1
|
Li X, Ohler ZW, Day A, Bassel L, Grosskopf A, Afsari B, Tagawa T, Custer W, Mangusan R, Lurain K, Yarchoan R, Ziegelbauer J, Ramaswami R, Krug LT. Mapping herpesvirus-driven impacts on the cellular milieu and transcriptional profile of Kaposi sarcoma in patient-derived mouse models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615429. [PMID: 39386738 PMCID: PMC11463583 DOI: 10.1101/2024.09.27.615429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Kaposi sarcoma (KS) is defined by aberrant angiogenesis driven by Kaposi sarcoma herpesvirus (KSHV)-infected spindle cells with endothelial characteristics. KS research is hindered by rapid loss of KSHV infection upon explant culture of tumor cells. Here, we establish patient-derived KS xenografts (PDXs) upon orthotopic implantation of cutaneous KS biopsies in immunodeficient mice. KS tumors were maintained in 27/28 PDX until experimental endpoint, up to 272 days in the first passage of recipient mice. KSHV latency associated nuclear antigen (LANA)+ endothelial cell density increased by a mean 4.3-fold in 14/15 PDX analyzed by IHC at passage 1 compared to respective input biopsies, regardless of implantation variables and clinical features of patients. The Ki-67 proliferation marker colocalized with LANA more frequently in PDXs. Spatial transcriptome analysis revealed increased expression of viral transcripts from latent and lytic gene classes in the PDX. The expanded KSHV+ regions of the PDX maintained signature gene expression of KS tumors, with enrichment in pathways associated with angiogenesis and endothelium development. Cells with characteristics of tumor-associated fibroblasts derived from PDX were propagated for 15 passages. These fibroblast-like cells were permissive for de novo KSHV infection, and one lineage produced CXCL12, a cancer-promoting chemokine. Spatial analysis revealed that fibroblasts are a likely source of CXCL12 signaling to CXCR4 that was upregulated in KS regions. The reproducible expansion of KSHV-infected endothelial cells in PDX from multiple donors and recapitulation of a KS tumor gene signature supports the application of patient-derived KS mouse models for studies of pathogenesis and novel therapies.
Collapse
Affiliation(s)
- Xiaofan Li
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Zoë Weaver Ohler
- Center for Advanced Preclinical Research, Center for Cancer Research, National Cancer Institute; Frederick, MD
| | - Amanda Day
- Center for Advanced Preclinical Research, Center for Cancer Research, National Cancer Institute; Frederick, MD
| | - Laura Bassel
- Center for Advanced Preclinical Research, Center for Cancer Research, National Cancer Institute; Frederick, MD
| | - Anna Grosskopf
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Bahman Afsari
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Takanobu Tagawa
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Wendi Custer
- Center for Advanced Preclinical Research, Center for Cancer Research, National Cancer Institute; Frederick, MD
| | - Ralph Mangusan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Kathryn Lurain
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Joseph Ziegelbauer
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Ramya Ramaswami
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Laurie T. Krug
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| |
Collapse
|
2
|
Mohanty S, Kumar A, Das P, Sahu SK, Mukherjee R, Ramachandranpillai R, Nair SS, Choudhuri T. Nm23-H1 induces apoptosis in primary effusion lymphoma cells via inhibition of NF-κB signaling through interaction with oncogenic latent protein vFLIP K13 of Kaposi’s sarcoma-associated herpes virus. Cell Oncol (Dordr) 2022; 45:967-989. [DOI: 10.1007/s13402-022-00701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2022] [Indexed: 11/03/2022] Open
|
3
|
Human Gammaherpesvirus 8 Oncogenes Associated with Kaposi’s Sarcoma. Int J Mol Sci 2022; 23:ijms23137203. [PMID: 35806208 PMCID: PMC9266852 DOI: 10.3390/ijms23137203] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/01/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV), also known as human gammaherpesvirus 8 (HHV-8), contains oncogenes and proteins that modulate various cellular functions, including proliferation, differentiation, survival, and apoptosis, and is integral to KSHV infection and oncogenicity. In this review, we describe the most important KSHV genes [ORF 73 (LANA), ORF 72 (vCyclin), ORF 71 or ORFK13 (vFLIP), ORF 74 (vGPCR), ORF 16 (vBcl-2), ORF K2 (vIL-6), ORF K9 (vIRF 1)/ORF K10.5, ORF K10.6 (vIRF 3), ORF K1 (K1), ORF K15 (K15), and ORF 36 (vPK)] that have the potential to induce malignant phenotypic characteristics of Kaposi’s sarcoma. These oncogenes can be explored in prospective studies as future therapeutic targets of Kaposi’s sarcoma.
