1
|
Shoup D, Priola SA. Grp78 destabilization of infectious prions is strain-specific and modified by multiple factors including accessory chaperones and pH. J Biol Chem 2024; 300:107346. [PMID: 38718859 PMCID: PMC11176782 DOI: 10.1016/j.jbc.2024.107346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/01/2024] [Accepted: 04/22/2024] [Indexed: 06/03/2024] Open
Abstract
Lethal neurodegenerative prion diseases result from the continuous accumulation of infectious and variably protease-resistant prion protein aggregates (PrPD) which are misfolded forms of the normally detergent soluble and protease-sensitive cellular prion protein. Molecular chaperones like Grp78 have been found to reduce the accumulation of PrPD, but how different cellular environments and other chaperones influence the ability of Grp78 to modify PrPD is poorly understood. In this work, we investigated how pH and protease-mediated structural changes in PrPD from two mouse-adapted scrapie prion strains, 22L and 87V, influenced processing by Grp78 in the presence or absence of chaperones Hsp90, DnaJC1, and Stip1. We developed a cell-free in vitro system to monitor chaperone-mediated structural changes to, and disaggregation of, PrPD. For both strains, Grp78 was most effective at structurally altering PrPD at low pH, especially when additional chaperones were present. While Grp78, DnaJC1, Stip1, and Hsp90 were unable to disaggregate the majority of PrPD from either strain, pretreatment of PrPD with proteases increased disaggregation of 22L PrPD compared to 87V, indicating strain-specific differences in aggregate structure were impacting chaperone activity. Hsp90 also induced structural changes in 87V PrPD as indicated by an increase in the susceptibility of its n-terminus to proteases. Our data suggest that, while chaperones like Grp78, DnaJC1, Stip1, and Hsp90 disaggregate only a small fraction of PrPD, they may still facilitate its clearance by altering aggregate structure and sensitizing PrPD to proteases in a strain and pH-dependent manner.
Collapse
Affiliation(s)
- Daniel Shoup
- Rocky Mountain Laboratories, Laboratory of Neurological Infections and Immunity, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.
| | - Suzette A Priola
- Rocky Mountain Laboratories, Laboratory of Neurological Infections and Immunity, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
2
|
Kostelanska M, Holada K. Prion Strains Differ in Susceptibility to Photodynamic Oxidation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030611. [PMID: 35163872 PMCID: PMC8840242 DOI: 10.3390/molecules27030611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022]
Abstract
Prion disorders, or transmissible spongiform encephalophaties (TSE), are fatal neurodegenerative diseases affecting mammals. Prion-infectious particles comprise of misfolded pathological prion proteins (PrPTSE). Different TSEs are associated with distinct PrPTSE folds called prion strains. The high resistance of prions to conventional sterilization increases the risk of prion transmission in medical, veterinary and food industry practices. Recently, we have demonstrated the ability of disulfonated hydroxyaluminum phthalocyanine to photodynamically inactivate mouse RML prions by generated singlet oxygen. Herein, we studied the efficiency of three phthalocyanine derivatives in photodynamic treatment of seven mouse adapted prion strains originating from sheep, human, and cow species. We report the different susceptibilities of the strains to photodynamic oxidative elimination of PrPTSE epitopes: RML, A139, Fu-1 > mBSE, mvCJD > ME7, 22L. The efficiency of the phthalocyanine derivatives in the epitope elimination also differed (AlPcOH(SO3)2 > ZnPc(SO3)1-3 > SiPc(OH)2(SO3)1-3) and was not correlated to the yields of generated singlet oxygen. Our data suggest that the structural properties of both the phthalocyanine and the PrPTSE strain may affect the effectiveness of the photodynamic prion inactivation. Our finding provides a new option for the discrimination of prion strains and highlights the necessity of utilizing range of prion strains when validating the photodynamic prion decontamination procedures.
Collapse
|
3
|
Woerman AL, Tamgüney G. Body-first Parkinson's disease and variant Creutzfeldt-Jakob disease - similar or different? Neurobiol Dis 2022; 164:105625. [PMID: 35026401 DOI: 10.1016/j.nbd.2022.105625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 10/19/2022] Open
Abstract
In several neurodegenerative disorders, proteins that typically exhibit an α-helical structure misfold into an amyloid conformation rich in β-sheet content. Through a self-templating mechanism, these amyloids are able to induce additional protein misfolding, facilitating their propagation throughout the central nervous system. This disease mechanism was originally identified for the prion protein (PrP), which misfolds into PrPSc in a number of disorders, including variant Creutzfeldt-Jakob disease (vCJD) and bovine spongiform encephalopathy (BSE). More recently, the prion mechanism of disease was expanded to include other proteins that rely on this self-templating mechanism to cause progressive degeneration, including α-synuclein misfolding in Parkinson's disease (PD). Several studies now suggest that PD patients can be subcategorized based on where in the body misfolded α-synuclein originates, either the brain or the gut, similar to patients developing sporadic CJD or vCJD. In this review, we discuss the human and animal model data indicating that α-synuclein and PrPSc misfolding originates in the gut in body-first PD and vCJD, and summarize the data identifying the role of the autonomic nervous system in the gut-brain axis of both diseases.
Collapse
Affiliation(s)
- Amanda L Woerman
- Institute for Applied Life Sciences and Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA.
| | - Gültekin Tamgüney
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
4
|
Cortez LM, Nemani SK, Duque Velásquez C, Sriraman A, Wang Y, Wille H, McKenzie D, Sim VL. Asymmetric-flow field-flow fractionation of prions reveals a strain-specific continuum of quaternary structures with protease resistance developing at a hydrodynamic radius of 15 nm. PLoS Pathog 2021; 17:e1009703. [PMID: 34181702 PMCID: PMC8270404 DOI: 10.1371/journal.ppat.1009703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/09/2021] [Accepted: 06/09/2021] [Indexed: 11/19/2022] Open
Abstract
Prion diseases are transmissible neurodegenerative disorders that affect mammals, including humans. The central molecular event is the conversion of cellular prion glycoprotein, PrPC, into a plethora of assemblies, PrPSc, associated with disease. Distinct phenotypes of disease led to the concept of prion strains, which are associated with distinct PrPSc structures. However, the degree to which intra- and inter-strain PrPSc heterogeneity contributes to disease pathogenesis remains unclear. Addressing this question requires the precise isolation and characterization of all PrPSc subpopulations from the prion-infected brains. Until now, this has been challenging. We used asymmetric-flow field-flow fractionation (AF4) to isolate all PrPSc subpopulations from brains of hamsters infected with three prion strains: Hyper (HY) and 263K, which produce almost identical phenotypes, and Drowsy (DY), a strain with a distinct presentation. In-line dynamic and multi-angle light scattering (DLS/MALS) data provided accurate measurements of particle sizes and estimation of the shape and number of PrPSc particles. We found that each strain had a continuum of PrPSc assemblies, with strong correlation between PrPSc quaternary structure and phenotype. HY and 263K were enriched with large, protease-resistant PrPSc aggregates, whereas DY consisted primarily of smaller, more protease-sensitive aggregates. For all strains, a transition from protease-sensitive to protease-resistant PrPSc took place at a hydrodynamic radius (Rh) of 15 nm and was accompanied by a change in glycosylation and seeding activity. Our results show that the combination of AF4 with in-line MALS/DLS is a powerful tool for analyzing PrPSc subpopulations and demonstrate that while PrPSc quaternary structure is a major contributor to PrPSc structural heterogeneity, a fundamental change, likely in secondary/tertiary structure, prevents PrPSc particles from maintaining proteinase K resistance below an Rh of 15 nm, regardless of strain. This results in two biochemically distinctive subpopulations, the proportion, seeding activity, and stability of which correlate with prion strain phenotype.
