1
|
Li K, Liu R, Liu Y, Gao L, Liu C, Zhang Y, Qi X, Cui H, Wang S, Chen Y, Duan Y, Gao Y, Wang X. Marek's disease virus protein kinase US3 inhibits DNA-sensing antiviral innate immunity via abrogating activation of NF-κB. Microbiol Spectr 2025; 13:e0234724. [PMID: 40042340 PMCID: PMC11960123 DOI: 10.1128/spectrum.02347-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/21/2025] [Indexed: 04/03/2025] Open
Abstract
Marek's disease virus (MDV) is an avian alphaherpesvirus associated with Marek's disease, an immunosuppressive and lymphoproliferative disease in chickens. The DNA sensing pathway mediates innate immune defense against infection by many DNA-containing pathogens, while viruses have evolved multiple strategies to evade the host immune response to survive in host cells. This study found that ectopic expression of MDV protein kinase US3 inhibited beta interferon (IFN-β) and interleukin-6 (IL-6) production induced by interferon-stimulatory and viral DNA. US3 was further shown to abolish the nuclear factor κB (NF-κB) activation. The US3 kinase activity was indispensable for its inhibitory function, as the kinase-dead US3 mutant (US3K220A) did not inhibit NF-κB activation. Further studies showed that US3 interacted with the Rel homology domains of the NF-κB subunits p65 and p50, which phosphorylated these transcription factors and blocked their nuclear translocation. Finally, US3 deficiency promoted IFN-β and IL-6 production, resulting in reduced viral replication and lower MDV-specific lesion incidence during MDV infection in chickens. Altogether, these findings reveal a novel mechanism for MDV to evade host antiviral immunity.IMPORTANCEMarek's disease virus (MDV) is an oncogenic avian alphaherpesvirus that causes an economically important disease affecting the health and welfare of poultry worldwide. Whereas human herpesviruses have been shown to evolve various strategies to inhibit the DNA sensing signaling for the evasion of the host's innate immunity, little is known regarding the mechanism for MDV to regulate this pathway. In this study, MDV US3 protein kinase was demonstrated to inhibit the activation of NF-κB in the DNA sensing pathway via binding to the Rel homology domains of the NF-κB subunits p65 and p50, which hyperphosphorylated these transcription factors and abolished their nuclear translocation. This is an important finding toward a better understanding of the functions of avian alphaherpesviruses encoded US3 protein kinase.
Collapse
Affiliation(s)
- Kai Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Rui Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongzhen Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changjun Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyu Cui
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Suyan Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuntong Chen
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yulu Duan
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaomei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Samer C, McWilliam HEG, McSharry BP, Burchfield JG, Stanton RJ, Rossjohn J, Villadangos JA, Abendroth A, Slobedman B. Impaired endocytosis and accumulation in early endosomal compartments defines herpes simplex virus-mediated disruption of the nonclassical MHC class I-related molecule MR1. J Biol Chem 2024; 300:107748. [PMID: 39260697 PMCID: PMC11736056 DOI: 10.1016/j.jbc.2024.107748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
Presentation of metabolites by the major histocompatibility complex class I-related protein 1 (MR1) molecule to mucosal-associated invariant T cells is impaired during herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) infections. This is surprising given these viruses do not directly synthesise MR1 ligands. We have previously identified several HSV proteins responsible for rapidly downregulating the intracellular pool of immature MR1, effectively inhibiting new surface antigen presentation, while preexisting ligand-bound mature MR1 is unexpectedly upregulated by HSV-1. Using flow cytometry, immunoblotting, and high-throughput fluorescence microscopy, we demonstrate that the endocytosis of surface MR1 is impaired during HSV infection and that internalized molecules accumulate in EEA1-labeled early endosomes, avoiding degradation. We establish that the short MR1 cytoplasmic tail is not required for HSV-1-mediated downregulation of immature molecules; however it may play a role in the retention of mature molecules on the surface and in early endosomes. We also determine that the HSV-1 US3 protein, the shorter US3.5 kinase and the full-length HSV-2 homolog, all predominantly target mature surface rather than total MR1 levels. We propose that the downregulation of intracellular and cell surface MR1 molecules by US3 and other HSV proteins is an immune-evasive countermeasure to minimize the effect of impaired MR1 endocytosis, which might otherwise render infected cells susceptible to MR1-mediated killing by mucosal-associated invariant T cells.
Collapse
Affiliation(s)
- Carolyn Samer
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Hamish E G McWilliam
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Brian P McSharry
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia; School of Dentistry and Medical Sciences, Faculty of Science and Health, and Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - James G Burchfield
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia; School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Richard J Stanton
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Jamie Rossjohn
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK; Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Allison Abendroth
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Barry Slobedman
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia.
| |
Collapse
|
3
|
Bahnamiri MM, Roller RJ. DISTINCT ROLES OF VIRAL US3 AND UL13 PROTEIN KINASES IN HERPES VIRUS SIMPLEX TYPE 1 (HSV-1) NUCLEAR EGRESS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533584. [PMID: 36993506 PMCID: PMC10055267 DOI: 10.1101/2023.03.20.533584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Herpesviruses transport nucleocapsids from the nucleus to the cytoplasm by capsid envelopment into the inner nuclear membrane and de-envelopment from the outer nuclear membrane, a process that is coordinated by nuclear egress complex (NEC) proteins, pUL34, and pUL31. Both pUL31 and pUL34 are phosphorylated by the virus-encoded protein kinase, pUS3, and phosphorylation of pUL31 regulates NEC localization at the nuclear rim. pUS3 also controls apoptosis and many other viral and cellular functions in addition to nuclear egress, and the regulation of these various activities in infected cells is not well understood. It has been previously proposed that pUS3 activity is selectively regulated by another viral protein kinase, pUL13 such that its activity in nuclear egress is pUL13-dependent, but apoptosis regulation is not, suggesting that pUL13 might regulate pUS3 activity on specific substrates. We compared HSV-1 UL13 kinase-dead and US3 kinase-dead mutant infections and found that pUL13 kinase activity does not regulate the substrate choice of pUS3 in any defined classes of pUS3 substrates and that pUL13 kinase activity is not important for promoting de-envelopment during nuclear egress. We also find that mutation of all pUL13 phosphorylation motifs in pUS3, individually or in aggregate, does not affect the localization of the NEC, suggesting that pUL13 regulates NEC localization independent of pUS3. Finally, we show that pUL13 co-localizes with pUL31 inside the nucleus in large aggregates, further suggesting a direct effect of pUL13 on the NEC and suggesting a novel mechanism for both UL31 and UL13 in the DNA damage response pathway. IMPORTANCE Herpes simplex virus infections are regulated by two virus-encoded protein kinases, pUS3 and pUL13, which each regulate multiple processes in the infected cell, including capsid transport from the nucleus to the cytoplasm. Regulation of the activity of these kinases on their various substrates is poorly understood, but importantly, kinases are attractive targets for the generation of inhibitors. It has been previously suggested that pUS3 activity on specific substrates is differentially regulated by pUL13 and, specifically, that pUL13 regulates capsid egress from the nucleus by phosphorylation of pUS3. In this study, we determined that pUL13 and pUS3 have different effects on nuclear egress and that pUL13 may interact directly with the nuclear egress apparatus with implications both for virus assembly and egress and, possibly, the host cell DNA- damage response.
Collapse
|
4
|
Deng L, Cheng A, Wang M, Zhang W, Tian B, Wu Y, Yang Q, Ou X, Mao S, Sun D, Zhang S, Huang J, Gao Q, Zhao X, Jia R, Chen S, Liu M, Zhu D. Effects of US3 protein kinase activity on localization of UL31/UL34 protein and nucleocapsids egress of duck plague virus. Poult Sci 2023; 102:102418. [PMID: 36623334 PMCID: PMC9841281 DOI: 10.1016/j.psj.2022.102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Duck plague virus (DPV) is a pathogen causing duck plague and has caused huge economic losses in poultry industry. In our previous report, US3 gene deletion from DPV genome seriously impaired virus replication. In this study, we constructed a US3 kinase-inactive mutant (US3K213A) to further explore the function of US3 protein (pUS3) in DPV. Our results showed that the loss of pUS3 kinase activity caused lower viral titers, smaller plaque sizes and a blockage of capsids nuclear egress including primary enveloped virion (PEV) accumulation compared to the parental virus infection. It indicates that the effects of DPV pUS3 on viral propagation depended on its kinase activity. In addition, we conducted electron microscopy analysis to show the outer nuclear membrane (ONM) evaginations and the nuclear envelope (NE) deep invagination in US3K213A-infected cells. Finally, an irregular distribution of pUL31/pUL34 in the NE in △US3- and US3K213A-infected cells and an interaction of pUS3 and pUL31 were found, which suggests that pUS3 potentially targets pUL31 and regulates the localization of pUL31/pUL34 to promote nucleocapsids egress through its kinase activity.
Collapse
Affiliation(s)
- Liyao Deng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China.
| | - Wei Zhang
- Sinopharm Yangzhou VAC Biological Engineering CO., Ltd., Yangzhou City, Jingshu, 225100, PR China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan, 611130, PR China
| |
Collapse
|
5
|
Tian Y, Tian B, Wang M, Cai D, Cheng A, Zhang W, Wu Y, Yang Q, Ou X, Sun D, Zhang S, Mao S, Zhao X, Huang J, Gao Q, Zhu D, Jia R, Chen S, Liu M. BX795, a kinase inhibitor, inhibit duck plague virus infection via targeting US3 kinase. Poult Sci 2023; 102:102597. [PMID: 36931072 PMCID: PMC10027563 DOI: 10.1016/j.psj.2023.102597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Duck plague virus (DPV) is a typical DNA virus of waterfowl, it causes huge economic losses to the duck industry due to the higher mortality and lower egg production. The disease is one of the frequent epidemics and outbreaks on duck farms because present vaccines could not provide complete immunity and there are no specific antiviral drugs available. Therefore, the development of antiviral drugs is urgently needed. In this study, we evaluated the antiviral activity of BX795, a specific kinase inhibitor of 3-phosphoinositide-dependent kinase 1 (PDK1), protein kinase B (AKT) and Tank binding kinase 1 (TBK1), against DPV in different duck cells. Our study demonstrated that BX795 reveals prominent antiviral activity in a dose-dependent manner in different types of duck cells. Time-addition and antiviral duration analysis uncovered that BX795 inhibits viral infection therapeutically and its antiviral activity lasts longer than 96 h. Further studies have shown that BX795 prevents cell-to-cell spread of the DPV rather than affects other stage of viral life cycle. Mechanistically, BX795 can inhibit DPV US3 kinase activity, reduce the phosphorylation of US3 substrates, and prevent the interaction between US3 and UL47. Taking together, our study demonstrated BX795, which disrupts the viral kinase activity, is a candidate antiviral agent for DPV.
