of a strain TB40/E clone derived from a bacterial artificial chromosome. The genomes of the fibroblast-adapted strains AD169 and Towne are altered substantially from the consensus for strains that have not been propagated extensively in cell culture. The parental TB40/E genome conforms to the consensus genomic organization. Accordingly, natural HCMV strains may possess replication capability that extends beyond the known oriLyt-dependent replication system of laboratory strains.
Collapse
Affiliation(s)
- David J Spector
- Department of Microbiology and Immunology, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA.
| | | |
Collapse
|
17
|
Role of noncovalent SUMO binding by the human cytomegalovirus IE2 transactivator in lytic growth. J Virol 2010; 84:8111-23. [PMID: 20519406 DOI: 10.1128/jvi.00459-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The 86-kDa immediate-early 2 (IE2) protein of human cytomegalovirus (HCMV) is a promiscuous transactivator essential for viral gene expression. IE2 is covalently modified by SUMO at two lysine residues (K175 and K180) and also interacts noncovalently with SUMO. Although SUMOylation of IE2 has been shown to enhance its transactivation activity, the role of SUMO binding is not clear. Here we showed that SUMO binding by IE2 is necessary for its efficient transactivation function and for viral growth. IE2 bound physically to SUMO-1 through a SUMO-interacting motif (SIM). Mutations in SIM (mSIM) or in both SUMOylation sites and SIM (KR/mSIM), significantly reduced IE2 transactivation effects on viral early promoters. The replication of IE2 SIM mutant viruses (mSIM or KR/mSIM) was severely depressed in normal human fibroblasts. Analysis of viral growth curves revealed that the replication defect of the mSIM virus correlated with low-level accumulation of SUMO-modified IE2 and of viral early and late proteins. Importantly, both the formation of viral transcription domains and the association of IE2 with viral promoters in infected cells were significantly reduced in IE2 SIM mutant virus infection. Furthermore, IE2 was found to interact with the SUMO-modified form of TATA-binding protein (TBP)-associated factor 12 (TAF12), a component of the TFIID complex, in a SIM-dependent manner, and this interaction enhanced the transactivation activity of IE2. Our data demonstrate that the interaction of IE2 with SUMO-modified proteins plays an important role for the progression of the HCMV lytic cycle, and they suggest a novel viral mechanism utilizing the cellular SUMO system.
Collapse
|
18
|
Human cytomegalovirus IE2 86 and IE2 40 proteins differentially regulate UL84 protein expression posttranscriptionally in the absence of other viral gene products. J Virol 2010; 84:5158-70. [PMID: 20200242 DOI: 10.1128/jvi.00090-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
It has previously been demonstrated that, during human cytomegalovirus infection, the viral IE2 86 and IE2 40 proteins are both important for the expression of an early-late viral protein, UL84. Here, we show that expression of the UL84 protein is enhanced upon cotransfection with either IE2 86 or IE2 40, although IE2 40 appears to play a more important role. The UL84 protein levels are tightly linked to the amount of IE2 40 present, but this does not appear to be true for IE2 86. RNA remains constant for all corresponding proteins, indicating posttranscriptional regulation of UL84. The first 105 amino acids of UL84 are necessary and sufficient for this phenotype, and this region is also required for an interaction with IE2 86 and IE2 40. Treatment with proteasome inhibitors shows that UL84 exhibits some proteasome-dependent degradation, and UL84 is not protected against this degradation when coexpressed with IE2 86 or IE2 40. UL84 also exhibits an inhibitory effect on IE2 86 and IE2 40 protein levels in these cotransfection assays. Further, we show that the amino acid sequence of UL84 is important for the enhancement governed by IE2 40. These results indicate that IE2 86, IE2 40, and UL84 serve to regulate protein expression in a posttranscriptional fashion and that this regulation is independent of other viral proteins.
Collapse
|