Collapse
Affiliation(s)
- Leonardo M Cortez
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Satish K Nemani
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Camilo Duque Velásquez
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Aishwarya Sriraman
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - YongLiang Wang
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Debbie McKenzie
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Valerie L Sim
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Shoup D, Priola SA. The Size and Stability of Infectious Prion Aggregates Fluctuate Dynamically during Cellular Uptake and Disaggregation. Biochemistry 2021; 60:398-411. [PMID: 33497187 DOI: 10.1021/acs.biochem.0c00923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prion diseases arise when PrPSc, an aggregated, infectious, and insoluble conformer of the normally soluble mammalian prion protein, PrPC, catalyzes the conversion of PrPC into more PrPSc, which then accumulates in the brain leading to disease. PrPSc is the primary, if not sole, component of the infectious prion. Despite the stability and protease insensitivity of PrPSc aggregates, they can be degraded after cellular uptake. However, how cells disassemble and degrade PrPSc is poorly understood. In this work, we analyzed how the protease sensitivity and size distribution of PrPSc aggregates from two different mouse-adapted prion strains, 22L, that can persistently infect cells and 87V, that cannot, changed during cellular uptake. We show that within the first 4 h following uptake large PrPSc aggregates from both prion strains become less resistant to digestion by proteinase K (PK) through a mechanism that is dependent upon the acidic environment of endocytic vesicles. We further show that during disassembly, PrPSc aggregates from both strains become more resistant to PK digestion through the apparent removal of protease-sensitive PrPSc, with PrPSc from the 87V strain disassembled more readily than PrPSc from the 22L strain. Taken together, our data demonstrate that the sizes and stabilities of PrPSc from different prion strains change during cellular uptake and degradation, thereby potentially impacting the ability of prions to infect cells.
Collapse
Affiliation(s)
- Daniel Shoup
- Rocky Mountain Laboratories, Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, United States
| | - Suzette A Priola
- Rocky Mountain Laboratories, Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, United States
| |
Collapse
|
6
|
Fuse T, Nakagaki T, Homma T, Tange H, Yamaguchi N, Atarashi R, Ishibashi D, Nishida N. Dextran sulphate inhibits an association of prions with plasma membrane at the early phase of infection. Neurosci Res 2021; 171:34-40. [PMID: 33476681 DOI: 10.1016/j.neures.2021.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/29/2020] [Accepted: 01/14/2021] [Indexed: 10/22/2022]
Abstract
The defining characteristic of prion diseases is conversion of a cellular prion protein (PrPC) to an abnormal prion protein (PrPSc). The exogenous attachment of PrPSc to the surface of a target cell is critical for infection. However, the initial interaction of PrPSc with the cell surface is poorly characterized. In the current study, we specifically focused on the association of PrPSc with cells during the early phase of infection, using an acute infection model. First, we treated mouse neuroblastoma N2a-58 cells with prion strain 22 L-infected brain homogenates and revealed that PrPSc was associated with membrane fractions within three hours, a short exposure time. These results were also observed in PrPC-deficient hippocampus cell lines. We also demonstrate here that PrPSc from 22 L-infected brain homogenates was associated with lipid rafts during the early phase of infection. Furthermore, we revealed that DS500, a glycosaminoglycan mimetic, inhibited both the attachment of PrPSc to membrane fractions and subsequent prion transmission, suggesting that the early association of prions with cell surface is important for prion infection.
Collapse
Affiliation(s)
- Takayuki Fuse
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Takehiro Nakagaki
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Japan
| | - Hiroya Tange
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Naohiro Yamaguchi
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Ryuichiro Atarashi
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Japan
| | - Daisuke Ishibashi
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Japan.
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Japan
| |
Collapse
|
7
|
Abstract
Atypical/Nor98 scrapie (AS) is a prion disease of small ruminants. Currently there are no efficient measures to control this form of prion disease, and, importantly, the zoonotic potential and the risk that AS might represent for other farmed animal species remains largely unknown. In this study, we investigated the capacity of AS to propagate in bovine PrP transgenic mice. Unexpectedly, the transmission of AS isolates originating from 5 different European countries to bovine PrP mice resulted in the propagation of the classical BSE (c-BSE) agent. Detection of prion seeding activity in vitro by protein misfolding cyclic amplification (PMCA) demonstrated that low levels of the c-BSE agent were present in the original AS isolates. C-BSE prion seeding activity was also detected in brain tissue of ovine PrP mice inoculated with limiting dilutions (endpoint titration) of ovine AS isolates. These results are consistent with the emergence and replication of c-BSE prions during the in vivo propagation of AS isolates in the natural host. These data also indicate that c-BSE prions, a known zonotic agent in humans, can emerge as a dominant prion strain during passage of AS between different species. These findings provide an unprecedented insight into the evolution of mammalian prion strain properties triggered by intra- and interspecies passage. From a public health perspective, the presence of c-BSE in AS isolates suggest that cattle exposure to small ruminant tissues and products could lead to new occurrences of c-BSE.