Collapse
Affiliation(s)
- Yanming Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| | - Dongjie Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China.
| | - Wei Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan 611130, PR China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| | - Xuming Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| | - XinXin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| |
Collapse
|
6
|
Liu R, Gao L, Yang F, Li X, Liu C, Qi X, Cui H, Zhang Y, Wang S, Wang X, Gao Y, Li K. Duck Enteritis Virus Protein Kinase US3 Inhibits DNA Sensing Signaling by Phosphorylating Interferon Regulatory Factor 7. Microbiol Spectr 2022; 10:e0229922. [PMID: 36287016 PMCID: PMC9769898 DOI: 10.1128/spectrum.02299-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/02/2022] [Indexed: 01/07/2023] Open
Abstract
The cytosolic DNA sensing pathway mediates innate immune defense against infection by many DNA viruses; however, viruses have evolved multiple strategies to evade the host immune response. Duck enteritis virus (DEV) causes an acute and contagious disease with high mortality in waterfowl. The mechanisms employed by DEV to block the DNA sensing pathway are not well understood. Here, we sought to investigate the role of DEV US3, a serine/threonine protein kinase, in the inhibition of DNA sensing. We found that ectopic expression of DEV US3 significantly inhibited the production of IFN-β and expression of interferon-stimulated genes induced by interferon-stimulatory DNA and poly(dA-dT). US3 also inhibited viral DNA-triggered IFN-β activation and promoted DEV replication in duck embryo fibroblasts, while knockdown of US3 during DEV infection enhances the IFN-β response and suppresses viral replication. US3 inhibited the DNA-sensing signaling pathway by targeting interferon regulatory factor 7 (IRF7), and the kinase activity of US3 was indispensable for its inhibitory function. Furthermore, we found that US3 interacts with the activation domain of IRF7, phosphorylating IRF7, blocking its dimerization and nuclear translocation, and finally leading to the inhibition of IFN-β production. These findings expand our knowledge on DNA sensing in ducks and reveal a novel mechanism whereby DEV evades host antiviral immunity. IMPORTANCE Duck enteritis virus (DEV) is a duck alphaherpesvirus that causes an acute and contagious disease with high mortality, resulting in substantial economic losses in the commercial waterfowl industry. The evasion of DNA-sensing pathway-mediated antiviral innate immunity is essential for the persistent infection and replication for many DNA viruses. However, the strategies used by DEV to block the DNA-sensing pathway are not well understood. In this study, DEV US3 protein kinase was demonstrated to inhibit the DNA-sensing signaling via binding to the activation domain of interferon regulatory factor 7 (IRF7), which induced the hyperphosphorylation of IRF7 and abolished IRF7 dimerization and nuclear translocation. Our findings provide insights into how duck herpesviral kinase counteracts host antiviral innate immunity to ensure viral replication and spread.
Collapse
Affiliation(s)
- Rui Liu
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Gao
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fuchun Yang
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaohan Li
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changjun Liu
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaole Qi
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyu Cui
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanping Zhang
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Suyan Wang
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaomei Wang
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yulong Gao
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Kai Li
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
7
|
Zhou T, Wang M, Cheng A, Yang Q, Tian B, Wu Y, Jia R, Chen S, Liu M, Zhao XX, Ou X, Mao S, Sun D, Zhang S, Zhu D, Huang J, Gao Q, Yu Y, Zhang L. Regulation of alphaherpesvirus protein via post-translational phosphorylation. Vet Res 2022; 53:93. [PMID: 36397147 PMCID: PMC9670612 DOI: 10.1186/s13567-022-01115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
An alphaherpesvirus carries dozens of viral proteins in the envelope, tegument and capsid structure, and each protein plays an indispensable role in virus adsorption, invasion, uncoating and release. After infecting the host, a virus eliminates unfavourable factors via multiple mechanisms to escape or suppress the attack of the host immune system. Post-translational modification of proteins, especially phosphorylation, regulates changes in protein conformation and biological activity through a series of complex mechanisms. Many viruses have evolved mechanisms to leverage host phosphorylation systems to regulate viral protein activity and establish a suitable cellular environment for efficient viral replication and virulence. In this paper, viral protein kinases and the regulation of viral protein function mediated via the phosphorylation of alphaherpesvirus proteins are described. In addition, this paper provides new ideas for further research into the role played by the post-translational modification of viral proteins in the virus life cycle, which will be helpful for understanding the mechanisms of viral infection of a host and may lead to new directions of antiviral treatment.
Collapse
Affiliation(s)
- Tong Zhou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xuming Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| |
Collapse
|
8
|
Deng J, Zhong Z, Geng C, Dai Z, Zheng W, Li Z, Yan Z, Yang J, Deng W, Tan W, Sun H, Li S. Herpes Simplex Type 1 UL43 Multiple Membrane-Spanning Protein Increases Energy Metabolism in Host Cells through Interacting with ARL2. Cells 2022; 11:cells11223594. [PMID: 36429022 PMCID: PMC9688820 DOI: 10.3390/cells11223594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Non-essential proteins for viral replication affect host cell metabolism, while the function of the UL43 protein of herpes simplex virus 1 (HSV-1) is not clear. Herein, we performed a comprehensive microarray analysis of HUVEC cells infected with HSV-1 and its UL43-deficient mutant and found significant variation in genes associated with cellular energy metabolic pathways. The localization of UL43 protein in host cells and how it affects cellular energy metabolism pathways were further investigated. Internalization analysis showed that the UL43 protein could be endocytosis-mediated by YPLF motif (aa144-147) and localized to mitochondria. At the same time, more ATP was produced by coupling with mitochondrial small G protein ARF-like 2 (ARL2) GTPase, which triggered the phosphorylation of ANT1 (SLC25A4) to affect the opening degree of mitochondrial permeability transition pore (mPTP), and significantly promoted the aerobic oxidation and oxidative phosphorylation of glucose. Our study shows that UL43 mediates the improvement of host cell metabolism after HSV-1 infection. Additionally, UL43 protein could be a valuable ATP-stimulating factor for mammalian cells.
Collapse
Affiliation(s)
- Jianshan Deng
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Zhiying Zhong
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Chengxu Geng
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Zhenning Dai
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou 510630, China
- Department of Stomatology, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou 510095, China
| | - Weihan Zheng
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou 510630, China
| | - Ziyue Li
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou 510630, China
| | - Zi Yan
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou 510630, China
| | - Jiaxin Yang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenfeng Deng
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510799, China
| | - Wei Tan
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou 510630, China
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Nanning 530005, China
- Correspondence: author: (W.T.); (H.S.); (S.L.)
| | - Hanxiao Sun
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 511436, China
- Correspondence: author: (W.T.); (H.S.); (S.L.)
| | - Shiyu Li
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 511436, China
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou 510630, China
- Department of Anatomy, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Correspondence: author: (W.T.); (H.S.); (S.L.)
| |
Collapse
|
9
|
Deng L, Wan J, Cheng A, Wang M, Tian B, Wu Y, Yang Q, Ou X, Mao S, Sun D, Zhang S, Zhu D, Jia R, Chen S, Liu M, Zhao X, Huang J, Gao Q, Yu Y, Zhang L, Pan L. Duck plague virus US3 protein kinase phosphorylates UL47 and regulates the subcellular localization of UL47. Front Microbiol 2022; 13:876820. [PMID: 36386680 PMCID: PMC9641017 DOI: 10.3389/fmicb.2022.876820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/28/2022] [Indexed: 12/04/2022] Open
Abstract
Duck plague virus (DPV) belongs to the alphaherpesvirinae and causes high morbidity and mortality in waterfowl. UL47 is a large abundant structural protein in DPV, which means that UL47 protein plays an important role in virus replication. US3 protein, as a viral protein kinase in alphaherpesviruses, has been reported to be critical for DPV virion assembly. In this study, we over-expressed UL47 and US3 proteins and found that DPV UL47 protein was a phosphorylated substrate of US3 protein, which interacted and co-localized with US3 protein in the cytoplasm. US3-regulated phosphorylation of UL47 was important for the cytoplasmic localization of UL47 because non-phosphorylated UL47 was localized in the nucleus. The six sites of UL47 at Thr29, Ser30, Ser42, Thr47, Ser161, and Thr775 were identified as the phosphorylation targets of US3 protein. In vivo, UL47 phosphorylation was also detected but not in ΔUS3-infected cells. US3 protein promoted the cytoplasmic localization of UL47 at the late stage of infection, and the lack of US3 protein caused a delay in UL47 translocation to the cytoplasm. These results enhance our understanding of the functions of US3 during DPV infection and provide some references for DPV assembly.
Collapse
Affiliation(s)
- Liyao Deng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jieyu Wan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Mingshu Wang,
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
10
|
Role of the Orphan Transporter SLC35E1 in the Nuclear Egress of Herpes Simplex Virus 1. J Virol 2022; 96:e0030622. [PMID: 35475666 DOI: 10.1128/jvi.00306-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study developed a system consisting of two rounds of screening cellular proteins involved in the nuclear egress of herpes simplex virus 1 (HSV-1). Using this system, we first screened cellular proteins that interacted with the HSV-1 nuclear egress complex (NEC) consisting of UL34 and UL31 in HSV-1-infected cells, which are critical for the nuclear egress of HSV-1, by tandem affinity purification coupled with mass spectrometry-based proteomics technology. Next, we performed CRISPR/Cas9-based screening of live HSV-1-infected reporter cells under fluorescence microscopy using single guide RNAs targeting the cellular proteins identified in the first proteomic screening to detect the mislocalization of the lamin-associated protein emerin, which is a phenotype for defects in HSV-1 nuclear egress. This study focused on a cellular orphan transporter SLC35E1, one of the cellular proteins identified by the screening system. Knockout of SLC35E1 reduced HSV-1 replication and induced membranous invaginations containing perinuclear enveloped virions (PEVs) adjacent to the nuclear membrane (NM), aberrant accumulation of PEVs in the perinuclear space between the inner and outer NMs and the invagination structures, and mislocalization of the NEC. These effects were similar to those of previously reported mutation(s) in HSV-1 proteins and depletion of cellular proteins that are important for HSV-1 de-envelopment, one of the steps required for HSV-1 nuclear egress. Our newly established screening system enabled us to identify a novel cellular protein required for efficient HSV-1 de-envelopment. IMPORTANCE The identification of cellular protein(s) that interact with viral effector proteins and function in important viral procedures is necessary for enhancing our understanding of the mechanics of various viral processes. In this study, we established a new system consisting of interactome screening for the herpes simplex virus 1 (HSV-1) nuclear egress complex (NEC), followed by loss-of-function screening to target the identified putative NEC-interacting cellular proteins to detect a defect in HSV-1 nuclear egress. This newly established system identified SLC35E1, an orphan transporter, as a novel cellular protein required for efficient HSV-1 de-envelopment, providing an insight into the mechanisms involved in this viral procedure.
Collapse
|
11
|
Herpesvirus Nuclear Egress across the Outer Nuclear Membrane. Viruses 2021; 13:v13122356. [PMID: 34960625 PMCID: PMC8706699 DOI: 10.3390/v13122356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/22/2023] Open
Abstract
Herpesvirus capsids are assembled in the nucleus and undergo a two-step process to cross the nuclear envelope. Capsids bud into the inner nuclear membrane (INM) aided by the nuclear egress complex (NEC) proteins UL31/34. At that stage of egress, enveloped virions are found for a short time in the perinuclear space. In the second step of nuclear egress, perinuclear enveloped virions (PEVs) fuse with the outer nuclear membrane (ONM) delivering capsids into the cytoplasm. Once in the cytoplasm, capsids undergo re-envelopment in the Golgi/trans-Golgi apparatus producing mature virions. This second step of nuclear egress is known as de-envelopment and is the focus of this review. Compared with herpesvirus envelopment at the INM, much less is known about de-envelopment. We propose a model in which de-envelopment involves two phases: (i) fusion of the PEV membrane with the ONM and (ii) expansion of the fusion pore leading to release of the viral capsid into the cytoplasm. The first phase of de-envelopment, membrane fusion, involves four herpes simplex virus (HSV) proteins: gB, gH/gL, gK and UL20. gB is the viral fusion protein and appears to act to perturb membranes and promote fusion. gH/gL may also have similar properties and appears to be able to act in de-envelopment without gB. gK and UL20 negatively regulate these fusion proteins. In the second phase of de-envelopment (pore expansion and capsid release), an alpha-herpesvirus protein kinase, US3, acts to phosphorylate NEC proteins, which normally produce membrane curvature during envelopment. Phosphorylation of NEC proteins reverses tight membrane curvature, causing expansion of the membrane fusion pore and promoting release of capsids into the cytoplasm.