Collapse
|
4
|
Sheng L, Chen C, Chen Y, He Y, Zhuang R, Gu Y, Yan Q, Li W, Lu C. vFLIP-regulated competing endogenous RNA (ceRNA) networks targeting lytic induction for KSHV-associated malignancies. J Med Virol 2022; 94:2766-2775. [PMID: 35149992 DOI: 10.1002/jmv.27654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/11/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) causes life-long latent infection and malignancies, including Kaposi sarcoma (KS) commonly found in AIDS patients. Lytic replication can be induced to kill tumor cells harboring latent KSHV, through viral cytopathic effects and the subsequent antiviral immune responses. Viral FLICE-inhibitory protein (vFLIP), encoded by KSHV ORF K13, inhibits KSHV lytic reactivation, implying that the competing endogenous RNA (ceRNA) networks regulated by vFLIP can be modulated to induce the lytic reactivation of latent KSHV, a promising strategy for KSHV-associated malignancies. Here, we performed whole-transcriptome sequencing to reveal the global landscape of non-coding RNAs and mRNAs in iSLK-RGB-BAC16 cells and iSLK-RGB-K13 mutant cells. It showed that vFLIP regulated 227 differently expressed (DE) lncRNAs, 57 DE circRNAs, 20 DE miRNAs and 1371 DE mRNAs. Enrichment analysis verified that riboflavin metabolism was simultaneously enriched in DE genes related to miRNAs, lncRNAs, and circRNAs. The upregulated hsa-miR-378i and hsa-miR-3654, and downregulated miR-4467, miR-3163, miR-4451 and miR-4257 were significantly enriched in the ceRNA complex network, which contained 9 upregulated and 7 downregulated circRNAs, 5 upregulated and 85 downregulated lncRNAs, 5 upregulated and 35 downregulated mRNAs. Finally, we constructed and validated two vFLIP-regulated ceRNA networks: circRNA hsa_circ_0070049/hsa-miR-378i/SPEG/FOXQ1 and lncRNA AL031123.1/hsa-miR-378i/SPEG/FOXQ1. Taken together, the two ceRNA networks may mediate KSHV reactivation. These novel findings refreshed the present understanding of ceRNA network in KSHV lytic induction and provided potential therapeutic targets for KSHV-associated malignancies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Liuxue Sheng
- State Key Laboratory of Reproductive Medicine, Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, 210004, P. R. China.,Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Chen Chen
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yuheng Chen
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yujia He
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Ruoyu Zhuang
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yang Gu
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Qin Yan
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China.,Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Wan Li
- State Key Laboratory of Reproductive Medicine, Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, 210004, P. R. China.,Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China.,Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Chun Lu
- State Key Laboratory of Reproductive Medicine, Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, 210004, P. R. China.,Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China.,Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| |
Collapse
|
5
|
Kim YJ, Kim Y, Kumar A, Kim CW, Toth Z, Cho NH, Lee HR. Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen dysregulates expression of MCL-1 by targeting FBW7. PLoS Pathog 2021; 17:e1009179. [PMID: 33471866 PMCID: PMC7816990 DOI: 10.1371/journal.ppat.1009179] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/22/2020] [Indexed: 12/11/2022] Open
Abstract