Collapse
|
8
|
Philiastides A, Ribes JM, Yip DCM, Schmidt C, Benilova I, Klöhn PC. A New Cell Model for Investigating Prion Strain Selection and Adaptation. Viruses 2019; 11:v11100888. [PMID: 31546723 PMCID: PMC6832381 DOI: 10.3390/v11100888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/11/2019] [Indexed: 11/17/2022] Open
Abstract
Prion diseases are fatal neurodegenerative diseases that affect humans and animals. Prion strains, conformational variants of misfolded prion proteins, are associated with distinct clinical and pathological phenotypes. Host-strain interactions result in the selective damage of distinct brain areas and they are responsible for strain selection and/or adaptation, but the underlying molecular mechanisms are unknown. Prion strains can be distinguished by their cell tropism in vivo and in vitro, which suggests that susceptibility to distinct prion strains is determined by cellular factors. The neuroblastoma cell line PK1 is refractory to the prion strain Me7, but highly susceptible to RML. We challenged a large number of clonal PK1 lines with Me7 and successfully selected highly Me7-susceptible subclones (PME) to investigate whether the prion strain repertoire of PK1 can be expanded. Notably, the Me7-infected PME clones were more protease-resistant when compared to RML-infected PME clones, which suggested that cell-adapted Me7 and RML are distinct prion strains. Strikingly, Me7-refractory cells, including PK1 and astrocytes in cortico-hippocampal cultures, are highly susceptible to prions, being derived from homogenates of Me7-infected PME cells, suggesting that the passage of Me7 in PME cells leads to an extended host range. Thus, PME clones represent a compelling cell model for strain selection and adaptation.
Collapse
Affiliation(s)
- Alexandra Philiastides
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London W1W7FF, UK.
| | - Juan Manuel Ribes
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London W1W7FF, UK.
| | - Daniel Chun-Mun Yip
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London W1W7FF, UK.
| | - Christian Schmidt
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London W1W7FF, UK.
| | - Iryna Benilova
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London W1W7FF, UK.
| | - Peter-Christian Klöhn
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London W1W7FF, UK.
| |
Collapse
|
9
|
Houston F, Andréoletti O. Animal prion diseases: the risks to human health. Brain Pathol 2019; 29:248-262. [PMID: 30588682 DOI: 10.1111/bpa.12696] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/23/2018] [Indexed: 01/02/2023] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases of animals notably include scrapie in small ruminants, chronic wasting disease (CWD) in cervids and classical bovine spongiform encephalopathy (C-BSE). As the transmission barrier phenomenon naturally limits the propagation of prions from one species to another, and the lack of epidemiological evidence for an association with human prion diseases, the zoonotic potential of these diseases was for a long time considered negligible. However, in 1996, C-BSE was recognized as the cause of a new human prion disease, variant Creutzfeldt-Jakob disease (vCJD), which triggered an unprecedented public health crisis in Europe. Large-scale epidemio-surveillance programs for scrapie and C-BSE that were implemented in the EU after the BSE crisis revealed that the distribution and prevalence of prion diseases in the ruminant population had previously been underestimated. They also led to the recognition of new forms of TSEs (named atypical) in cattle and small ruminants and to the recent identification of CWD in Europe. At this stage, the characterization of the strain diversity and zoonotic abilities associated with animal prion diseases remains largely incomplete. However, transmission experiments in nonhuman primates and transgenic mice expressing human PrP clearly indicate that classical scrapie, and certain forms of atypical BSE (L-BSE) or CWD may have the potential to infect humans. The remaining uncertainties about the origins and relationships between animal prion diseases emphasize the importance of the measures implemented to limit human exposure to these potentially zoonotic agents, and of continued surveillance for both animal and human prion diseases.
Collapse
Affiliation(s)
- Fiona Houston
- Infection and Immunity Division, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Olivier Andréoletti
- UMR INRA ENVT 1225-IHAP, École Nationale Vétérinaire de Toulouse, Toulouse, France
| |
Collapse
|
10
|
Houston F, Andréoletti O. The zoonotic potential of animal prion diseases. HANDBOOK OF CLINICAL NEUROLOGY 2018; 153:447-462. [PMID: 29887151 DOI: 10.1016/b978-0-444-63945-5.00025-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bovine spongiform encephalopathy (BSE) is the only animal prion disease that has been demonstrated to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans. The link between BSE and vCJD was established by careful surveillance, epidemiologic investigations, and experimental studies using in vivo and in vitro models of cross-species transmission. Similar approaches have been used to assess the zoonotic potential of other animal prion diseases, including atypical forms identified through active surveillance. There is no epidemiologic evidence that classical or atypical scrapie, atypical forms of BSE, or chronic wasting disease (CWD) is associated with human prion disease, but the limitations of the epidemiologic data should be taken into account when interpreting these results. Transmission experiments in nonhuman primates and human PrP transgenic mice suggest that classic scrapie, L-type atypical BSE (L-BSE), and CWD may have zoonotic potential, which for L-BSE appears to be equal to or greater than that of classic BSE. The results of in vitro conversion assays to analyze the human transmission barrier correlate well with the in vivo data. However, it is still difficult to predict the likelihood that an animal prion disease will transmit to humans under conditions of field exposure from the results of in vivo or in vitro experiments. This emphasizes the importance of continuing systematic surveillance for both human and animal prion diseases in identifying zoonotic transmission of diseases other than classic BSE.
Collapse
Affiliation(s)
- Fiona Houston
- Neurobiology Division, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, United Kingdom.
| | | |
Collapse
|
11
|
Diack AB, Bartz JC. Experimental models of human prion diseases and prion strains. HANDBOOK OF CLINICAL NEUROLOGY 2018; 153:69-84. [PMID: 29887156 DOI: 10.1016/b978-0-444-63945-5.00004-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Prion strains occur in natural prion diseases, including prion diseases of humans. Prion strains can correspond with differences in the clinical signs and symptoms of disease and the distribution of prion infectivity in the host and are hypothesized to be encoded by strain-specific differences in the conformation of the disease-specific isoform of the host-encoded prion protein, PrPTSE. Prion strains can differ in biochemical properties of PrPTSE that can include the relative sensitivity to digestion with proteinase K and conformational stability in denaturants. These strain-specific biochemical properties of field isolates are maintained upon transmission to experimental animal models of prion disease. Experimental human models of prion disease include traditional and gene-targeted mice that express endogenous PrPC. Transgenic mice that express different polymorphs of human PrPC or mutations in human PrPC that correspond with familial forms of human prion disease have been generated that can recapitulate the clinical, pathologic, and biochemical features of disease. These models aid in understanding disease pathogenesis, evaluating zoonotic potential of animal prion diseases, and assessing human-to-human transmission of disease. Models of sporadic or familial forms of disease offer an opportunity to define mechanisms of disease, identify key neurodegenerative pathways, and assess therapeutic interventions.