Collapse
|
12
|
Role of the arginine cluster in the disordered domain of Herpes Simplex Virus 1 UL34 for the recruitment of ESCRT-III for viral primary envelopment. J Virol 2021; 96:e0170421. [PMID: 34730397 DOI: 10.1128/jvi.01704-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
During the nuclear export of nascent nucleocapsids of herpesviruses, the nucleocapsids bud through the inner nuclear membrane (INM) by acquiring the INM as a primary envelope (primary envelopment). We recently reported that herpes simplex virus 1 (HSV-1) nuclear egress complex (NEC), which consists of UL34 and UL31, interacts with an ESCRT-III adaptor ALIX and recruits ESCRT-III machinery to the INM for efficient primary envelopment. In this study, we identified a cluster of six arginine residues in the disordered domain of UL34 as a minimal region required for the interaction with ALIX as well as the recruitment of ALIX and an ESCRT-III protein CHMP4B to the INM in HSV-1-infected cells. Mutations in the arginine cluster exhibited phenotypes similar to those with ESCRT-III inhibition reported previously, including the mis-localization of NEC, induction of membranous invagination structures containing enveloped virions, aberrant accumulation of enveloped virions in the invaginations and perinuclear space, and reduction of viral replication. We also showed that the effect of the arginine cluster in UL34 on HSV-1 replication was dependent primarily on ALIX. These results indicated that the arginine cluster in the disordered domain of UL34 was required for the interaction with ALIX and the recruitment of ESCRT-III machinery to the INM to promote primary envelopment. IMPORTANCE Herpesvirus UL34 homologs contain conserved amino-terminal domains that mediate vesicle formation through interactions with UL31 homologs during primary envelopment. UL34 homologs also comprise other domains adjacent to their membrane-anchoring regions, which differ in length, are variable in herpesviruses and do not form distinguished secondary structures. However, the role of these disordered domains in infected cells remains to be elucidated. In this study, we present data suggesting that the arginine cluster in the disordered domain of HSV-1 UL34 mediates the interaction with ALIX, thereby leading to the recruitment of ESCRT-III machinery to the INM for efficient primary envelopment. This is the first study to report the role of the disordered domain of a UL34 homolog in herpesvirus infections.
Collapse
|
13
|
Host and Viral Factors Involved in Nuclear Egress of Herpes Simplex Virus 1. Viruses 2021; 13:v13050754. [PMID: 33923040 PMCID: PMC8146395 DOI: 10.3390/v13050754] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) replicates its genome and packages it into capsids within the nucleus. HSV-1 has evolved a complex mechanism of nuclear egress whereby nascent capsids bud on the inner nuclear membrane to form perinuclear virions that subsequently fuse with the outer nuclear membrane, releasing capsids into the cytosol. The viral-encoded nuclear egress complex (NEC) plays a crucial role in this vesicle-mediated nucleocytoplasmic transport. Nevertheless, similar system mediates the movement of other cellular macromolecular complexes in normal cells. Therefore, HSV-1 may utilize viral proteins to hijack the cellular machinery in order to facilitate capsid transport. However, little is known about the molecular mechanisms underlying this phenomenon. This review summarizes our current understanding of the cellular and viral factors involved in the nuclear egress of HSV-1 capsids.
Collapse
|
14
|
U S3 Serine/Threonine Protein Kinase from MDV-1, MDV-2, and HVT Differentially Regulate Viral Gene Expression and Replication. Microorganisms 2021; 9:microorganisms9040785. [PMID: 33918706 PMCID: PMC8069862 DOI: 10.3390/microorganisms9040785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022] Open
Abstract
Gallid alphaherpesvirus 2 (GaHV-2), commonly known as Marek's disease virus type 1 (MDV-1), is an oncogenic avian alphaherpesvirus, and along with its close relatives-Gallid alphaherpesvirus 3 (GaHV-3) or MDV-2 and Meleagrid alphaherpesvirus 1 (MeHV-1) or turkey herpesvirus (HVT)-belongs to the Mardivirus genus. We and others previously showed that MDV-1 US3 protein kinase plays an important role in viral replication and pathogenesis, which could be partially compensated by MDV-2 and HVT US3. In this study, we further studied the differential roles of MDV-1, MDV-2 and HVT US3 in regulating viral gene expression and replication. Our results showed that MDV-2 and HVT US3 could differentially compensate MDV-1 US3 regulation of viral gene expression in vitro. MDV-2 and HVT US3 could also partially rescue the replication deficiency of MDV-1 US3 null virus in the spleen and thymus, as determined by immunohistochemistry analysis of MDV-1 pp38 protein. Importantly, using immunohistochemistry and dual immunofluorescence assays, we found that MDV-2 US3, but not HVT US3, fully compensated MDV-1 US3 regulation of MDV-1 replication in bursal B lymphocytes. In conclusion, our study provides the first comparative analysis of US3 from MDV-1, MDV-2 and HVT in regulating viral gene expression in cell culture and MDV-1 replication in lymphocytes.
Collapse
|
15
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
16
|
Evasion of the Cell-Mediated Immune Response by Alphaherpesviruses. Viruses 2020; 12:v12121354. [PMID: 33256093 PMCID: PMC7761393 DOI: 10.3390/v12121354] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022] Open
Abstract
Alphaherpesviruses cause various diseases and establish life-long latent infections in humans and animals. These viruses encode multiple viral proteins and miRNAs to evade the host immune response, including both innate and adaptive immunity. Alphaherpesviruses evolved highly advanced immune evasion strategies to be able to replicate efficiently in vivo and produce latent infections with recurrent outbreaks. This review describes the immune evasion strategies of alphaherpesviruses, especially against cytotoxic host immune responses. Considering these strategies, it is important to evaluate whether the immune evasion mechanisms in cell cultures are applicable to viral propagation and pathogenicity in vivo. This review focuses on cytotoxic T lymphocytes (CTLs), natural killer cells (NK cells), and natural killer T cells (NKT cells), which are representative immune cells that directly damage virus-infected cells. Since these immune cells recognize the ligands expressed on their target cells via specific activating and/or inhibitory receptors, alphaherpesviruses make several ligands that may be targets for immune evasion. In addition, alphaherpesviruses suppress the infiltration of CTLs by downregulating the expression of chemokines at infection sites in vivo. Elucidation of the alphaherpesvirus immune evasion mechanisms is essential for the development of new antiviral therapies and vaccines.
Collapse
|
17
|
Phosphoregulation of a Conserved Herpesvirus Tegument Protein by a Virally Encoded Protein Kinase in Viral Pathogenicity and Potential Linkage between Its Evolution and Viral Phylogeny. J Virol 2020; 94:JVI.01055-20. [PMID: 32611749 DOI: 10.1128/jvi.01055-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
Us3 proteins of herpes simplex virus 1 (HSV-1) and HSV-2 are multifunctional serine-threonine protein kinases. Here, we identified an HSV-2 tegument protein, UL7, as a novel physiological substrate of HSV-2 Us3. Mutations in HSV-2 UL7, which precluded Us3 phosphorylation of the viral protein, significantly reduced mortality, viral replication in the vagina, and development of vaginal disease in mice following vaginal infection. These results indicated that Us3 phosphorylation of UL7 in HSV-2 was required for efficient viral replication and pathogenicity in vivo Of note, this phosphorylation was conserved in UL7 of chimpanzee herpesvirus (ChHV), which phylogenetically forms a monophyletic group with HSV-2 and the resurrected last common ancestral UL7 for HSV-2 and ChHV. In contrast, the phosphorylation was not conserved in UL7s of HSV-1, which belongs to a sister clade of the monophyletic group, the resurrected last common ancestor for HSV-1, HSV-2, and ChHV, and other members of the genus Simplexvirus that are phylogenetically close to these viruses. Thus, evolution of Us3 phosphorylation of UL7 coincided with the phylogeny of simplex viruses. Furthermore, artificially induced Us3 phosphorylation of UL7 in HSV-1, in contrast to phosphorylation in HSV-2, had no effect on viral replication and pathogenicity in mice. Our results suggest that HSV-2 and ChHV have acquired and maintained Us3 phosphoregulation of UL7 during their evolution because the phosphoregulation had an impact on viral fitness in vivo, whereas most other simplex viruses have not because the phosphorylation was not necessary for efficient fitness of the viruses in vivo IMPORTANCE It has been hypothesized that the evolution of protein phosphoregulation drives phenotypic diversity across species of organisms, which impacts fitness during their evolution. However, there is a lack of information regarding linkage between the evolution of viral phosphoregulation and the phylogeny of virus species. In this study, we clarified the novel HSV-2 Us3 phosphoregulation of UL7 in infected cells, which is important for viral replication and pathogenicity in vivo We also showed that the evolution of Us3 phosphoregulation of UL7 was linked to the phylogeny of viruses that are phylogenetically close to HSV-2 and to the phosphorylation requirements for the efficient in vivo viral fitness of HSV-2 and HSV-1, which are representative of viruses that have and have not evolved phosphoregulation, respectively. This study reports the first evidence showing that evolution of viral phosphoregulation coincides with phylogeny of virus species and supports the hypothesis regarding the evolution of viral phosphoregulation during viral evolution.
Collapse
|
18
|
Role of Marek's Disease Virus (MDV)-Encoded U S3 Serine/Threonine Protein Kinase in Regulating MDV Meq and Cellular CREB Phosphorylation. J Virol 2020; 94:JVI.00892-20. [PMID: 32581093 DOI: 10.1128/jvi.00892-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
Marek's disease (MD) is a neoplastic disease of chickens caused by Marek's disease virus (MDV), a member of the subfamily Alphaherpesvirinae Like other alphaherpesviruses, MDV encodes a serine/threonine protein kinase, US3. The functions of US3 have been extensively studied in other alphaherpesviruses; however, the biological functions of MDV US3 and its substrates have not been studied in detail. In this study, we investigated potential cellular pathways that are regulated by MDV US3 and identified chicken CREB (chCREB) as a substrate of MDV US3. We show that wild-type MDV US3, but not kinase-dead US3 (US3-K220A), increases CREB phosphorylation, leading to recruitment of phospho-CREB (pCREB) to the promoter of the CREB-responsive gene and activation of CREB target gene expression. Using US3 deletion and US3 kinase-dead recombinant MDV, we identified US3-responsive MDV genes during infection and found that the majority of US3-responsive genes were located in the MDV repeat regions. Chromatin immunoprecipitation sequencing (ChIP-seq) studies determined that some US3-regulated genes colocalized with Meq (an MDV-encoded oncoprotein) recruitment sites. Chromatin immunoprecipitation-PCR (ChIP-PCR) further confirmed Meq binding to the ICP4/LAT region, which is also regulated by US3. Furthermore, biochemical studies demonstrated that MDV US3 interacts with Meq in transfected cells and MDV-infected chicken embryonic fibroblasts in a phosphorylation-dependent manner. Finally, in vitro kinase studies revealed that Meq is a US3 substrate. MDV US3 thus acts as an upstream kinase of the CREB signaling pathway to regulate the transcription function of the CREB/Meq heterodimer, which targets cellular and viral gene expression.IMPORTANCE MDV is a potent oncogenic herpesvirus that induces T-cell lymphoma in infected chickens. Marek's disease continues to have a significant economic impact on the poultry industry worldwide. US3 encoded by alphaherpesviruses is a multifunctional kinase involved in the regulation of various cellular pathways. Using an MDV genome quantitative reverse transcriptase PCR (qRT-PCR) array and chromatin immunoprecipitation, we elucidated the role of MDV US3 in viral and cellular gene regulation. Our results provide insights into how viral kinase regulates host cell signaling pathways to activate both viral and host gene expression. This is an important step toward understanding host-pathogen interaction through activation of signaling cascades.
Collapse
|
19
|
Deng L, Wang M, Cheng A, Yang Q, Wu Y, Jia R, Chen S, Zhu D, Liu M, Zhao X, Zhang S, Huang J, Ou X, Mao S, Zhang L, Liu Y, Yu Y, Tian B, Pan L, Rehman MU, Chen X. The Pivotal Roles of US3 Protein in Cell-to-Cell Spread and Virion Nuclear Egress of Duck Plague Virus. Sci Rep 2020; 10:7181. [PMID: 32346128 PMCID: PMC7189242 DOI: 10.1038/s41598-020-64190-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
The duck plague virus (DPV) US3 protein, a homolog of the herpes simplex virus-1 (HSV-1) US3 protein that is reported to be critical for viral replication, has been minimally studied. Therefore, to investigate the function of the DPV US3 protein, we used scarless Red recombination technology based on an infectious bacterial artificial chromosome (BAC) containing the DPV Chinese virulent strain (CHv) genome and successfully constructed and rescued a US3-deleted mutant and the corresponding revertant virus (BAC-CHv-ΔUS3 and BAC-CHv-ΔUS3R, respectively). For viral growth characteristics, compared to the parental and revertant viruses, the US3-deleted mutant showed an approximately 100-fold reduction in viral titers but no significant reduction in genome copies, indicating that the US3-deleted mutant exhibited decreased viral replication but not decreased viral DNA generation. In addition, the US3-deleted mutant formed viral plaques that were 33% smaller on average than those formed by the parental and revertant viruses, demonstrating that US3 protein affected the viral cell-to-cell spread of DPV. Finally, the results of electron microscopy showed that the deletion of US3 resulted in a large number of virions accumulating in the nucleus and perinuclear space, thus blocking virion nuclear egress. In this study, we found that the DPV US3 protein played pivotal roles in viral replication by promoting viral cell-to-cell spread and virion nuclear egress, which may provide some references for research on the function of the DPV US3 protein.