Primary effusion lymphoma (PEL) is an aggressive B cell lymphoma that is etiologically linked to Kaposi’s sarcoma-associated herpesvirus (KSHV). Despite standard multi-chemotherapy treatment, PEL continues to cause high mortality. Thus, new strategies to control PEL are needed urgently. Here, we show that a phosphodegron motif within the KSHV protein, latency-associated nuclear antigen (LANA), specifically interacts with E3 ubiquitin ligase FBW7, thereby competitively inhibiting the binding of the anti-apoptotic protein MCL-1 to FBW7. Consequently, LANA-FBW7 interaction enhances the stability of MCL-1 by preventing its proteasome-mediated degradation, which inhibits caspase-3-mediated apoptosis in PEL cells. Importantly, MCL-1 inhibitors markedly suppress colony formation on soft agar and tumor growth of KSHV+PEL/BCBL-1 in a xenograft mouse model. These results strongly support the conclusion that high levels of MCL-1 expression enable the oncogenesis of PEL cells and thus, MCL-1 could be a potential drug target for KSHV-associated PEL. This work also unravels a mechanism by which an oncogenic virus perturbs a key component of the ubiquitination pathway to induce tumorigenesis. Primary effusion lymphoma (PEL), a highly aggressive B cell lymphoma, is associated with Kaposi’s sarcoma-associated herpesvirus (KSHV). However, the underlying mechanisms that govern the aggressiveness of KSHV-associated PEL are poorly understood. Here, we demonstrate that KSHV LANA interacts with cellular ubiquitin E3 ligase FBW7, sequestering MCL-1 from FBW7, which reduces MCL-1 ubiquitination. As such, LANA potently stabilizes and increases MCL-1 protein, leading to inhibition of caspase-3-mediated apoptosis in PEL cells. Furthermore, MCL-1 inhibitors efficiently blocked PEL progression in mouse xenograft model. These results suggest that LANA acts as a proto-oncogene via deregulating tumor suppressor FBW7, which upregulates anti-apoptotic MCL-1 expression. This study suggests drugs that target MCL-1 may serve as an effective therapy against KSHV+ PEL.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Viral/genetics
- Antigens, Viral/metabolism
- Apoptosis
- Cell Proliferation
- F-Box-WD Repeat-Containing Protein 7/genetics
- F-Box-WD Repeat-Containing Protein 7/metabolism
- Female
- Herpesvirus 8, Human/physiology
- Humans
- Lymphoma, Primary Effusion/genetics
- Lymphoma, Primary Effusion/metabolism
- Lymphoma, Primary Effusion/pathology
- Lymphoma, Primary Effusion/virology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Myeloid Cell Leukemia Sequence 1 Protein/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phosphorylation
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/pathology
- Sarcoma, Kaposi/virology
- Tumor Cells, Cultured
- Ubiquitination
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yeong Jun Kim
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, South Korea
| | - Yuri Kim
- Department of Microbiology and Immunology, Seoul National University college of Medicine, Seoul, South Korea
| | - Abhishek Kumar
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| | - Chan Woo Kim
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, South Korea
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| | - Nam Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University college of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University college of Medicine, Seoul, South Korea
| | - Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, South Korea
- Department of Lab Medicine, College of Medicine, Korea University, Seoul, South Korea
- * E-mail:
| |
Collapse
|
6
|
Yan L, Majerciak V, Zheng ZM, Lan K. Towards Better Understanding of KSHV Life Cycle: from Transcription and Posttranscriptional Regulations to Pathogenesis. Virol Sin 2019; 34:135-161. [PMID: 31025296 PMCID: PMC6513836 DOI: 10.1007/s12250-019-00114-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/14/2019] [Indexed: 02/08/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8 (HHV-8), is etiologically linked to the development of Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. These malignancies often occur in immunosuppressed individuals, making KSHV infection-associated diseases an increasing global health concern with persistence of the AIDS epidemic. KSHV exhibits biphasic life cycles between latent and lytic infection and extensive transcriptional and posttranscriptional regulation of gene expression. As a member of the herpesvirus family, KSHV has evolved many strategies to evade the host immune response, which help the virus establish a successful lifelong infection. In this review, we summarize the current research status on the biology of latent and lytic viral infection, the regulation of viral life cycles and the related pathogenesis.