Collapse
Affiliation(s)
- Abigail B Diack
- Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom.
| | - Jason C Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States
| |
Collapse
|
12
|
Pathology of Animal Transmissible Spongiform Encephalopathies (TSEs). Food Saf (Tokyo) 2017; 5:1-9. [PMID: 32231922 DOI: 10.14252/foodsafetyfscj.2016027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/24/2016] [Indexed: 11/21/2022] Open
Abstract
Pathology is the study of the structural and functional changes produced by diseases or - more specifically - the lesions they cause. To achieve this pathologists employ various approaches. These include description of lesions that are visible to the naked eye which are the subject of anatomic pathology and changes at the cellular level that are visible under the microscope, the subject of histopathology. Changes at the molecular level which are identified by probes that target specific molecules - mainly proteins that are detected using immunohistochemistry (IHC). As transmissible spongiform encephalopathies (TSEs) do not cause visible lesions anatomic pathology is not applicable to their study. For decades the application of histopathology to detect vacuoles or plaques was the only means of confirming TSE disease. The subsequent discovery of the cellular prion protein (PrPC) and its pathogenic isoform, PrPSc, which is a ubiquitous marker of TSEs, led to the production of anti-PrP antibodies, and enabled the development of PrPSc detection techniques such as immunohistochemistry, Histoblot and PET-blot that have evolved in parallel with similar biochemical methods such as Western blot and ELISA. These methods offer greater sensitivity than histopathology in TSE diagnosis and crucially they can be applied to analyze various phenotypic aspects of single TSE sources increasing the amount of data and offering higher discriminatory power. The above principles are applied to diagnose and define TSE phenotypes which form the basis of strain characterisation.
Collapse
|
13
|
Abstract
Prion diseases affect a wide range of mammal species and are caused by a misfolded self-propagating isoform (PrPSc) of the normal prion protein (PrPC). Distinct strains of prions exist and are operationally defined by differences in a heritable phenotype under controlled experimental transmission conditions. Prion strains can differ in incubation period, clinical signs of disease, tissue tropism, and host range. The mechanism by which a protein-only pathogen can encode strain diversity is only beginning to be understood. The prevailing hypothesis is that prion strain diversity is encoded by strain-specific conformations of PrPSc; however, strain-specific cellular cofactors have been identified in vitro that may also contribute to prion strain diversity. Although much progress has been made on understanding the etiological agent of prion disease, the relationship between the strain-specific properties of PrPSc and the resulting phenotype of disease in animals is poorly understood.
Collapse
Affiliation(s)
- Jason C Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska 68178
| |
Collapse
|
14
|
Miyazawa K, Okada H, Iwamaru Y, Masujin K, Yokoyama T. Susceptibility of GT1-7 cells to mouse-passaged field scrapie isolates with a long incubation. Prion 2015; 8:306-13. [PMID: 25482605 PMCID: PMC4601507 DOI: 10.4161/pri.32232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A typical feature of scrapie in sheep and goats is the accumulation of disease-associated prion protein. Scrapie consists of many strains with different biological properties. Nine natural sheep scrapie cases were transmitted to wild-type mice and mouse-passaged isolates were classified into 2 types based on incubation time: short and long. These 2 types displayed a distinct difference in their pathology. We attempted to transmit these mouse-passaged isolates to 2 murine cell lines (GT1–7 and L929) to compare their properties. All of the isolates were transmitted to L929 cells. However, only mouse-passaged field isolates with a long incubation time were transmitted to GT1–7 cells. This specific susceptibility of GT1–7 cells was also confirmed with a primary-passaged isolate that was not completely adapted to the new host species. Characterization of the mechanisms of the specific susceptibility of GT1–7 cells to isolates with a long incubation time may lead to a greater understanding of the differences among prion strains.
Collapse
Affiliation(s)
- Kohtaro Miyazawa
- a Influenza and Prion Disease Research Center ; National Institute of Animal Health; NARO ; Tsukuba , Ibaraki , Japan
| | | | | | | | | |
Collapse
|
15
|
Cassard H, Torres JM, Lacroux C, Douet JY, Benestad SL, Lantier F, Lugan S, Lantier I, Costes P, Aron N, Reine F, Herzog L, Espinosa JC, Beringue V, Andréoletti O. Evidence for zoonotic potential of ovine scrapie prions. Nat Commun 2014; 5:5821. [PMID: 25510416 DOI: 10.1038/ncomms6821] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/10/2014] [Indexed: 11/10/2022] Open
Abstract
Although Bovine Spongiform Encephalopathy (BSE) is the cause of variant Creutzfeldt Jakob disease (vCJD) in humans, the zoonotic potential of scrapie prions remains unknown. Mice genetically engineered to overexpress the human prion protein (tgHu) have emerged as highly relevant models for gauging the capacity of prions to transmit to humans. These models can propagate human prions without any apparent transmission barrier and have been used used to confirm the zoonotic ability of BSE. Here we show that a panel of sheep scrapie prions transmit to several tgHu mice models with an efficiency comparable to that of cattle BSE. The serial transmission of different scrapie isolates in these mice led to the propagation of prions that are phenotypically identical to those causing sporadic CJD (sCJD) in humans. These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.
Collapse
Affiliation(s)
- Hervé Cassard
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | | | - Caroline Lacroux
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | - Jean-Yves Douet
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | - Sylvie L Benestad
- Norwegian Veterinary Institute, Postboks 750 Sentrum, 0106 Oslo, Norway
| | | | - Séverine Lugan
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | | | - Pierrette Costes
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | - Naima Aron
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | - Fabienne Reine
- UR892 Virologie et Immunologie Moléculaires Centre de Recherche de Jouy-en-Josas, F-78352 Jouy-en-Josas, France
| | - Laetitia Herzog
- UR892 Virologie et Immunologie Moléculaires Centre de Recherche de Jouy-en-Josas, F-78352 Jouy-en-Josas, France
| | | | - Vincent Beringue
- UR892 Virologie et Immunologie Moléculaires Centre de Recherche de Jouy-en-Josas, F-78352 Jouy-en-Josas, France
| | - Olivier Andréoletti
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| |
Collapse
|
16
|
Choi YP, Head MW, Ironside JW, Priola SA. Uptake and degradation of protease-sensitive and -resistant forms of abnormal human prion protein aggregates by human astrocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3299-307. [PMID: 25280631 DOI: 10.1016/j.ajpath.2014.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/13/2014] [Accepted: 08/19/2014] [Indexed: 11/16/2022]
Abstract
Sporadic Creutzfeldt-Jakob disease is the most common of the human prion diseases, a group of rare, transmissible, and fatal neurologic diseases associated with the accumulation of an abnormal form (PrP(Sc)) of the host prion protein. In sporadic Creutzfeldt-Jakob disease, disease-associated PrP(Sc) is present not only as an aggregated, protease-resistant form but also as an aggregated protease-sensitive form (sPrP(Sc)). Although evidence suggests that sPrP(Sc) may play a role in prion pathogenesis, little is known about how it interacts with cells during prion infection. Here, we show that protease-sensitive abnormal PrP aggregates derived from patients with sporadic Creutzfeldt-Jakob disease are taken up and degraded by immortalized human astrocytes similarly to abnormal PrP aggregates that are resistant to proteases. Our data suggest that relative proteinase K resistance does not significantly influence the astrocyte's ability to degrade PrP(Sc). Furthermore, the cell does not appear to distinguish between sPrP(Sc) and protease-resistant PrP(Sc), suggesting that sPrP(Sc) could contribute to prion infection.