Collapse
Affiliation(s)
- Liyao Deng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China. .,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China. .,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Mujeeb Ur Rehman
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Xiaoyue Chen
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| |
Collapse
|
20
|
Roles of the Different Isoforms of the Pseudorabies Virus Protein Kinase pUS3 in Nuclear Egress. J Virol 2020; 94:JVI.02029-19. [PMID: 31941788 DOI: 10.1128/jvi.02029-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/08/2020] [Indexed: 12/17/2022] Open
Abstract
Protein kinases homologous to the US3 gene product (pUS3) of herpes simplex virus (HSV) are conserved throughout the alphaherpesviruses but are absent from betaherpesviruses and gammaherpesviruses. pUS3 homologs are multifunctional and are involved in many processes, including modification of the cytoskeleton, inhibition of apoptosis, and immune evasion. pUS3 also plays a role in efficient nuclear egress of alphaherpesvirus nucleocapsids. In the absence of pUS3, primary enveloped virions accumulate in the perinuclear space (PNS) in large invaginations of the inner nuclear membrane (INM), pointing to a modulatory function for pUS3 during deenvelopment. The HSV and pseudorabies virus (PrV) US3 genes are transcribed into two mRNAs encoding two pUS3 isoforms, which have different aminoterminal sequences and abundances. To test whether the two isoforms in PrV serve different functions, we constructed mutant viruses expressing exclusively either the larger minor or the smaller major isoform, a mutant virus with decreased expression of the smaller isoform, or a mutant with impaired kinase function. Respective virus mutants were investigated in several cell lines. Our results show that absence of the larger pUS3 isoform has no detectable effect on viral replication in cell culture, while full expression of the smaller isoform and intact kinase activity is required for efficient nuclear egress. Absence of pUS3 resulted in only minor titer reduction in most cell lines tested but disclosed a more severe defect in Madin-Darby bovine kidney cells. However, accumulations of primary virions in the PNS do not account for the observed titer reduction in PrV.IMPORTANCE A plethora of substrates and functions have been assigned to the alphaherpesviral pUS3 kinase, including a role in nuclear egress. In PrV, two different pUS3 isoforms are expressed, which differ in size, abundance, and intracellular localization. Their respective role in replication is unknown, however. Here, we show that efficient nuclear egress of PrV requires the smaller isoform and intact kinase activity, whereas absence of the larger isoform has no significant effect on viral replication. Thus, there is a clear distinction in function between the two US3 gene products of PrV.
Collapse
|
21
|
Unity and diversity among viral kinases. Gene 2019; 723:144134. [PMID: 31589960 DOI: 10.1016/j.gene.2019.144134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/27/2022]
Abstract
Viral kinases are known to undergo autophosphorylation and also phosphorylate viral and host substrates. Viral kinases have been implicated in various diseases and are also known to acquire host kinases for mimicking cellular functions and exhibit virulence. Although substantial analyses have been reported in the literature on diversity of viral kinases, there is a gap in the understanding of sequence and structural similarity among kinases from different classes of viruses. In this study, we performed a comprehensive analysis of protein kinases encoded in viral genomes. Homology search methods have been used to identify kinases from 104,282 viral genomic datasets. Serine/threonine and tyrosine kinases are identified only in 390 viral genomes. Out of seven viral classes that are based on nature of genetic material, only viruses having double-stranded DNA and single-stranded RNA retroviruses are found to encode kinases. The 716 identified protein kinases are classified into 63 subfamilies based on their sequence similarity within each cluster, and sequence signatures have been identified for each subfamily. 11 clusters are well represented with at least 10 members in each of these clusters. Kinases from dsDNA viruses, Phycodnaviridae which infect green algae and Herpesvirales that infect vertebrates including human, form a major group. From our analysis, it has been observed that the protein kinases in viruses belonging to same taxonomic lineages form discrete clusters and the kinases encoded in alphaherpesvirus form host-specific clusters. A comprehensive sequence and structure-based analysis enabled us to identify the conserved residues or motifs in kinase catalytic domain regions across all viral kinases. Conserved sequence regions that are specific to a particular viral kinase cluster and the kinases that show close similarity to eukaryotic kinases were identified by using sequence and three-dimensional structural regions of eukaryotic kinases as reference. The regions specific to each viral kinase cluster can be used as signatures in the future in classifying uncharacterized viral kinases. We note that kinases from giant viruses Marseilleviridae have close similarity to viral oncogenes in the functional regions and in putative substrate binding regions indicating their possible role in cancer.
Collapse
|
22
|
Tobler K, Senn C, Schraner EM, Ackermann M, Fraefel C, Wild P. The herpes simplex virus 1 Us3 kinase is involved in assembly of membranes needed for viral envelopment and in distribution of glycoprotein K. F1000Res 2019; 8:727. [PMID: 31448105 PMCID: PMC6681629 DOI: 10.12688/f1000research.19194.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/16/2019] [Indexed: 11/20/2022] Open
Abstract
Background: Capsids of herpes simplex virus 1 (HSV-1) are assembled in cell nuclei, released into the perinuclear space by budding at the inner nuclear membrane acquiring tegument and envelope. Alternatively, capsids gain access to the cytoplasm via dilated nuclear pores. They are enveloped by Golgi membranes. Us3 is a non-essential viral kinase that is involved in nucleus-to-cytoplasm translocation, preventing apoptosis and regulation of phospholipid-biosynthesis. Us3-deletion mutants (HSV-1∆Us3) accumulate in the perinuclear space. Nuclear and Golgi membranes proliferate, and homogeneous, proteinaceous structures of unknown identity are deposited in nuclei and cytoplasm. Glycoprotein K (gK), a highly hydrophobic viral protein, is essential for production of infectious progeny virus but, according to the literature, exclusively vital for envelopment of capsids by Golgi membranes. In the absence of Us3, virions remain stuck in the perinuclear space but mature to infectivity without reaching Golgi membranes, suggesting further function of gK than assumed. Methods: We constructed a HSV-1∆Us3 mutant designated CK177∆Us3gK-HA, in which gK was hemagglutinin (HA) epitope-tagged in order to localize gK by immunolabeling using antibodies against HA for light and electron microscopy. Results: CK177∆Us3gK-HA-infected Vero cells showed similar alterations as those reported for other HSV-1∆Us3, including accumulation of virions in the perinuclear space, overproduction of nuclear and Golgi membranes containing electron dense material with staining property of proteins. Immunolabeling using antibodies against HA revealed that gK is overproduced and localized at nuclear membranes, perinuclear virions stuck in the perinuclear space, Golgi membranes and on protein deposits in cytoplasm and nuclei. Conclusions: Us3 is involved in proper assembly of membranes needed for envelopment and incorporation of gK. Without Us3, virions derived by budding at nuclear membranes remain stuck in the perinuclear space but incorporate gK into their envelope to gain infectivity.
Collapse
Affiliation(s)
- Kurt Tobler
- Institute of Virology, University of Zürich, Zürich, CH-8057, Switzerland
| | - Claudia Senn
- Institute of Virology, University of Zürich, Zürich, CH-8057, Switzerland
| | | | - Mathias Ackermann
- Institute of Virology, University of Zürich, Zürich, CH-8057, Switzerland
| | - Cornel Fraefel
- Institute of Virology, University of Zürich, Zürich, CH-8057, Switzerland
| | - Peter Wild
- Institute of Virology, University of Zürich, Zürich, CH-8057, Switzerland
| |
Collapse
|
23
|
Wild P, Leisinger S, de Oliveira AP, Doehner J, Schraner EM, Fraevel C, Ackermann M, Kaech A. Nuclear envelope impairment is facilitated by the herpes simplex virus 1 Us3 kinase. F1000Res 2019; 8:198. [PMID: 31249678 PMCID: PMC6584977 DOI: 10.12688/f1000research.17802.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Capsids of herpes simplex virus 1 (HSV-1) are assembled in the nucleus, translocated either to the perinuclear space by budding at the inner nuclear membrane acquiring tegument and envelope, or released to the cytosol in a "naked" state via impaired nuclear pores that finally results in impairment of the nuclear envelope. The Us3 gene encodes a protein acting as a kinase, which is responsible for phosphorylation of numerous viral and cellular substrates. The Us3 kinase plays a crucial role in nucleus to cytoplasm capsid translocation. We thus investigate the nuclear surface in order to evaluate the significance of Us3 in maintenance of the nuclear envelope during HSV-1 infection. Methods: To address alterations of the nuclear envelope and capsid nucleus to cytoplasm translocation related to the function of the Us3 kinase we investigated cells infected with wild type HSV-1 or the Us3 deletion mutant R7041(∆Us3) by transmission electron microscopy, focused ion-beam electron scanning microscopy, cryo-field emission scanning electron microscopy, confocal super resolution light microscopy, and polyacrylamide gel electrophoresis. Results: Confocal super resolution microscopy and cryo-field emission scanning electron microscopy revealed decrement in pore numbers in infected cells. Number and degree of pore impairment was significantly reduced after infection with R7041(∆Us3) compared to infection with wild type HSV-1. The nuclear surface was significantly enlarged in cells infected with any of the viruses. Morphometric analysis revealed that additional nuclear membranes were produced forming multiple folds and caveolae, in which virions accumulated as documented by three-dimensional reconstruction after ion-beam scanning electron microscopy. Finally, significantly more R7041(∆Us3) capsids were retained in the nucleus than wild-type capsids whereas the number of R7041(∆Us3) capsids in the cytosol was significantly lower. Conclusions: The data indicate that Us3 kinase is involved in facilitation of nuclear pore impairment and, concomitantly, in capsid release through impaired nuclear envelope.
Collapse
Affiliation(s)
- Peter Wild
- Department of Veterinary Anatomy, University of Zuerich, Zürich, CH-8057, Switzerland
| | - Sabine Leisinger
- Department of Veterinary Anatomy, University of Zuerich, Zürich, CH-8057, Switzerland
| | | | - Jana Doehner
- Center for Microcopy and Image Analysis, Universit of Zürich, Zürich, CH-8057, Switzerland
| | - Elisabeth M. Schraner
- Department of Veterinary Anatomy, University of Zuerich, Zürich, CH-8057, Switzerland
- Instute of Virology, University of Zürich, Zürich, ZH-8057, Switzerland
| | - Cornel Fraevel
- Instute of Virology, University of Zürich, Zürich, ZH-8057, Switzerland
| | - Mathias Ackermann
- Instute of Virology, University of Zürich, Zürich, ZH-8057, Switzerland
| | - Andres Kaech
- Center for Microcopy and Image Analysis, Universit of Zürich, Zürich, CH-8057, Switzerland
| |
Collapse
|
24
|
Beyond the NEC: Modulation of Herpes Simplex Virus Nuclear Egress by Viral and Cellular Components. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019. [DOI: 10.1007/s40588-019-0112-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Kawaguchi Y. [Recent Advances in Basic Research on the Herpes Simplex Virus]. Uirusu 2019; 68:115-124. [PMID: 32938883 DOI: 10.2222/jsv.68.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herpes simplex virus (HSV) is one of the most extensively studied members of the family Herpesviridae and causes various human mucocutaneous diseases, such as herpes labialis, genital herpes, herpes whitlow, and keratitis. HSV also causes herpes simplex encephalitis, which can be lethal or result in severe neurological conditions in a significant fractions of cases, even with anti-viral therapy. Thus, despite the development of several anti-herpetic drugs, numerous substantial unmet medical needs exist with regards to HSV infections. Furthermore, genital herpes infections increase the likelihood of HIV infections and its transmission by 2- to 4-fold. This review discusses recent advances in basic research on HSV, primarily focusing on our recent studies, and the implications of our findings for the development of novel therapeutic and prophylactic agents for HSV infections.