Collapse
Affiliation(s)
- Lijun Yan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Vladimir Majerciak
- National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Zhi-Ming Zheng
- National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
7
|
Suppression of the SAP18/HDAC1 complex by targeting TRIM56 and Nanog is essential for oncogenic viral FLICE-inhibitory protein-induced acetylation of p65/RelA, NF-κB activation, and promotion of cell invasion and angiogenesis. Cell Death Differ 2019; 26:1970-1986. [PMID: 30670829 DOI: 10.1038/s41418-018-0268-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 12/26/2022] Open
Abstract
Kaposi's sarcoma (KS), a highly invasive and angiogenic tumor of endothelial spindle-shaped cells, is the most common AIDS-associated cancer caused by KS-associated herpesvirus (KSHV) infection. KSHV-encoded viral FLICE-inhibitory protein (vFLIP) is a viral oncogenic protein, but its role in the dissemination and angiogenesis of KSHV-induced cancers remains unknown. Here, we report that vFLIP facilitates cell migration, invasion, and angiogenesis by downregulating the SAP18-HDAC1 complex. vFLIP degrades SAP18 through a ubiquitin-proteasome pathway by recruiting E3 ubiquitin ligase TRIM56. Further, vFLIP represses HDAC1, a protein partner of SAP18, by inhibiting Nanog occupancy on the HDAC1 promoter. Notably, vFLIP impairs the interaction between the SAP18/HDAC1 complex and p65 subunit, leading to enhancement of p65 acetylation and NF-κB activation. Our data suggest a novel mechanism of vFLIP activation of the NF-κB by decreasing the SAP18/HDAC1 complex to promote the acetylation of p65 subunit, which contributes to vFLIP-induced activation of the NF-κB pathway, cell invasion, and angiogenesis. These findings advance our understanding of the mechanism of KSHV-induced pathogenesis, and providing a rationale for therapeutic targeting of the vFLIP/SAP18/HDAC1 complex as a novel strategy of AIDS-KS.
Collapse
|
8
|
Abstract
This chapter describes the simple, rapid, and inexpensive preparation of template DNA from poxvirus-infected cells, plaques, or crude virus stocks for PCR amplification. This technique is reliable and robust and only requires centrifugation, detergent, and protease treatment. The resulting DNA template preparation is suitable for PCR amplification for screening viruses, cloning, transfection, and DNA sequencing.
Collapse
Affiliation(s)
- Rachel L Roper
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
9
|
Ruder B, Murtadak V, Stürzl M, Wirtz S, Distler U, Tenzer S, Mahapatro M, Greten FR, Hu Y, Neurath MF, Cesarman E, Ballon G, Günther C, Becker C. Chronic intestinal inflammation in mice expressing viral Flip in epithelial cells. Mucosal Immunol 2018; 11:1621-1629. [PMID: 30104627 PMCID: PMC8063487 DOI: 10.1038/s41385-018-0068-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/04/2018] [Accepted: 07/10/2018] [Indexed: 02/04/2023]
Abstract
Viruses are present in the intestinal microflora and are currently discussed as a potential causative mechanism for the development of inflammatory bowel disease. A number of viruses, such as Human Herpesvirus-8, express homologs to cellular FLIPs, which are major contributors for the regulation of epithelial cell death. In this study we analyzed the consequences of constitutive expression of HHV8-viral FLIP in intestinal epithelial cells (IECs) in mice. Surprisingly, expression of vFlip disrupts tissue homeostasis and induces severe intestinal inflammation. Moreover vFlipIEC-tg mice showed reduced Paneth cell numbers, associated with excessive necrotic cell death. On a molecular level vFlip expression altered classical and alternative NFκB activation. Blocking of alternative NFκB signaling by deletion of Ikka in vivo largely protected mice from inflammation and Paneth cell loss induced by vFLIP. Collectively, our data provide functional evidence that expression of a single viral protein in IECs can be sufficient to disrupt epithelial homeostasis and to initiate chronic intestinal inflammation.