Collapse
Affiliation(s)
- Young Pyo Choi
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Mark W Head
- National Creutzfeldt Jakob Disease Research & Surveillance Unit, School of Clinical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - James W Ironside
- National Creutzfeldt Jakob Disease Research & Surveillance Unit, School of Clinical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Suzette A Priola
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana.
| |
Collapse
|
17
|
Affiliation(s)
- V. Beringue
- UR892 Virologie et Immunologie Moléculaires Centre de Recherche de Jouy-en-Josas F-78352 Jouy-en-Josas, France
| | - O. Andreoletti
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles 31076 Toulouse, France
| |
Collapse
|
18
|
Saverioni D, Notari S, Capellari S, Poggiolini I, Giese A, Kretzschmar HA, Parchi P. Analyses of protease resistance and aggregation state of abnormal prion protein across the spectrum of human prions. J Biol Chem 2013; 288:27972-85. [PMID: 23897825 DOI: 10.1074/jbc.m113.477547] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prion diseases are characterized by tissue accumulation of a misfolded, β-sheet-enriched isoform (scrapie prion protein (PrP(Sc))) of the cellular prion protein (PrP(C)). At variance with PrP(C), PrP(Sc) shows a partial resistance to protease digestion and forms highly aggregated and detergent-insoluble polymers, two properties that have been consistently used to distinguish the two proteins. In recent years, however, the idea that PrP(Sc) itself comprises heterogeneous species has grown. Most importantly, a putative proteinase K (PK)-sensitive form of PrP(Sc) (sPrP(Sc)) is being increasingly investigated for its possible role in prion infectivity, neurotoxicity, and strain variability. The study of sPrP(Sc), however, remains technically challenging because of the need of separating it from PrP(C) without using proteases. In this study, we have systematically analyzed both PK resistance and the aggregation state of purified PrP(Sc) across the whole spectrum of the currently characterized human prion strains. The results show that PrP(Sc) isolates manifest significant strain-specific differences in their PK digestion profile that are only partially explained by differences in the size of aggregates, suggesting that other factors, likely acting on PrP(Sc) aggregate stability, determine its resistance to proteolysis. Fully protease-sensitive low molecular weight aggregates were detected in all isolates but in a limited proportion of the overall PrP(Sc) (i.e. <10%), arguing against a significant role of slowly sedimenting PK-sensitive PrP(Sc) in the biogenesis of prion strains. Finally, we highlight the limitations of current operational definitions of sPrP(Sc) and of the quantitative analytical measurements that are not based on the isolation of a fully PK-sensitive PrP(Sc) form.
Collapse
Affiliation(s)
- Daniela Saverioni
- From the Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Asuni AA, Pankiewicz JE, Sadowski MJ. Differential molecular chaperone response associated with various mouse adapted scrapie strains. Neurosci Lett 2013; 538:26-31. [PMID: 23370284 DOI: 10.1016/j.neulet.2013.01.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/19/2012] [Accepted: 01/15/2013] [Indexed: 11/27/2022]
Abstract
Prionoses are a group of neurodegenerative diseases characterized by misfolding of cellular prion protein (PrP(C)) and accumulation of its diseases specific conformer PrP(Sc) in the brain and neuropathologically, they can be associated with presence or absence of PrP amyloid deposits. Functional molecular chaperones (MCs) that constitute the unfolded protein response include heat shock proteins and glucose-regulated protein families. They protect intracellular milieu against various stress conditions including accumulation of misfolded proteins and oxidative stress, typical of neurodegenerative diseases. Little is known about the role of MCs in pathogenesis of prionoses in mammalian prion model systems. In this study we characterized MCs response pattern in mice infected with various mouse adapted scrapie strains. Rather than uniform upregulation of MCs, we encountered two distinctly different patterns of MCs response distinguishing ME7 and 87V strains from 22L and 139A strains. ME7 and 87V strains are known for the induction of amyloid deposition in infected animals, while in mice infected with 22L and 139A strains amyloid deposits are absent. MCs response pattern similar to that associated with amyloidogenic ME7 and 87V strains was also observed in APPPS1-21 Alzheimer's transgenic mice, which represent an aggressive model of cerebral amyloidosis caused by β-amyloid deposition. Our results highlight the probability that different mechanisms of MCs regulation exist driven by amyloidogenic and non-amyloidogenic nature of prion strains.
Collapse
Affiliation(s)
- Ayodeji A Asuni
- Department of Neurology, New York University School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
20
|
Beck KE, Vickery CM, Lockey R, Holder T, Thorne L, Terry LA, Denyer M, Webb P, Simmons MM, Spiropoulos J. The interpretation of disease phenotypes to identify TSE strains following murine bioassay: characterisation of classical scrapie. Vet Res 2012; 43:77. [PMID: 23116457 PMCID: PMC3503603 DOI: 10.1186/1297-9716-43-77] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 10/19/2012] [Indexed: 11/10/2022] Open
Abstract
Mouse bioassay can be readily employed for strain typing of naturally occurring transmissible spongiform encephalopathy cases. Classical scrapie strains have been characterised historically based on the established methodology of assessing incubation period of disease and the distribution of disease-specific vacuolation across the brain following strain stabilisation in a given mouse line. More recent research has shown that additional methods could be used to characterise strains and thereby expand the definition of strain “phenotype”. Here we present the phenotypic characteristics of classical scrapie strains isolated from 24 UK ovine field cases through the wild-type mouse bioassay. PrPSc immunohistochemistry (IHC), paraffin embedded tissue blots (PET-blot) and Western blotting approaches were used to determine the neuroanatomical distribution and molecular profile of PrPSc associated with each strain, in conjunction with traditional methodologies. Results revealed three strains isolated through each mouse line, including a previously unidentified strain. Moreover IHC and PET-blot methodologies were effective in characterising the strain-associated types and neuroanatomical locations of PrPSc. The use of Western blotting as a parameter to define classical scrapie strains was limited. These data provide a comprehensive description of classical scrapie strain phenotypes on isolation through the mouse bioassay that can provide a reference for further scrapie strain identification.