Collapse
Affiliation(s)
- Yasushi Kawaguchi
- Division of Molecular Virology, Department of Microbiology and Immunology,The Institute of Medical Science,The University of Tokyo
| |
Collapse
|
26
|
Kato A, Kawaguchi Y. Us3 Protein Kinase Encoded by HSV: The Precise Function and Mechanism on Viral Life Cycle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:45-62. [PMID: 29896662 DOI: 10.1007/978-981-10-7230-7_3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
All members of the Alphaherpesvirinae subfamily encode a serine/threonine kinase, designated Us3, which is not conserved in the other subfamilies. Us3 is a significant virulence factor for herpes simplex virus type 1 (HSV-1), which is one of the best-characterized members of the Alphaherpesvirinae family. Accumulating evidence indicates that HSV-1 Us3 is a multifunctional protein that plays various roles in the viral life cycle by phosphorylating a number of viral and cellular substrates. Therefore, the identification of Us3 substrates is directly connected to understanding Us3 functions and mechanisms. To date, more than 23 phosphorylation events upregulated by HSV-1 Us3 have been reported. However, few of these have been shown to be both physiological substrates of Us3 in infected cells and directly linked with Us3 functions in infected cells. In this chapter, we summarize the 12 physiological substrates of Us3 and the Us3-mediated functions. Furthermore, based on the identified phosphorylation sites of Us3 or Us3 homolog physiological substrates, we reverified consensus phosphorylation target sequences on the physiological substrates of Us3 and Us3 homologs in vitro and in infected cells. This information might aid the further identification of novel Us3 substrates and as yet unidentified Us3 functions.
Collapse
Affiliation(s)
- Akihisa Kato
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Yasushi Kawaguchi
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| |
Collapse
|
27
|
Maruzuru Y, Ichinohe T, Sato R, Miyake K, Okano T, Suzuki T, Koshiba T, Koyanagi N, Tsuda S, Watanabe M, Arii J, Kato A, Kawaguchi Y. Herpes Simplex Virus 1 VP22 Inhibits AIM2-Dependent Inflammasome Activation to Enable Efficient Viral Replication. Cell Host Microbe 2018; 23:254-265.e7. [DOI: 10.1016/j.chom.2017.12.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/24/2017] [Accepted: 12/20/2017] [Indexed: 12/19/2022]
|
28
|
Inhibition of apoptosis in BHV-1-infected cells depends on Us3 serine/threonine kinase and its enzymatic activity. Virology 2017; 513:136-145. [PMID: 29073463 DOI: 10.1016/j.virol.2017.09.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 09/30/2017] [Indexed: 12/11/2022]
Abstract
Us3 protein is a serine/threonine kinase conserved within the Alphaherpesvirinae subfamily of herpesviruses. The Us3 homologs of herpes simplex virus, pseudorabies virus, and bovine herpesvirus type 5 have been shown to block apoptosis triggered by viral infection or exogenous inducers. To determine whether these characteristics are shared by bovine herpesvirus type 1 Us3, we constructed two viral mutants: BHV-1 Us3 deletion mutant (BHV-1ΔUs3) and a kinase-dead mutant (BHV-1KD). Flow cytometry analysis and TUNEL assay clearly demonstrated, that only BHV-1 wild type virus suppressed infection-induced apoptosis and protected cells from apoptosis triggered by exogenous factors: sorbitol or staurosporine. Us3 of BHV-1 was directly capable of blocking apoptosis without the presence of other viral proteins. The presence of Us3 correlated with phosphorylation of BAD, a pro-apoptotic Bcl-2 family member. Our results clearly indicate that BHV-1 Us3 is necessary for efficient blocking of apoptosis triggered by viral infection and exogenous factors.
Collapse
|
29
|
Molecular mechanism by which Us3 protein kinase regulates the pathogenicity of herpes simplex virus type-1. Uirusu 2017; 66:83-90. [PMID: 28484184 DOI: 10.2222/jsv.66.83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Herpes simplex virus type-1 (HSV-1) causes a range of human diseases, from mild uncomplicated mucocutaneous infection to life-threatening ones. The Us3 gene of HSV-1 encodes a serine/threonine protein kinase that is highly conserved among alphaherpesviruses. Accumulating evidence suggests that Us3 is a critical regulator of HSV-1 infection; however, the molecular mechanism by which Us3 regulates HSV-1 pathogenicity remains to be elucidated. This article presents a brief summary of the present knowledge on the roles of HSV-1 Us3, with a special focus on its relevancy in vivo.
Collapse
|
30
|
Herpes Simplex Virus 1 UL34 Protein Regulates the Global Architecture of the Endoplasmic Reticulum in Infected Cells. J Virol 2017; 91:JVI.00271-17. [PMID: 28356536 DOI: 10.1128/jvi.00271-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/21/2017] [Indexed: 11/20/2022] Open
Abstract
Upon herpes simplex virus 1 (HSV-1) infection, the CD98 heavy chain (CD98hc) is redistributed around the nuclear membrane (NM), where it promotes viral de-envelopment during the nuclear egress of nucleocapsids. In this study, we attempted to identify the factor(s) involved in CD98hc accumulation and demonstrated the following: (i) the null mutation of HSV-1 UL34 caused specific dispersion throughout the cytoplasm of CD98hc and the HSV-1 de-envelopment regulators, glycoproteins B and H (gB and gH); (ii) as observed with CD98hc, gB, and gH, wild-type HSV-1 infection caused redistribution of the endoplasmic reticulum (ER) markers calnexin and ERp57 around the NM, whereas the UL34-null mutation caused cytoplasmic dispersion of these markers; (iii) the ER markers colocalized efficiently with CD98hc, gB, and gH in the presence and absence of UL34 in HSV-1-infected cells; (iv) at the ultrastructural level, wild-type HSV-1 infection caused ER compression around the NM, whereas the UL34-null mutation caused cytoplasmic dispersion of the ER; and (v) the UL34-null mutation significantly decreased the colocalization efficiency of lamin protein markers of the NM with CD98hc and gB. Collectively, these results indicate that HSV-1 infection causes redistribution of the ER around the NM, with resulting accumulation of ER-associated CD98hc, gB, and gH around the NM and that UL34 is required for ER redistribution, as well as for efficient recruitment to the NM of the ER-associated de-envelopment factors. Our study suggests that HSV-1 induces remodeling of the global ER architecture for recruitment of regulators mediating viral nuclear egress to the NM.IMPORTANCE The ER is an important cellular organelle that exists as a complex network extending throughout the cytoplasm. Although viruses often remodel the ER to facilitate viral replication, information on the effects of herpesvirus infections on ER morphological integrity is limited. Here, we showed that HSV-1 infection led to compression of the global ER architecture around the NM, resulting in accumulation of ER-associated regulators associated with nuclear egress of HSV-1 nucleocapsids. We also identified HSV-1 UL34 as a viral factor that mediated ER remodeling. Furthermore, we demonstrated that UL34 was required for efficient targeting of these regulators to the NM. To our knowledge, this is the first report showing that a herpesvirus remodels ER global architecture. Our study also provides insight into the mechanism by which the regulators for HSV-1 nuclear egress are recruited to the NM, where this viral event occurs.
Collapse
|
31
|
p53 Is a Host Cell Regulator during Herpes Simplex Encephalitis. J Virol 2016; 90:6738-6745. [PMID: 27170756 DOI: 10.1128/jvi.00846-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/06/2016] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED p53 is a critical host cell factor in the cellular response to a broad range of stress factors. We recently reported that p53 is required for efficient herpes simplex virus 1 (HSV-1) replication in cell culture. However, a defined role for p53 in HSV-1 replication and pathogenesis in vivo remains elusive. In this study, we examined the effects of p53 on HSV-1 infection in vivo using p53-deficient mice. Following intracranial inoculation, p53 knockout reduced viral replication in the brains of mice and led to significantly reduced rates of mortality due to herpes simplex encephalitis. These results suggest that p53 is an important host cell regulator of HSV-1 replication and pathogenesis in the central nervous system (CNS). IMPORTANCE HSV-1 causes sporadic cases of encephalitis, which, even with antiviral therapy, can result in severe neurological defects and even death. Many host cell factors involved in the regulation of CNS HSV-1 infection have been investigated using genetically modified mice. However, most of these factors are immunological regulators and act via immunological pathways in order to restrict CNS HSV-1 infection. They therefore provide limited information on intrinsic host cell regulators that may be involved in the facilitation of CNS HSV-1 infection. Here we demonstrate that a host cell protein, p53, which has generally been considered a host cell restriction factor for various viral infections, is required for efficient HSV-1 replication and pathogenesis in the CNS of mice. This is the first report showing that p53 positively regulates viral replication and pathogenesis in vivo and provides insights into its molecular mechanism, which may suggest novel clinical treatment options for herpes simplex encephalitis.
Collapse
|
32
|
Roles of Us8A and Its Phosphorylation Mediated by Us3 in Herpes Simplex Virus 1 Pathogenesis. J Virol 2016; 90:5622-5635. [PMID: 27030266 DOI: 10.1128/jvi.00446-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/24/2016] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The herpes simplex virus 1 (HSV-1) Us8A gene overlaps the gene that encodes glycoprotein E (gE). Previous studies have investigated the roles of Us8A in HSV-1 infection using null mutations in Us8A and gE; therefore, the role of Us8A remains to be elucidated. In this study, we investigated the function of Us8A and its phosphorylation at serine 61 (Ser-61), which we recently identified as a phosphorylation site by mass spectrometry-based phosphoproteomic analysis of HSV-1-infected cells, in HSV-1 pathogenesis. We observed that (i) the phosphorylation of Us8A Ser-61 in infected cells was dependent on the activity of the virus-encoded Us3 protein kinase; (ii) the Us8A null mutant virus exhibited a 10-fold increase in the 50% lethal dose for virulence in the central nervous system (CNS) of mice following intracranial infection compared with a repaired virus; (iii) replacement of Ser-61 with alanine (S61A) in Us8A had little effect on virulence in the CNS of mice following intracranial infection, whereas it significantly reduced the mortality of mice following ocular infection to levels similar to the Us8A null mutant virus; (iv) the Us8A S61A mutation also significantly reduced viral yields in mice following ocular infection, mainly in the trigeminal ganglia and brains; and (v) a phosphomimetic mutation at Us8A Ser-61 restored wild-type viral yields and virulence. Collectively, these results indicate that Us8A is a novel HSV-1 virulence factor and suggest that the Us3-mediated phosphorylation of Us8A Ser-61 regulates Us8A function for viral invasion into the CNS from peripheral sites. IMPORTANCE The DNA genomes of viruses within the subfamily Alphaherpesvirinae are divided into unique long (UL) and unique short (Us) regions. Us regions contain alphaherpesvirus-specific genes. Recently, high-throughput sequencing of ocular isolates of HSV-1 showed that Us8A was the most highly conserved of 13 herpes simplex virus 1 (HSV-1) genes mapped to the Us region, suggesting Us8A may have an important role in the HSV-1 life cycle. However, the specific role of Us8A in HSV-1 infection remains to be elucidated. Here, we show that Us8A is a virulence factor for HSV-1 infection in mice, and the function of Us8A for viral invasion into the central nervous system from peripheral sites is regulated by Us3-mediated phosphorylation of the protein at Ser-61. This is the first study to report the significance of Us8A and its regulation in HSV-1 infection.