Collapse
Affiliation(s)
- Barbara Ruder
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Vinay Murtadak
- Division of Molecular and Experimental Surgery, Department of Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ute Distler
- Institute for Immunology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Mousumi Mahapatro
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Florian R. Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Yinling Hu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Markus F. Neurath
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Gianna Ballon
- Department of Pathology and Laboratory Medicine, Northwell Health, Lake Success, NY, USA
| | - Claudia Günther
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
10
|
Yang Z, Honda T, Ueda K. vFLIP upregulates IKKε, leading to spindle morphology formation through RelA activation. Virology 2018; 522:106-121. [PMID: 30029010 DOI: 10.1016/j.virol.2018.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/07/2018] [Accepted: 07/07/2018] [Indexed: 12/31/2022]
Abstract
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) vFLIP, a latent gene of KSHV, was first identified as a FLICE-inhibitory protein (FLIP) protecting cells from apoptosis. The vFLIP protein has been shown to activate the NF-κB signaling involved in spindle morphology formation both in HUVECs infected with KSHV and Kaposi's sarcoma (KS) itself. In this study, we independently established stably vFLIP-expressing cells and showed that they exhibited upregulated NF-κB family protein expression independent of the ability of IKKs to bind vFLIP. Further, vFLIP induced upregulation of IKKε, phosphorylation of RelA at Ser468 (p-RelA S468) and nuclear localization of Re1A concomitant with spindle morphology formation, and these effects were reversed by knockdown of IKKε and treatment with Bay-11. Overexpression of IKKε alone also showed spindle morphology formation with p-RelA S468. In conclusion, the spindle cell morphology in KS should be induced by RelA activation (p-RelA S468) by IKKε upregulation in vFLIP-expressing EA hy926 cells.
Collapse
Affiliation(s)
- Zunlin Yang
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tomoyuki Honda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Keiji Ueda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
11
|
Kaposi's Sarcoma-Associated Herpesvirus Latency-Associated Nuclear Antigen: Replicating and Shielding Viral DNA during Viral Persistence. J Virol 2017; 91:JVI.01083-16. [PMID: 28446671 DOI: 10.1128/jvi.01083-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Kaposi's sarcoma herpesvirus (KSHV) establishes lifelong latency. The viral latency-associated nuclear antigen (LANA) promotes viral persistence by tethering the viral genome to cellular chromosomes and by participating in latent DNA replication. Recently, the structure of the LANA C-terminal DNA binding domain was solved and new cytoplasmic variants of LANA were discovered. We discuss how these findings contribute to our current view of LANA structure and assembly and of its role during viral persistence.
Collapse
|
12
|
Mariggiò G, Koch S, Zhang G, Weidner-Glunde M, Rückert J, Kati S, Santag S, Schulz TF. Kaposi Sarcoma Herpesvirus (KSHV) Latency-Associated Nuclear Antigen (LANA) recruits components of the MRN (Mre11-Rad50-NBS1) repair complex to modulate an innate immune signaling pathway and viral latency. PLoS Pathog 2017; 13:e1006335. [PMID: 28430817 PMCID: PMC5415203 DOI: 10.1371/journal.ppat.1006335] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 05/03/2017] [Accepted: 04/05/2017] [Indexed: 12/31/2022] Open
Abstract
Kaposi Sarcoma Herpesvirus (KSHV), a γ2-herpesvirus and class 1 carcinogen, is responsible for at least three human malignancies: Kaposi Sarcoma (KS), Primary Effusion Lymphoma (PEL) and Multicentric Castleman's Disease (MCD). Its major nuclear latency protein, LANA, is indispensable for the maintenance and replication of latent viral DNA in infected cells. Although LANA is mainly a nuclear protein, cytoplasmic isoforms of LANA exist and can act as antagonists of the cytoplasmic DNA sensor, cGAS. Here, we show that cytosolic LANA also recruits members of the MRN (Mre11-Rad50-NBS1) repair complex in the cytosol and thereby inhibits their recently reported role in the sensing of cytoplasmic DNA and activation of the NF-κB pathway. Inhibition of NF-κB activation by cytoplasmic LANA is accompanied by increased lytic replication in KSHV-infected cells, suggesting that MRN-dependent NF-κB activation contributes to KSHV latency. Cytoplasmic LANA may therefore support the activation of KSHV lytic replication in part by counteracting the activation of NF-κB in response to cytoplasmic DNA. This would complement the recently described role of cytoplasmic LANA in blocking an interferon response triggered by cGAS and thereby promoting lytic reactivation. Our findings highlight a second point at which cytoplasmic LANA interferes with the innate immune response, as well as the importance of the recently discovered role of cytoplasmic MRN complex members as innate sensors of cytoplasmic DNA for the control of KSHV replication.