Collapse
Affiliation(s)
- Katy E Beck
- Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Thackray A, Lockey R, Beck K, Spiropoulos J, Bujdoso R. Evidence for Co-infection of Ovine Prion Strains in Classical Scrapie Isolates. J Comp Pathol 2012; 147:316-29. [DOI: 10.1016/j.jcpa.2012.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/03/2012] [Accepted: 01/11/2012] [Indexed: 10/28/2022]
|
22
|
Biochemical properties of highly neuroinvasive prion strains. PLoS Pathog 2012; 8:e1002522. [PMID: 22319450 PMCID: PMC3271082 DOI: 10.1371/journal.ppat.1002522] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 12/21/2011] [Indexed: 11/24/2022] Open
Abstract
Infectious prions propagate from peripheral entry sites into the central nervous system (CNS), where they cause progressive neurodegeneration that ultimately leads to death. Yet the pathogenesis of prion disease can vary dramatically depending on the strain, or conformational variant of the aberrantly folded and aggregated protein, PrPSc. Although most prion strains invade the CNS, some prion strains cannot gain entry and do not cause clinical signs of disease. The conformational basis for this remarkable variation in the pathogenesis among strains is unclear. Using mouse-adapted prion strains, here we show that highly neuroinvasive prion strains primarily form diffuse aggregates in brain and are noncongophilic, conformationally unstable in denaturing conditions, and lead to rapidly lethal disease. These neuroinvasive strains efficiently generate PrPSc over short incubation periods. In contrast, the weakly neuroinvasive prion strains form large fibrillary plaques and are stable, congophilic, and inefficiently generate PrPSc over long incubation periods. Overall, these results indicate that the most neuroinvasive prion strains are also the least stable, and support the concept that the efficient replication and unstable nature of the most rapidly converting prions may be a feature linked to their efficient spread into the CNS. Prion diseases are fatal neurodegenerative disorders that are also infectious. Prions are composed of a misfolded, aggregated form of a normal cellular protein that is highly expressed in neurons. Prion- infected individuals show variability in the clinical signs and brain regions that selectively accumulate prions, even within the same species expressing the same prion protein sequence. The basis of these divergent disease phenotypes is unclear, but is thought to be due to different conformations of the misfolded prion protein, known as strains. Here we characterized the neuropathology and biochemical properties of prion strains that efficiently or poorly invade the CNS from their peripheral entry site. We show that prion strains that efficiently invade the CNS also cause a rapidly terminal disease after an intracerebral exposure. These rapidly lethal strains were unstable when exposed to denaturants or high temperatures, and efficiently accumulated misfolded prion protein over a short incubation period in vivo. Our findings indicate that the most invasive, rapidly spreading strains are also the least conformationally stable.
Collapse
|
23
|
Newsom DM, Liggitt HD, O’Rourke K, Zhuang D, Schneider DA, Harrington RD. Cytokine antibody array analysis in brain and periphery of scrapie-infected Tg338 mice. Comp Immunol Microbiol Infect Dis 2011; 34:387-97. [DOI: 10.1016/j.cimid.2011.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/21/2011] [Accepted: 06/28/2011] [Indexed: 11/25/2022]
|
24
|
Parchi P, Strammiello R, Giese A, Kretzschmar H. Phenotypic variability of sporadic human prion disease and its molecular basis: past, present, and future. Acta Neuropathol 2011; 121:91-112. [PMID: 21107851 DOI: 10.1007/s00401-010-0779-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 11/05/2010] [Accepted: 11/06/2010] [Indexed: 11/28/2022]
Abstract
Human prion diseases are rare neurodegenerative disorders related to prion protein misfolding that can occur as sporadic, familial or acquired forms. In comparison to other more common neurodegenerative disorders, prion diseases show a wider range of phenotypic variation and largely transmit to experimental animals, a feature that led to the isolation and characterization of different strains of the transmissible agent or prion with distinct biological properties. Biochemically distinct PrP(Sc) types have been demonstrated which differ in their size after proteinase cleavage, glycosylation pattern, and possibly other features related to their conformation. These PrP(Sc) types, possibly enciphering the prion strains, together with the naturally occurring polymorphism at codon 129 in the prion protein gene have a major influence on the disease phenotype. In the sporadic form, the most common but perhaps least understood form of human prion disease, there are at least six major combinations of codon 129 genotype and prion protein isotype, which are significantly related to distinctive clinical-pathological subgroups of the disease. In this review, we provide an update on the current knowledge and classification of the disease subtypes of the sporadic human prion diseases as defined by molecular features and pathological changes. Furthermore, we discuss the molecular basis of phenotypic variability taking into account the results of recent transmission studies that shed light on the extent of prion strain variation in humans.
Collapse
Affiliation(s)
- Piero Parchi
- Dipartimento di Scienze Neurologiche, Università di Bologna, Bologna, Italy
| | | | | | | |
Collapse
|
25
|
Distinct stability states of disease-associated human prion protein identified by conformation-dependent immunoassay. J Virol 2010; 84:12030-8. [PMID: 20844046 DOI: 10.1128/jvi.01057-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phenotypic and strain-related properties of human prion diseases are, according to the prion hypothesis, proposed to reside in the physicochemical properties of the conformationally altered, disease-associated isoform of the prion protein (PrP(Sc)), which accumulates in the brains of patients suffering from Creutzfeldt-Jakob disease and related conditions, such as Gerstmann-Straussler-Scheinker disease. Molecular strain typing of human prion diseases has focused extensively on differences in the fragment size and glycosylation site occupancy of the protease-resistant prion protein (PrP(res)) in conjunction with the presence of mutations and polymorphisms in the prion protein gene (PRNP). Here we report the results of employing an alternative strategy that specifically addresses the conformational stability of PrP(Sc) and that has been used previously to characterize animal prion strains transmitted to rodents. The results show that there are at least two distinct conformation stability states in human prion diseases, neither of which appears to correlate fully with the PrP(res) type, as judged by fragment size or glycosylation, the PRNP codon 129 status, or the presence or absence of mutations in PRNP. These results suggest that conformational stability represents a further dimension to a complete description of potentially phenotype-related properties of PrP(Sc) in human prion diseases.
Collapse
|
26
|
Tayebi M, Taylor WA, Jones DR, Bate C, David M. PrP-specific camel antibodies with the ability to immunodetect intracellular prion protein. J Gen Virol 2010; 91:2121-2131. [DOI: 10.1099/vir.0.018754-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Although there is currently no effective treatment for prion diseases, significant advances have been made in suppressing its progress, using antibodies that block the conversion of PrPC into PrPSc. In order to be effective in treating individuals that have prion diseases, antibodies must be capable of arresting disease in its late stages. This requires the development of antibodies with higher affinity for PrPSc and systems for effective translocation of antibodies across the blood–brain barrier in order to achieve high concentrations of inhibitor at the site of protein replication. An additional advantage is the ability of these antibodies to access the cytosol of affected cells. To this end, we have generated PrP-specific antibodies (known as PrioV) by immunization of camels with murine scrapie material adsorbed to immunomagnetic beads. The PrioV antibodies display a range of specificities with some recognizing the PrP27–30 proteinase K-resistant fragment, others specific for PrPC and a number with dual binding specificity. Independent of their PrP conformation specificity, one of the PrioV antibodies (PrioV3) was shown to bind PrPC in the cytosol of neuroblastoma cells. In marked contrast, conventional anti-PrP antibodies produced in mouse against similar target antigen were unable to cross the neuronal plasma membrane and instead formed a ring around the cells. The PrioV anti-PrP antibodies could prove to be a valuable tool for the neutralization/clearance of PrPSc in intracellular compartments of affected neurons and could potentially have wider applicability for the treatment of so-called protein-misfolding diseases.