Collapse
|
33
|
Hirohata Y, Kato A, Oyama M, Kozuka-Hata H, Koyanagi N, Arii J, Kawaguchi Y. Interactome analysis of herpes simplex virus 1 envelope glycoprotein H. Microbiol Immunol 2016; 59:331-7. [PMID: 25808324 DOI: 10.1111/1348-0421.12255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 03/10/2015] [Accepted: 03/17/2015] [Indexed: 12/21/2022]
Abstract
Herpes simplex virus 1 (HSV-1) envelope glycoprotein H (gH) is important for viral entry into cells and nuclear egress of nucleocapsids. To clarify additional novel roles of gH during HSV-1 replication, host cell proteins that interact with gH were screened for by tandem affinity purification coupled with mass spectrometry-based proteomics in 293T cells transiently expressing gH. This screen identified 123 host cell proteins as potential gH interactors. Of these proteins, general control nonderepressive-1 (GCN1), a trans-acting positive effector of GCN2 kinase that regulates phosphorylation of the α subunit of translation initiation factor 2 (eIF2α), was subsequently confirmed to interact with gH in HSV-1-infected cells. eIF2α phosphorylation is known to downregulate protein synthesis, and various viruses have evolved mechanisms to prevent the accumulation of phosphorylated eIF2α in infected cells. Here, it was shown that GCN1 knockdown reduces phosphorylation of eIF2α in HSV-1-infected cells and that the gH-null mutation increases eIF2α in HSV-1-infected cells, whereas gH overexpression in the absence of other HSV-1 proteins reduces eIF2α phosphorylation. These findings suggest that GCN1 can regulate eIF2α phosphorylation in HSV-1-infected cells and that the GCN1-binding viral partner gH is necessary and sufficient to prevent the accumulation of phosphorylated eIF2α. Our database of 123 host cell proteins potentially interacting with gH will be useful for future studies aimed at unveiling further novel functions of gH and the roles of cellular proteins in HSV-1-infected cells.
Collapse
Affiliation(s)
- Yoshitaka Hirohata
- Division of Molecular Virology, Department of Microbiology and Immunology.,Department of Infectious Disease Control, International Research Center for Infectious Diseases
| | - Akihisa Kato
- Division of Molecular Virology, Department of Microbiology and Immunology.,Department of Infectious Disease Control, International Research Center for Infectious Diseases
| | - Masaaki Oyama
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Naoto Koyanagi
- Division of Molecular Virology, Department of Microbiology and Immunology.,Department of Infectious Disease Control, International Research Center for Infectious Diseases
| | - Jun Arii
- Division of Molecular Virology, Department of Microbiology and Immunology.,Department of Infectious Disease Control, International Research Center for Infectious Diseases
| | - Yasushi Kawaguchi
- Division of Molecular Virology, Department of Microbiology and Immunology.,Department of Infectious Disease Control, International Research Center for Infectious Diseases
| |
Collapse
|
34
|
Hellberg T, Paßvogel L, Schulz KS, Klupp BG, Mettenleiter TC. Nuclear Egress of Herpesviruses: The Prototypic Vesicular Nucleocytoplasmic Transport. Adv Virus Res 2016; 94:81-140. [PMID: 26997591 DOI: 10.1016/bs.aivir.2015.10.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herpesvirus particles mature in two different cellular compartments. While capsid assembly and packaging of the genomic linear double-stranded DNA occur in the nucleus, virion formation takes place in the cytoplasm by the addition of numerous tegument proteins as well as acquisition of the viral envelope by budding into cellular vesicles derived from the trans-Golgi network containing virally encoded glycoproteins. To gain access to the final maturation compartment, herpesvirus nucleocapsids have to cross a formidable barrier, the nuclear envelope (NE). Since the ca. 120 nm diameter capsids are unable to traverse via nuclear pores, herpesviruses employ a vesicular transport through both leaflets of the NE. This process involves proteins which support local dissolution of the nuclear lamina to allow access of capsids to the inner nuclear membrane (INM), drive vesicle formation from the INM and mediate inclusion of the capsid as well as scission of the capsid-containing vesicle (also designated as "primary virion"). Fusion of the vesicle membrane (i.e., the "primary envelope") with the outer nuclear membrane subsequently results in release of the nucleocapsid into the cytoplasm for continuing virion morphogenesis. While this process has long been thought to be unique for herpesviruses, a similar pathway for nuclear egress of macromolecular complexes has recently been observed in Drosophila. Thus, herpesviruses may have coopted a hitherto unrecognized cellular mechanism of vesicle-mediated nucleocytoplasmic transport. This could have far reaching consequences for our understanding of cellular functions as again unraveled by the study of viruses.
Collapse
Affiliation(s)
- Teresa Hellberg
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Lars Paßvogel
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Katharina S Schulz
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
35
|
Cellular Transcriptional Coactivator RanBP10 and Herpes Simplex Virus 1 ICP0 Interact and Synergistically Promote Viral Gene Expression and Replication. J Virol 2016; 90:3173-86. [PMID: 26739050 DOI: 10.1128/jvi.03043-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 12/30/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED To investigate the molecular mechanism(s) by which herpes simplex virus 1 (HSV-1) regulatory protein ICP0 promotes viral gene expression and replication, we screened cells overexpressing ICP0 for ICP0-binding host cell proteins. Tandem affinity purification of transiently expressed ICP0 coupled with mass spectrometry-based proteomics technology and subsequent analyses showed that ICP0 interacted with cell protein RanBP10, a known transcriptional coactivator, in HSV-1-infected cells. Knockdown of RanBP10 in infected HEp-2 cells resulted in a phenotype similar to that observed with the ICP0-null mutation, including reduction in viral replication and in the accumulation of viral immediate early (ICP27), early (ICP8), and late (VP16) mRNAs and proteins. In addition, RanBP10 knockdown or the ICP0-null mutation increased the level of histone H3 association with the promoters of these viral genes, which is known to repress transcription. These effects observed in wild-type HSV-1-infected HEp-2 RanBP10 knockdown cells or those observed in ICP0-null mutant virus-infected control HEp-2 cells were remarkably increased in ICP0-null mutant virus-infected HEp-2 RanBP10 knockdown cells. Our results suggested that ICP0 and RanBP10 redundantly and synergistically promoted viral gene expression by regulating chromatin remodeling of the HSV-1 genome for efficient viral replication. IMPORTANCE Upon entry of herpesviruses into a cell, viral gene expression is restricted by heterochromatinization of the viral genome. Therefore, HSV-1 has evolved multiple mechanisms to counteract this epigenetic silencing for efficient viral gene expression and replication. HSV-1 ICP0 is one of the viral proteins involved in counteracting epigenetic silencing. Here, we identified RanBP10 as a novel cellular ICP0-binding protein and showed that RanBP10 and ICP0 appeared to act synergistically to promote viral gene expression and replication by modulating viral chromatin remodeling. Our results provide insight into the mechanisms by which HSV-1 regulates viral chromatin remodeling for efficient viral gene expression and replication.
Collapse
|
36
|
Sato Y, Kato A, Arii J, Koyanagi N, Kozuka-Hata H, Oyama M, Kawaguchi Y. Ubiquitin-specific protease 9X in host cells interacts with herpes simplex virus 1 ICP0. J Vet Med Sci 2015; 78:405-10. [PMID: 26596467 PMCID: PMC4829507 DOI: 10.1292/jvms.15-0598] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) expresses infected cell protein 0 (ICP0), a multi-functional protein with E3 ubiquitin ligase activity and a critical regulator of the viral life cycle. To obtain novel insights into the molecular mechanism by which ICP0 regulates HSV-1 replication, we analyzed HEp-2 cells infected with HSV-1 by tandem affinity purification and mass spectrometry-based proteomics. This screen identified 50 host-cell proteins that potentially interact with ICP0, including ubiquitin-specific protease 9X (USP9X). The interaction between ICP0 and USP9X was confirmed by co-immunoprecipitation. Notably, USP9X depletion increased the ICP0 abundance and promoted viral replication. These results suggest that USP9X-dependent regulation of ICP0 expression is part of a complex feedback mechanism that facilitates optimal HSV-1 replication.
Collapse
Affiliation(s)
- Yuka Sato
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Characterization of a Herpes Simplex Virus 1 (HSV-1) Chimera in Which the Us3 Protein Kinase Gene Is Replaced with the HSV-2 Us3 Gene. J Virol 2015; 90:457-73. [PMID: 26491159 DOI: 10.1128/jvi.02376-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/13/2015] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Us3 protein kinases encoded by herpes simplex virus 1 (HSV-1) and 2 (HSV-2) play important roles in viral replication and pathogenicity. To investigate type-specific differences between HSV-1 Us3 and HSV-2 Us3 in cells infected by viruses with all the same viral gene products except for their Us3 kinases, we constructed and characterized a recombinant HSV-1 in which its Us3 gene was replaced with the HSV-2 Us3 gene. Replacement of HSV-1 Us3 with HSV-2 Us3 had no apparent effect on viral growth in cell cultures or on the range of proteins phosphorylated by Us3. HSV-2 Us3 efficiently compensated for HSV-1 Us3 functions, including blocking apoptosis, controlling infected cell morphology, and downregulating cell surface expression of viral envelope glycoprotein B. In contrast, replacement of HSV-1 Us3 by HSV-2 Us3 changed the phosphorylation status of UL31 and UL34, which are critical viral regulators of nuclear egress. It also caused aberrant localization of these viral proteins and aberrant accumulation of primary enveloped virions in membranous vesicle structures adjacent to the nuclear membrane, and it reduced viral cell-cell spread in cell cultures and pathogenesis in mice. These results clearly demonstrated biological differences between HSV-1 Us3 and HSV-2 Us3, especially in regulation of viral nuclear egress and phosphorylation of viral regulators critical for this process. Our study also suggested that the regulatory role(s) of HSV-1 Us3, which was not carried out by HSV-2 Us3, was important for HSV-1 cell-cell spread and pathogenesis in vivo. IMPORTANCE A previous study comparing the phenotypes of HSV-1 and HSV-2 suggested that the HSV-2 Us3 kinase lacked some of the functions of HSV-1 Us3 kinase. The difference between HSV-1 and HSV-2 Us3 kinases appeared to be due to the fact that some Us3 phosphorylation sites in HSV-1 proteins are not conserved in the corresponding HSV-2 proteins. Therefore, we generated recombinant HSV-1 strains YK781 (Us3-chimera) with HSV-2 Us3 and its repaired virus YK783 (Us3-repair) with HSV-1 Us3, to compare the activities of HSV-1 Us3 and HSV-2 Us3 in cells infected by viruses with the same HSV-1 gene products except for their Us3 kinases. We report here that some processes in viral nuclear egress and pathogenesis in vivo that have been attributed to HSV-1 Us3 could not be carried out by HSV-2 Us3. Therefore, our study clarified the biological differences between HSV-1 Us3 and HSV-2 Us3, which may be relevant to viral pathogenesis in vivo.
Collapse
|
38
|
Xiong R, Rao P, Kim S, Li M, Wen X, Yuan W. Herpes Simplex Virus 1 US3 Phosphorylates Cellular KIF3A To Downregulate CD1d Expression. J Virol 2015; 89:6646-55. [PMID: 25878107 PMCID: PMC4468489 DOI: 10.1128/jvi.00214-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/09/2015] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED Herpes simplex virus 1 (HSV-1) causes one of the most prevalent herpesviral infections in humans and is the leading etiological agent of viral encephalitis and eye infections. Our understanding of how HSV-1 interacts with the host at the cellular and organismal levels is still limited. We and others previously reported that, upon infection, HSV-1 rapidly and efficiently downregulates CD1d cell surface expression and suppresses the function of NKT cells, a group of innate T cells with critical immunoregulatory function. The viral protein kinase US3 plays a major role in this immune evasion mechanism, and its kinase activity is required for this function. In this study, we investigated the cellular substrate(s) phosphorylated by US3 and how it mediates US3 suppression of CD1d recycling. We identified the type II kinesin motor protein KIF3A as a critical kinesin factor in the cell surface expression of CD1d. Interestingly, KIF3A is phosphorylated by US3 both in vitro and in infected cells. Mass spectrometry analysis of purified KIF3A showed that it is phosphorylated predominantly at serine 687 by US3. Ablation of this phosphorylation abolished US3-mediated downregulation of CD1d expression, suggesting that phosphorylation of KIF3A is the primary mechanism of HSV-1 suppression of CD1d expression by US3 protein. Understanding of the precise mechanism of viral modulation of CD1d expression will help to develop more efficient vaccines in the future to boost host NKT cell-mediated immune responses against herpesviruses. IMPORTANCE Herpes simplex virus 1 (HSV-1) is among the most common human pathogens. Little is known regarding the exact mechanism by which this virus evades the human immune system, particularly the innate immune system. We previously reported that HSV-1 employs its protein kinase US3 to modulate the expression of the key antigen-presenting molecule CD1d to evade the antiviral function of NKT cells. Here we identified the key cellular motor protein KIF3A as a cellular substrate phosphorylated by US3, and this phosphorylation event mediates US3-induced immune evasion.