Collapse
MESH Headings
- Acid Anhydride Hydrolases
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cytoplasm/metabolism
- DNA Repair Enzymes/genetics
- DNA Repair Enzymes/metabolism
- DNA Replication
- DNA, Viral/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- HEK293 Cells
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/immunology
- Herpesvirus 8, Human/physiology
- Humans
- Immunity, Innate
- MRE11 Homologue Protein
- Models, Biological
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/immunology
- Nuclear Proteins/metabolism
- Protein Isoforms
- Sarcoma, Kaposi/immunology
- Sarcoma, Kaposi/virology
- Signal Transduction
- Virus Latency
- Virus Replication
Collapse
Affiliation(s)
- Giuseppe Mariggiò
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Sandra Koch
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Guigen Zhang
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Magdalena Weidner-Glunde
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Jessica Rückert
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Semra Kati
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Susann Santag
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| |
Collapse
|
13
|
Gao H, Song Y, Liu C, Liang Q. KSHV strategies for host dsDNA sensing machinery. Virol Sin 2016; 31:466-471. [PMID: 27933565 DOI: 10.1007/s12250-016-3877-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022] Open
Abstract
The innate immune system utilizes pattern recognition receptors cyclic GMP-AMP synthase (cGAS) to sense cytosolic double-stranded (ds) DNA and initiate type 1 interferon signaling and autophagy pathway, which collaborate to limit pathogen infections as well as alarm the adaptive immune response. The genomes of herpesviruses are large dsDNA, which represent a major class of pathogen signatures recognized by cellular DNA sensor cGAS. However, to successfully establish the persistent infection, herpesviruses have evolved their viral genes to modulate different aspects of host immune signaling. This review summarizes the evasion strategies of host cGAS DNA sensing pathway by Kaposi's Sarcoma-associated Herpesvirus (KSHV) and their contributions to KSHV life cycles.
Collapse
Affiliation(s)
- Hang Gao
- Department of Bone and Joint Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yanyan Song
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Chengrong Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiming Liang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
14
|
Burrer CM, Foight GW, Keating AE, Chan GC. Selective peptide inhibitors of antiapoptotic cellular and viral Bcl-2 proteins lead to cytochrome c release during latent Kaposi's sarcoma-associated herpesvirus infection. Virus Res 2015; 211:86-8. [PMID: 26456186 DOI: 10.1016/j.virusres.2015.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 11/18/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with B-cell lymphomas including primary effusion lymphoma and multicentric Castleman's disease. KSHV establishes latency within B cells by modulating or mimicking the antiapoptotic Bcl-2 family of proteins to promote cell survival. Our previous BH3 profiling analysis, a functional assay that assesses the contribution of Bcl-2 proteins towards cellular survival, identified two Bcl-2 proteins, cellular Mcl-1 and viral KsBcl-2, as potential regulators of mitochondria polarization within a latently infected B-cell line, Bcbl-1. In this study, we used two novel peptide inhibitors identified in a peptide library screen that selectively bind KsBcl-2 (KL6-7_Y4eK) or KsBcl-2 and Mcl-1 (MS1) in order to decipher the relative contribution of Mcl-1 and KsBcl-2 in maintaining mitochondrial membrane potential. We found treatment with KL6-7_Y4eK and MS1 stimulated a similar amount of cytochrome c release from mitochondria isolated from Bcbl-1 cells, indicating that inhibition of KsBcl-2 alone is sufficient for mitochondrial outer membrane permiabilzation (MOMP) and thus apoptosis during a latent B cell infection. In turn, this study also identified and provides a proof-of-concept for the further development of novel KsBcl-2 inhibitors for the treatment of KSHV-associated B-cell lymphomas via the targeting of latently infected B cells.