Collapse
Affiliation(s)
- Mourad Tayebi
- Department of Pathology & Infectious Diseases, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - William Alexander Taylor
- Department of Pathology & Infectious Diseases, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Daryl Rhys Jones
- Department of Pathology & Infectious Diseases, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Clive Bate
- Department of Pathology & Infectious Diseases, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Monique David
- Multiple Sclerosis Research Center of New York, Inc., 521 West 57th Street, 4th Floor, New York, NY 10019, USA
| |
Collapse
|
27
|
Calvez V, Lenuzza N, Doumic M, Deslys JP, Mouthon F, Perthame B. Prion dynamics with size dependency-strain phenomena. JOURNAL OF BIOLOGICAL DYNAMICS 2010; 4:28-42. [PMID: 22881069 DOI: 10.1080/17513750902935208] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Models for the polymerization process involved in prion self-replication are well-established and studied [H. Engler, J. Pruss, and G.F. Webb, Analysis of a model for the dynamics of prions II, J. Math. Anal. Appl. 324 (2006), pp. 98-117; M.L. Greer, L. Pujo-Menjouet, and G.F. Webb, A mathematical analysis of the dynamics of prion proliferation, J. Theoret. Biol. 242 (2006), pp. 598-606; J. Pruss, L. Pujo-Menjouet, G.F. Webb, and R. Zacher, Analysis of a model for the dynamics of prions, Discrete Cont. Dyn. Sys. Ser. B 6(1) (2006), pp. 215-225] in the case where the dynamics coefficients do not depend on the size of polymers. However, several experimental studies indicate that the structure and size of the prion aggregates are determinant for their pathological effect. This motivated the analysis in Calvez et al. [Size distribution dependence of prion aggregates infectivity, Math Biosci. 217 (2009), pp. 88-99] where the authors take into account size-dependent replicative properties of prion aggregates. We first improve a result concerning the dynamics of prion aggregates when a pathological state exists (high production of the normal protein). Then we study the strain phenomena and more specifically we wonder what specific replicative properties are determinant in strain propagation. We propose to interpret it also as a dynamical property of size repartitions.
Collapse
Affiliation(s)
- V Calvez
- UMPA, ENS-Lyon, 46, allée d'Italie, 69000, Lyon, France
| | | | | | | | | | | |
Collapse
|
28
|
Jiayu W, Xiong W, Jiping L, Wensen L, Ming X, Linna L, Jing X, Haiying W, Hongwei G. A rapid method for detection of PrP by surface plasmon resonance (SPR). Arch Virol 2009; 154:1901-8. [DOI: 10.1007/s00705-009-0532-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 09/29/2009] [Indexed: 12/21/2022]
|
29
|
Surround optical fiber immunoassay (SOFIA): an ultra-sensitive assay for prion protein detection. J Virol Methods 2009; 159:15-22. [PMID: 19442839 DOI: 10.1016/j.jviromet.2009.02.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Accepted: 02/12/2009] [Indexed: 11/22/2022]
Abstract
We describe the development of a new technology (SOFIA) and demonstrate its utility by establishing a sensitive and specific assay for PrP(Sc). SOFIA is a surround optical fiber immunoassay which is comprised of a set of specific monoclonal antibodies and comprehensive capture of high energy fluorescence emission. In its current format, this system is capable of detecting less than 10 attogram (ag) of hamster, sheep and deer recombinant PrP. Approximately 10 ag of PrP(Sc) from 263 K-infected hamster brains can be detected with similar lower limits of PrP(Sc) detection from the brains of scrapie-infected sheep and deer infected with chronic wasting disease. These detection limits allow protease treated and untreated material to be diluted beyond the point where PrP(C), non-specific proteins or other extraneous material may interfere with PrP(Sc) signal detection and/or specificity. This not only eliminates the issue of specificity of PrP(Sc) detection but also increases sensitivity since the possibility of partial PrP(Sc) proteolysis is no longer a concern. SOFIA will likely lead to early antemortem detection of transmissible encephalopathies and is also amenable for use with additional target amplification protocols. SOFIA represents a sensitive means for detecting specific proteins involved in disease pathogenesis and/or diagnosis that extends beyond the scope of the transmissible spongiform encephalopathies.
Collapse
|
30
|
The region approximately between amino acids 81 and 137 of proteinase K-resistant PrPSc is critical for the infectivity of the Chandler prion strain. J Virol 2009; 83:3852-60. [PMID: 19176630 DOI: 10.1128/jvi.01740-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the major component of the prion is believed to be the oligomer of PrP(Sc), little information is available concerning regions on the PrP(Sc) molecule that affect prion infectivity. During the analysis of PrP(Sc) molecules from various prion strains, we found that PrP(Sc) of the Chandler strain showed a unique property in the conformational-stability assay, and this property appeared to be useful for studying the relationship between regions of the PrP(Sc) molecule and prion infectivity. Thus, we analyzed PrP(Sc) of the Chandler strain in detail and analyzed the infectivities of the N-terminally denatured and truncated forms of proteinase K-resistant PrP. The N-terminal region of PrP(Sc) of the Chandler strain showed region-dependent resistance to guanidine hydrochloride (GdnHCl) treatment. The region approximately between amino acids (aa) 81 and 137 began to be denatured by treatment with 1.5 M GdnHCl. Within this stretch, the region comprising approximately aa 81 to 90 was denatured almost completely by 2 M GdnHCl. Furthermore, the region approximately between aa 90 and 137 was denatured completely by 3 M GdnHCl. However, the C-terminal region thereafter was extremely resistant to the GdnHCl treatment. This property was not observed in PrP(Sc) molecules of other prion strains. Denaturation of the region between aa 81 and 137 by 3 M GdnHCl significantly prolonged the incubation periods in mice compared to that for the untreated control. More strikingly, the denaturation and removal of this region nearly abolished the infectivity. This finding suggests that the conformation of the region between aa 81 and 137 of the Chandler strain PrP(Sc) molecule is directly associated with prion infectivity.