Collapse
Affiliation(s)
- Ran Xiong
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ping Rao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Seil Kim
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Michelle Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Xiangshu Wen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
39
|
Gershburg S, Geltz J, Peterson KE, Halford WP, Gershburg E. The UL13 and US3 Protein Kinases of Herpes Simplex Virus 1 Cooperate to Promote the Assembly and Release of Mature, Infectious Virions. PLoS One 2015; 10:e0131420. [PMID: 26115119 PMCID: PMC4482649 DOI: 10.1371/journal.pone.0131420] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 06/02/2015] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) encodes two bona fide serine/threonine protein kinases, the US3 and UL13 gene products. HSV-1 ΔUS3 mutants replicate with wild-type efficiency in cultured cells, and HSV-1 ΔUL13 mutants exhibit <10-fold reduction in infectious viral titers. Given these modest phenotypes, it remains unclear how the US3 and UL13 protein kinases contribute to HSV-1 replication. In the current study, we designed a panel of HSV-1 mutants, in which portions of UL13 and US3 genes were replaced by expression cassettes encoding mCherry protein or green fluorescent protein (GFP), respectively, and analyzed DNA replication, protein expression, and spread of these mutants in several cell types. Loss of US3 function alone had largely negligible effect on viral DNA accumulation, gene expression, virion release, and spread. Loss of UL13 function alone also had no appreciable effects on viral DNA levels. However, loss of UL13 function did result in a measurable decrease in the steady-state levels of two viral glycoproteins (gC and gD), release of total and infectious virions, and viral spread. Disruption of both genes did not affect the accumulation of viral DNA, but resulted in further reduction in gC and gD steady-state levels, and attenuation of viral spread and infectious virion release. These data show that the UL13 kinase plays an important role in the late phase of HSV-1 infection, likely by affecting virion assembly and/or release. Moreover, the data suggest that the combined activities of the US3 and UL13 protein kinases are critical to the efficient assembly and release of infectious virions from HSV-1-infected cells.
Collapse
Affiliation(s)
- Svetlana Gershburg
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794–9626, United States of America
| | - Joshua Geltz
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794–9626, United States of America
| | - Karin E. Peterson
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, MT 59840, United States of America
| | - William P. Halford
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794–9626, United States of America
| | - Edward Gershburg
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794–9626, United States of America
- * E-mail:
| |
Collapse
|
40
|
Herpes Simplex Virus 1 Recruits CD98 Heavy Chain and β1 Integrin to the Nuclear Membrane for Viral De-Envelopment. J Virol 2015; 89:7799-812. [PMID: 25995262 DOI: 10.1128/jvi.00741-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/11/2015] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Herpesviruses have evolved a unique mechanism for nucleocytoplasmic transport of nascent nucleocapsids: the nucleocapsids bud through the inner nuclear membrane (INM; primary envelopment), and the enveloped nucleocapsids then fuse with the outer nuclear membrane (de-envelopment). Little is known about the molecular mechanism of herpesviral de-envelopment. We show here that the knockdown of both CD98 heavy chain (CD98hc) and its binding partner β1 integrin induced membranous structures containing enveloped herpes simplex virus 1 (HSV-1) virions that are invaginations of the INM into the nucleoplasm and induced aberrant accumulation of enveloped virions in the perinuclear space and in the invagination structures. These effects were similar to those of the previously reported mutation(s) in HSV-1 proteins gB, gH, UL31, and/or Us3, which were shown here to form a complex(es) with CD98hc in HSV-1-infected cells. These results suggested that cellular proteins CD98hc and β1 integrin synergistically or independently regulated HSV-1 de-envelopment, probably by interacting directly and/or indirectly with these HSV-1 proteins. IMPORTANCE Certain cellular and viral macromolecular complexes, such as Drosophila large ribonucleoprotein complexes and herpesvirus nucleocapsids, utilize a unique vesicle-mediated nucleocytoplasmic transport: the complexes acquire primary envelopes by budding through the inner nuclear membrane into the space between the inner and outer nuclear membranes (primary envelopment), and the enveloped complexes then fuse with the outer nuclear membrane to release de-enveloped complexes into the cytoplasm (de-envelopment). However, there is a lack of information on the molecular mechanism of de-envelopment fusion. We report here that HSV-1 recruited cellular fusion regulatory proteins CD98hc and β1 integrin to the nuclear membrane for viral de-envelopment fusion. This is the first report of cellular proteins required for efficient de-envelopment of macromolecular complexes during their nuclear egress.
Collapse
|
41
|
Function of the Herpes Simplex Virus 1 Small Capsid Protein VP26 Is Regulated by Phosphorylation at a Specific Site. J Virol 2015; 89:6141-7. [PMID: 25810545 DOI: 10.1128/jvi.00547-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/18/2015] [Indexed: 12/27/2022] Open
Abstract
Replacement of the herpes simplex virus 1 small capsid protein VP26 phosphorylation site Thr-111 with alanine reduced viral replication and neurovirulence to levels observed with the VP26 null mutation. This mutation reduced VP26 expression and mislocalized VP26 and its binding partner, the major capsid protein VP5, in the nucleus. VP5 mislocalization was also observed with the VP26 null mutation. Thus, we postulate that phosphorylation of VP26 at Thr-111 regulates VP26 function in vitro and in vivo.
Collapse
|
42
|
Koyanagi N, Imai T, Arii J, Kato A, Kawaguchi Y. Role of herpes simplex virus 1 Us3 in viral neuroinvasiveness. Microbiol Immunol 2014; 58:31-7. [PMID: 24200420 DOI: 10.1111/1348-0421.12108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 10/29/2013] [Accepted: 10/31/2013] [Indexed: 12/25/2022]
Abstract
Us3 is a serine-threonine protein kinase that is encoded by herpes simplex virus 1 (HSV-1). In experimental animal models of HSV infection, peripheral and intracranial inoculations can be used to study viral pathogenicity in peripheral sites (e.g., eyes and vagina) and central nervous systems (CNSs), respectively. In addition, peripheral inoculation can be used to investigate this virus' ability to invade the CNS (neuroinvasiveness) from peripheral sites. HSV-1 Us3 has previously been shown to be critical for viral pathogenicity in both peripheral sites and CNSs of mice. However, the role of HSV-1 Us3 in viral neuroinvasiveness has not yet been elucidated. In the present study, the yields of a Us3 null mutant virus and its repaired virus in the eyes, trigeminal ganglia, and brains of mice following ocular inoculation were examined. It was found that, although the repaired virus appeared in the brains of mice 3 days after infection, peak replication occurring 7 days after infection, no viral replication of the Us3 null mutant virus was detectable. These findings indicate that HSV-1 Us3 plays a crucial role in the ability of the virus to invade the brain from the eyes. Thus, HSV-1 Us3 is a significant neuroinvasiveness factor in vivo.
Collapse
Affiliation(s)
- Naoto Koyanagi
- Division of Molecular Virology, Department of Microbiology and Immunology; Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-Ku, Tokyo, 108-8639, Japan
| | | | | | | | | |
Collapse
|
43
|
Phosphorylation of herpes simplex virus 1 dUTPase regulates viral virulence and genome integrity by compensating for low cellular dUTPase activity in the central nervous system. J Virol 2014; 89:241-8. [PMID: 25320299 DOI: 10.1128/jvi.02497-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
UNLABELLED A mutation in herpes simplex virus 1 dUTPase (vdUTPase), which precluded its phosphorylation at Ser-187, decreased viral neurovirulence and increased mutation frequency in progeny virus genomes in the brains of mice where endogenous cellular dUTPase activity was relatively low, and overexpression of cellular dUTPase restored viral neurovirulence and mutation frequency altered by the mutation. Thus, phosphorylation of vdUTPase appeared to regulate viral virulence and genome integrity by compensating for low cellular dUTPase activity in vivo. IMPORTANCE Many DNA viruses encode a homolog of host cell dUTPases, which are known to function in accurate replication of cellular DNA genomes. The viral dUTPase activity has long been assumed to play a role in viral replication by preventing mutations in progeny virus genomes if cellular dUTPase activity was not sufficient. Here, we showed that a mutation in herpes simplex virus 1 dUTPase, which precluded its phosphorylation at Ser-187 and reduced its activity, decreased viral neurovirulence and increased mutation frequency in progeny virus genomes in the brains of mice where endogenous cellular dUTPase activity was relatively low. In contrast, overexpression of cellular dUTPase restored viral neurovirulence and mutation frequency altered by the mutation in the brains of mice. This is the first report, to our knowledge, directly showing that viral dUTPase activity regulates viral genome integrity and pathogenicity by compensating for insufficient cellular dUTPase activity in vivo.
Collapse
|
44
|
The UL12 protein of herpes simplex virus 1 is regulated by tyrosine phosphorylation. J Virol 2014; 88:10624-34. [PMID: 24991005 DOI: 10.1128/jvi.01634-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED The herpes simplex virus 1 (HSV-1) UL12 protein (pUL12) is a nuclease that is critical for viral replication in vitro and neurovirulence in vivo. In this study, mass spectrometric analysis of pUL12 and phosphate-affinity SDS-polyacrylamide gel electrophoresis analysis identified tyrosine at pUL12 residue 371 (Tyr-371) as a pUL12 phosphorylation site: Tyr-371 is conserved in pUL12 homologs in herpesviruses in all Herpesviridae subfamilies. Replacement of Tyr-371 with phenylalanine (Y371F) in pUL12 (i) abolished its exonuclease activity in HSV-1-infected Vero, HEL, and A549 cells, (ii) reduced viral replication, cell-cell spread, and pUL12 expression in infected cells in a cell type-dependent manner, (iii) led to aberrant subcellular localization of pUL12 in infected cells in a cell type-dependent manner, and (iv) reduced HSV-1 neurovirulence in mice. The effects of the pUL12 Y371F mutation in cell cultures and mice were similar to those of a nuclease-dead double mutation in pUL12, although the Y371F mutation reduced viral replication severalfold more than the nuclease-dead double mutation in a cell type- and multiplicity-of-infection-dependent manner. Replacement of Tyr-371 with glutamic acid, which mimics constitutive phosphorylation, restored the wild-type phenotype in cell cultures and mice. These results suggested that phosphorylation of pUL12 Tyr-371 was essential for pUL12 to express its nuclease activity in HSV-1-infected cells and that this phosphorylation promoted viral replication and cell-cell spread in cell cultures and neurovirulence in mice mainly by upregulating pUL12 nuclease activity and, in part, by regulating the subcellular localization and expression of pUL12 in HSV-1-infected cells. IMPORTANCE Herpesviruses encode a considerable number of enzymes for their replication. Like cellular enzymes, the viral enzymes need to be properly regulated in infected cells. Although the functional aspects of herpesvirus enzymes have gradually been clarified, information on how most of these enzymes are regulated in infected cells is lacking. In the present study, we report that the enzymatic activity of the herpes simplex virus 1 alkaline nuclease pUL12 was regulated by phosphorylation of pUL12 Tyr-371 in infected cells and that this phosphorylation promoted viral replication and cell-cell spread in cell cultures and neurovirulence in mice, mainly by upregulating pUL12 nuclease activity. Interestingly, pUL12 and tyrosine at pUL12 residue 371 appeared to be conserved in all herpesviruses in the family Herpesviridae, raising the possibility that the herpesvirus pUL12 homologs may also be regulated by phosphorylation of the conserved tyrosine residue.