Collapse
Affiliation(s)
- Christine M Burrer
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Glenna W Foight
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Amy E Keating
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Gary C Chan
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, United States.
| |
Collapse
|
15
|
Sin SH, Kim Y, Eason A, Dittmer DP. KSHV Latency Locus Cooperates with Myc to Drive Lymphoma in Mice. PLoS Pathog 2015; 11:e1005135. [PMID: 26327622 PMCID: PMC4556645 DOI: 10.1371/journal.ppat.1005135] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/07/2015] [Indexed: 11/18/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) has been linked to Kaposi sarcoma and B-cell malignancies. Mechanisms of KSHV-induced oncogenesis remain elusive, however, in part due to lack of reliable in vivo models. Recently, we showed that transgenic mice expressing the KSHV latent genes, including all viral microRNAs, developed splenic B cell hyperplasia with 100% penetrance, but only a fraction converted to B cell lymphomas, suggesting that cooperative oncogenic events were missing. Myc was chosen as a possible candidate, because Myc is deregulated in many B cell lymphomas. We crossed KSHV latency locus transgenic (latency) mice to Cα Myc transgenic (Myc) mice. By itself these Myc transgenic mice develop lymphomas only rarely. In the double transgenic mice (Myc/latency) we observed plasmacytosis, severe extramedullary hematopoiesis in spleen and liver, and increased proliferation of splenocytes. Myc/latency mice developed frank lymphoma at a higher rate than single transgenic latency or Myc mice. These data indicate that the KSHV latency locus cooperates with the deregulated Myc pathways to further lymphoma progression. Kaposi’s sarcoma-associated herpesvirus (KSHV) is associated with Kaposi sarcoma as well as the B-cell malignancies primary effusion lymphoma (PEL) and multicentric Castleman’s disease (MCD). Only a few KSHV genes, including all micro RNAs, are expressed in latent infection of B cells. We already showed that KSHV latency locus transgenic mice consistently develop B cell hyperplasia. To find out possible host contributions to lymphomagenesis we evaluated the Myc oncogene. Compound KSHV latency locus and Myc mice developed plasmacytosis exemplified by increased frequency of plasma cells in the spleen, a high accelerated lymphoma development, and severe extramedullary hematopoiesis. These data show that the KSHV latency locus can cooperate with Myc activation in viral lymphomagenesis.
Collapse
Affiliation(s)
- Sang-Hoon Sin
- Department of Microbiology and Immunology, Program in Global Oncology, Lineberger Comprehensive Cancer Center, and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Yongbaek Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Anthony Eason
- Department of Microbiology and Immunology, Program in Global Oncology, Lineberger Comprehensive Cancer Center, and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dirk P. Dittmer
- Department of Microbiology and Immunology, Program in Global Oncology, Lineberger Comprehensive Cancer Center, and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
16
|
BH3 Profiling Reveals Selectivity by Herpesviruses for Specific Bcl-2 Proteins To Mediate Survival of Latently Infected Cells. J Virol 2015; 89:5739-46. [PMID: 25740993 DOI: 10.1128/jvi.00236-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/27/2015] [Indexed: 02/07/2023] Open
Abstract
Herpesviruses, including human cytomegalovirus (HCMV), Epstein-Barr virus (EBV), and Kaposi's sarcoma-associated herpesvirus, establish latency by modulating or mimicking antiapoptotic Bcl-2 proteins to promote survival of carrier cells. BH3 profiling, which assesses the contribution of Bcl-2 proteins towards cellular survival, was able to globally determine the level of dependence on individual cellular and viral Bcl-2 proteins within latently infected cells. Moreover, BH3 profiling predicted the sensitivity of infected cells to small-molecule inhibitors of Bcl-2 proteins.
Collapse
|
17
|
Abstract
Molluscum contagiosum virus (MCV) is the causative agent of molluscum contagiosum (MC), the third most common viral skin infection in children, and one of the five most prevalent skin diseases worldwide. No FDA-approved treatments, vaccines, or commercially available rapid diagnostics for MCV are available. This review discusses several aspects of this medically important virus including: physical properties of MCV, MCV pathogenesis, MCV replication, and immune responses to MCV infection. Sequencing of the MCV genome revealed novel immune evasion molecules which are highlighted here. Special attention is given to the MCV MC159 and MC160 proteins. These proteins are FLIPs with homologs in gamma herpesviruses and in the cell. They are of great interest because each protein regulates apoptosis, NF-κB, and IRF3. However, the mechanism that each protein uses to impart its effects is different. It is important to elucidate how MCV inhibits immune responses; this knowledge contributes to our understanding of viral pathogenesis and also provides new insights into how the immune system neutralizes virus infections.