Collapse
|
31
|
Calvez V, Lenuzza N, Oelz D, Deslys JP, Laurent P, Mouthon F, Perthame B. Size distribution dependence of prion aggregates infectivity. Math Biosci 2009; 217:88-99. [DOI: 10.1016/j.mbs.2008.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 10/08/2008] [Accepted: 10/10/2008] [Indexed: 11/27/2022]
|
32
|
Detection and characterization of proteinase K-sensitive disease-related prion protein with thermolysin. Biochem J 2008; 416:297-305. [PMID: 18684106 PMCID: PMC2584334 DOI: 10.1042/bj20081235] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Disease-related PrPSc [pathogenic PrP (prion protein)] is classically distinguished from its normal cellular precursor, PrPC(cellular PrP) by its detergent insolubility and partial resistance to proteolysis. Although molecular diagnosis of prion disease has historically relied upon detection of protease-resistant fragments of PrPSc using PK (proteinase K), it is now apparent that a substantial fraction of disease-related PrP is destroyed by this protease. Recently, thermolysin has been identified as a complementary tool to PK, permitting isolation of PrPSc in its full-length form. In the present study, we show that thermolysin can degrade PrPC while preserving both PK-sensitive and PK-resistant isoforms of disease-related PrP in both rodent and human prion strains. For mouse RML (Rocky Mountain Laboratory) prions, the majority of PK-sensitive disease-related PrP isoforms do not appear to contribute significantly to infectivity. In vCJD (variant Creutzfeldt–Jakob disease), the human counterpart of BSE (bovine spongiform encephalopathy), up to 90% of total PrP present in the brain resists degradation with thermolysin, whereas only ∼15% of this material resists digestion by PK. Detection of PK-sensitive isoforms of disease-related PrP using thermolysin should be useful for improving diagnostic sensitivity in human prion diseases.
Collapse
|
33
|
Giles K, Glidden DV, Beckwith R, Seoanes R, Peretz D, DeArmond SJ, Prusiner SB. Resistance of bovine spongiform encephalopathy (BSE) prions to inactivation. PLoS Pathog 2008; 4:e1000206. [PMID: 19008948 PMCID: PMC2576443 DOI: 10.1371/journal.ppat.1000206] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 10/15/2008] [Indexed: 11/18/2022] Open
Abstract
Distinct prion strains often exhibit different incubation periods and patterns of neuropathological lesions. Strain characteristics are generally retained upon intraspecies transmission, but may change on transmission to another species. We investigated the inactivation of two related prions strains: BSE prions from cattle and mouse-passaged BSE prions, termed 301V. Inactivation was manipulated by exposure to sodium dodecyl sulfate (SDS), variations in pH, and different temperatures. Infectivity was measured using transgenic mouse lines that are highly susceptible to either BSE or 301V prions. Bioassays demonstrated that BSE prions are up to 1,000-fold more resistant to inactivation than 301V prions while Western immunoblotting showed that short acidic SDS treatments reduced protease-resistant PrP(Sc) from BSE prions and 301V prions at similar rates. Our findings argue that despite being derived from BSE prions, mouse 301V prions are not necessarily a reliable model for cattle BSE prions. Extending these comparisons to human sporadic Creutzfeldt-Jakob disease and hamster Sc237 prions, we found that BSE prions were 10- and 10(6)-fold more resistant to inactivation, respectively. Our studies contend that any prion inactivation procedures must be validated by bioassay against the prion strain for which they are intended to be used.
Collapse
Affiliation(s)
- Kurt Giles
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California, United States of America
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - David V. Glidden
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Robyn Beckwith
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California, United States of America
| | - Rose Seoanes
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California, United States of America
| | - David Peretz
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California, United States of America
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Stephen J. DeArmond
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Stanley B. Prusiner
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California, United States of America
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
Molecular and transmission characteristics of primary-passaged ovine scrapie isolates in conventional and ovine PrP transgenic mice. J Virol 2008; 82:11197-207. [PMID: 18768980 DOI: 10.1128/jvi.01454-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A more complete assessment of ovine prion strain diversity will be achieved by complementing biological strain typing in conventional and ovine PrP transgenic mice with a biochemical analysis of the resultant PrPSc. This will provide a correlation between ovine prion strain phenotype and the molecular nature of different PrP conformers associated with particular prion strains. Here, we have compared the molecular and transmission characteristics of ovine ARQ/ARQ and VRQ/VRQ scrapie isolates following primary passage in tg338 (VRQ) and tg59 (ARQ) ovine PrP transgenic mice and the conventional mouse lines C57BL/6 (Prnp(a)), RIII (Prnp(a)), and VM (Prnp(b)). Our data show that these different genotypes of scrapie isolates display similar incubation periods of >350 days in conventional and tg59 mice. Facilitated transmission of sheep scrapie isolates occurred in tg338 mice, with incubation times reduced to 64 days for VRQ/VRQ inocula and to </=210 days for ARQ/ARQ samples. Distinct genotype-specific lesion profiles were seen in the brains of conventional and tg59 mice with prion disease, which was accompanied by the accumulation of more conformationally stable PrPSc, following inoculation with ARQ/ARQ compared to VRQ/VRQ scrapie isolates. In contrast, the lesion profiles, quantities, and stability of PrPSc induced by the same inocula in tg338 mice were more similar than in the other mouse lines. Our data show that primary transmission of different genotypes of ovine prions is associated with the formation of different conformers of PrPSc with distinct molecular properties and provide the basis of a molecular approach to identify the true diversity of ovine prion strains.
Collapse
|
35
|
Investigation of mcp1 as a quantitative trait gene for prion disease incubation time in mouse. Genetics 2008; 180:559-66. [PMID: 18716327 DOI: 10.1534/genetics.108.090894] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genetic basis of prion disease incubation time is principally determined by polymorphisms in the prion protein gene, Prnp. However, it is now known that other genetic factors are important. Several quantitative trait loci (QTL) have been identified across the genome including a broad region of linkage on Mmu11. Monocyte chemoattractant protein 1 (MCP-1) maps to this region and has been associated with microglial activation and reduced survival in the ME7 mouse scrapie model of prion disease. We have identified 10 polymorphisms, 3 of which are nonsynonomous, in Mcp1 between "long" (CAST) and "short" (SJL or NZW) incubation-time mouse strains. Crosses between these strains and Mcp1(-/-) mice inoculated with the Chandler/RML mouse scrapie prion strain formed the basis of a quantitative complementation test. In these models loss of Mcp1 did not show an increase in incubation time suggesting that the effects of Mcp1 may be specific to the ME7 prion strain and that Mcp1 does not contribute to the QTL described on Mmu11.
Collapse
|