Collapse
|
45
|
Phosphorylation of herpes simplex virus 1 dUTPase upregulated viral dUTPase activity to compensate for low cellular dUTPase activity for efficient viral replication. J Virol 2014; 88:7776-85. [PMID: 24760895 DOI: 10.1128/jvi.00603-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We recently reported that herpes simplex virus 1 (HSV-1) protein kinase Us3 phosphorylated viral dUTPase (vdUTPase) at serine 187 (Ser-187) to upregulate its enzymatic activity, which promoted HSV-1 replication in human neuroblastoma SK-N-SH cells but not in human carcinoma HEp-2 cells. In the present study, we showed that endogenous cellular dUTPase activity in SK-N-SH cells was significantly lower than that in HEp-2 cells and that overexpression of cellular dUTPase in SK-N-SH cells increased the replication of an HSV-1 mutant with an alanine substitution for Ser-187 (S187A) in vdUTPase to the wild-type level. In addition, we showed that knockdown of cellular dUTPase in HEp-2 cells significantly reduced replication of the mutant vdUTPase (S187A) virus but not that of wild-type HSV-1. Furthermore, the replacement of Ser-187 in vdUTPase with aspartic acid, which mimics constitutive phosphorylation, and overexpression of cellular dUTPase restored viral replication to the wild-type level in cellular dUTPase knockdown HEp-2 cells. These results indicated that sufficient dUTPase activity was required for efficient HSV-1 replication and supported the hypothesis that Us3 phosphorylation of vdUTPase Ser-187 upregulated vdUTPase activity in host cells with low cellular dUTPase activity to produce efficient viral replication.virus. Importance: It has long been assumed that dUTPase activity is important for replication of viruses encoding a dUTPase and that the viral dUTPase (vdUTPase) activity was needed if host cell dUTPase activity was not sufficient for efficient viral replication. In the present study, we showed that the S187A mutation in HSV-1 vdUTPase, which impaired its enzymatic activity, reduced viral replication in SK-N-SH cells, which have low endogenous cellular dUTPase activity, and that overexpression of cellular dUTPase restored viral replication to the wild-type level. We also showed that knockdown of cellular dUTPase in HEp-2 cells, which have higher dUTPase activity than do SK-N-SH cells, reduced replication of HSV-1 with the vdUTPase mutation but had no effect on wild-type virus replication. This is the first report, to our knowledge, directly showing that dUTPase activity is critical for efficient viral replication and that vdUTPase compensates for low host cell dUTPase activity to produce efficient viral replication.
Collapse
|
46
|
Phosphorylation of a herpes simplex virus 1 dUTPase by a viral protein kinase, Us3, dictates viral pathogenicity in the central nervous system but not at the periphery. J Virol 2013; 88:2775-85. [PMID: 24352467 DOI: 10.1128/jvi.03300-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Herpes simplex virus 1 (HSV-1) encodes Us3 protein kinase, which is critical for viral pathogenicity in both mouse peripheral sites (e.g., eyes and vaginas) and in the central nervous systems (CNS) of mice after intracranial and peripheral inoculations, respectively. Whereas some Us3 substrates involved in Us3 pathogenicity in peripheral sites have been reported, those involved in Us3 pathogenicity in the CNS remain to be identified. We recently reported that Us3 phosphorylated HSV-1 dUTPase (vdUTPase) at serine 187 (Ser-187) in infected cells, and this phosphorylation promoted viral replication by regulating optimal enzymatic activity of vdUTPase. In the present study, we show that the replacement of vdUTPase Ser-187 by alanine (S187A) significantly reduced viral replication and virulence in the CNS of mice following intracranial inoculation and that the phosphomimetic substitution at vdUTPase Ser-187 in part restored the wild-type viral replication and virulence. Interestingly, the S187A mutation in vdUTPase had no effect on viral replication and pathogenic effects in the eyes and vaginas of mice after ocular and vaginal inoculation, respectively. Similarly, the enzyme-dead mutation in vdUTPase significantly reduced viral replication and virulence in the CNS of mice after intracranial inoculation, whereas the mutation had no effect on viral replication and pathogenic effects in the eyes and vaginas of mice after ocular and vaginal inoculation, respectively. These observations suggested that vdUTPase was one of the Us3 substrates responsible for Us3 pathogenicity in the CNS and that the CNS-specific virulence of HSV-1 involved strict regulation of vdUTPase activity by Us3 phosphorylation. IMPORTANCE Herpes simplex virus 1 (HSV-1) encodes a viral protein kinase Us3 which is critical for pathogenicity both in peripheral sites and in the central nervous systems (CNS) of mice following peripheral and intracranial inoculations, respectively. Whereas some Us3 substrates involved in Us3 pathogenicity in peripheral sites have been reported, those involved in Us3 pathogenicity in the CNS remain to be identified. Here, we report that Us3 phosphorylation of viral dUTPase (vdUTPase) at serine 187 (Ser-187), which has been shown to promote the vdUTPase activity, appears to be critical for viral virulence in the CNS but not for pathogenic effects in peripheral sites. Since HSV proteins critical for viral virulence in the CNS are, in almost all cases, also involved in viral pathogenicity at peripheral sites, this phosphorylation event is a unique report of a specific mechanism involved in HSV-1 virulence in the CNS.
Collapse
|
47
|
|
48
|
Herpes simplex virus 1 protein kinase Us3 phosphorylates viral dUTPase and regulates its catalytic activity in infected cells. J Virol 2013; 88:655-66. [PMID: 24173231 DOI: 10.1128/jvi.02710-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Us3 is a serine-threonine protein kinase encoded by herpes simplex virus 1 (HSV-1). In this study, a large-scale phosphoproteomic analysis of titanium dioxide affinity chromatography-enriched phosphopeptides from HSV-1-infected cells using high-accuracy mass spectrometry (MS) and subsequent analyses showed that Us3 phosphorylated HSV-1-encoded dUTPase (vdUTPase) at serine 187 (Ser-187) in HSV-1-infected cells. Thus, the following observations were made. (i) In in vitro kinase assays, Ser-187 in the vdUTPase domain was specifically phosphorylated by Us3. (ii) Phosphorylation of vdUTPase Ser-187 in HSV-1-infected cells was detected by phosphate-affinity polyacrylamide gel electrophoresis analyses and was dependent on the kinase activity of Us3. (iii) Replacement of Ser-187 with alanine (S187A) in vdUTPase and an amino acid substitution in Us3 that inactivated its kinase activity significantly downregulated the enzymatic activity of vdUTPase in HSV-1-infected cells, whereas a phosphomimetic substitution at vdUTPase Ser-187 restored the wild-type enzymatic activity of vdUTPase. (iv) The vdUTPase S187A mutation as well as the kinase-dead mutation in Us3 significantly reduced HSV-1 replication in human neuroblastoma SK-N-SH cells at a multiplicity of infection (MOI) of 5 but not at an MOI of 0.01, whereas the phosphomimetic substitution at vdUTPase Ser-187 restored the wild-type viral replication at an MOI of 5. In contrast, these mutations had no effect on HSV-1 replication in Vero and HEp-2 cells. Collectively, our results suggested that Us3 phosphorylation of vdUTPase Ser-187 promoted HSV-1 replication in a manner dependent on cell types and MOIs by regulating optimal enzymatic activity of vdUTPase.
Collapse
|
49
|
Stahl JA, Chavan SS, Sifford JM, MacLeod V, Voth DE, Edmondson RD, Forrest JC. Phosphoproteomic analyses reveal signaling pathways that facilitate lytic gammaherpesvirus replication. PLoS Pathog 2013; 9:e1003583. [PMID: 24068923 PMCID: PMC3777873 DOI: 10.1371/journal.ppat.1003583] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 07/15/2013] [Indexed: 12/27/2022] Open
Abstract
Lytic gammaherpesvirus (GHV) replication facilitates the establishment of lifelong latent infection, which places the infected host at risk for numerous cancers. As obligate intracellular parasites, GHVs must control and usurp cellular signaling pathways in order to successfully replicate, disseminate to stable latency reservoirs in the host, and prevent immune-mediated clearance. To facilitate a systems-level understanding of phosphorylation-dependent signaling events directed by GHVs during lytic replication, we utilized label-free quantitative mass spectrometry to interrogate the lytic replication cycle of murine gammaherpesvirus-68 (MHV68). Compared to controls, MHV68 infection regulated by 2-fold or greater ca. 86% of identified phosphopeptides - a regulatory scale not previously observed in phosphoproteomic evaluations of discrete signal-inducing stimuli. Network analyses demonstrated that the infection-associated induction or repression of specific cellular proteins globally altered the flow of information through the host phosphoprotein network, yielding major changes to functional protein clusters and ontologically associated proteins. A series of orthogonal bioinformatics analyses revealed that MAPK and CDK-related signaling events were overrepresented in the infection-associated phosphoproteome and identified 155 host proteins, such as the transcription factor c-Jun, as putative downstream targets. Importantly, functional tests of bioinformatics-based predictions confirmed ERK1/2 and CDK1/2 as kinases that facilitate MHV68 replication and also demonstrated the importance of c-Jun. Finally, a transposon-mutant virus screen identified the MHV68 cyclin D ortholog as a viral protein that contributes to the prominent MAPK/CDK signature of the infection-associated phosphoproteome. Together, these analyses enhance an understanding of how GHVs reorganize and usurp intracellular signaling networks to facilitate infection and replication.
Collapse
Affiliation(s)
- James A. Stahl
- Dept. of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Shweta S. Chavan
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- UALR/UAMS Joint Program in Bioinformatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jeffrey M. Sifford
- Dept. of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Veronica MacLeod
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Daniel E. Voth
- Dept. of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Ricky D. Edmondson
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - J. Craig Forrest
- Dept. of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
50
|
Imai T, Koyanagi N, Ogawa R, Shindo K, Suenaga T, Sato A, Arii J, Kato A, Kiyono H, Arase H, Kawaguchi Y. Us3 kinase encoded by herpes simplex virus 1 mediates downregulation of cell surface major histocompatibility complex class I and evasion of CD8+ T cells. PLoS One 2013; 8:e72050. [PMID: 23951282 PMCID: PMC3741198 DOI: 10.1371/journal.pone.0072050] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/08/2013] [Indexed: 11/21/2022] Open
Abstract
Detection and elimination of virus-infected cells by CD8+ cytotoxic T lymphocytes (CTLs) depends on recognition of virus-derived peptides presented by major histocompatibility complex class I (MHC-I) molecules on the surface of infected cells. In the present study, we showed that inactivation of the activity of viral kinase Us3 encoded by herpes simplex virus 1 (HSV-1), the etiologic agent of several human diseases and a member of the alphaherpesvirinae, significantly increased cell surface expression of MHC-I, thereby augmenting CTL recognition of infected cells in vitro. Overexpression of Us3 by itself had no effect on cell surface expression of MHC-I and Us3 was not able to phosphorylate MHC-I in vitro, suggesting that Us3 indirectly downregulated cell surface expression of MHC-I in infected cells. We also showed that inactivation of Us3 kinase activity induced significantly more HSV-1-specific CD8+ T cells in mice. Interestingly, depletion of CD8+ T cells in mice significantly increased replication of a recombinant virus encoding a kinase-dead mutant of Us3, but had no effect on replication of a recombinant virus in which the kinase-dead mutation was repaired. These results indicated that Us3 kinase activity is required for efficient downregulation of cell surface expression of MHC-I and mediates evasion of HSV-1-specific CD8+ T cells. Our results also raised the possibility that evasion of HSV-1-specific CD8+ T cells by HSV-1 Us3-mediated inhibition of MHC-I antigen presentation might in part contribute to viral replication in vivo.
Collapse
Affiliation(s)
- Takahiko Imai
- Division of Molecular Virology, Department of Microbiology and Immunology, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Nippon Institute for Biological Science, Ome, Tokyo, Japan
| | - Naoto Koyanagi
- Division of Molecular Virology, Department of Microbiology and Immunology, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Ryo Ogawa
- Division of Molecular Virology, Department of Microbiology and Immunology, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Keiko Shindo
- Division of Molecular Virology, Department of Microbiology and Immunology, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Tadahiro Suenaga
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- World Premier International Research Center Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Ayuko Sato
- Division of Mucosal Immunology, Department of Microbiology and Immunology, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Jun Arii
- Division of Molecular Virology, Department of Microbiology and Immunology, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Akihisa Kato
- Division of Molecular Virology, Department of Microbiology and Immunology, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, Department of Microbiology and Immunology, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Hisashi Arase
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- World Premier International Research Center Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Yasushi Kawaguchi
- Division of Molecular Virology, Department of Microbiology and Immunology, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|