Collapse
|
18
|
Dzeng RK, Jha HC, Lu J, Saha A, Banerjee S, Robertson ES. Small molecule growth inhibitors of human oncogenic gammaherpesvirus infected B-cells. Mol Oncol 2014; 9:365-76. [PMID: 25306391 DOI: 10.1016/j.molonc.2014.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 08/01/2014] [Accepted: 09/15/2014] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are two human gammaherpesviruses associated with a broad spectrum of B-cell lymphomas, most acutely in immuno-compromised populations. However, there are no drugs which specifically target KSHV or EBV-associated lymphomas. To identify small molecules which selectively inhibit the growth of EBV or KSHV-associated B-cell lines, we performed a fluorescence based high-throughput screen on multiple stable GFP expressing virus-infected or uninfected B-cell lines. We identified 40 initial compounds with selective growth inhibition and subsequently determined the 50% growth inhibitory concentrations (GI50) for each drug. We further examined compounds with higher specificity to explore the underlying molecular mechanisms using transcription factor analysis, as well as a shRNA based knockdown strategy. Our data identified ten compounds with relatively high efficacy for growth inhibition. Two novel small molecules, NSC#10010 and NSC#65381 were potent growth inhibitors for gammaherpesvirus-associated B-lymphomas through activation of both the NF-κB and c-Myc-mediated signaling pathways. These drugs can serve as potential lead compounds to expand the current therapeutic window against EBV or KSHV-associated human B-cell malignancies.
Collapse
Affiliation(s)
- Richard K Dzeng
- Department of Microbiology and Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, PA, USA
| | - Hem Chandra Jha
- Department of Microbiology and Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, PA, USA
| | - Jie Lu
- Department of Microbiology and Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, PA, USA
| | - Abhik Saha
- Department of Microbiology and Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, PA, USA
| | - Sagarika Banerjee
- Department of Microbiology and Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, PA, USA
| | - Erle S Robertson
- Department of Microbiology and Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, PA, USA.
| |
Collapse
|
19
|
Amaya M, Keck F, Bailey C, Narayanan A. The role of the IKK complex in viral infections. Pathog Dis 2014; 72:32-44. [PMID: 25082354 PMCID: PMC7108545 DOI: 10.1111/2049-632x.12210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/11/2014] [Accepted: 07/17/2014] [Indexed: 01/21/2023] Open
Abstract
The NF‐κB signal transduction pathway is a critical regulator of multiple cellular functions that ultimately shift the balance between cell survival and death. The cascade is activated by many intrinsic and extrinsic stimuli, which is transduced via adaptor proteins to phosphorylate the IκB kinase (IKK) complex, which in turn phosphorylates the inhibitory IκBα protein to undergo proteasomal degradation and sets in motion nuclear events in response to the initial stimulus. Viruses are important modulators of the NF‐κB cascade and have evolved multiple mechanisms to activate or inhibit this pathway in a manner conducive to viral multiplication and establishment of a productive infectious cycle. This is a subject of extensive research by multiple laboratories whereby unraveling the interactions between specific viral components and members of the NF‐κB signal transduction cascade can shed unique perspectives on infection associated pathogenesis and novel therapeutic targets. In this review, we highlight the interactions between components of the IKK complex and multiple RNA and DNA viruses with the emphasis on mechanisms by which the interaction feeds the infection. Understanding these interactions will shed light on the exploitative capabilities of viruses to maintain an environment favorable for a productive infection.
Collapse
Affiliation(s)
- Moushimi Amaya
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | | | | | | |
Collapse
|
20
|
Xie X, Xiao H, Ding F, Zhong H, Zhu J, Ma N, Mei J. Over-expression of prolyl hydroxylase-1 blocks NF-κB-mediated cyclin D1 expression and proliferation in lung carcinoma cells. Cancer Genet 2014; 207:188-94. [DOI: 10.1016/j.cancergen.2014.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 02/07/2023]
|