1
|
Zhao X, Li W, Sun Y, Ma J. Oncolytic senecavirus A in tumor immunotherapy: Mechanisms, progress, and future directions. Virology 2024; 603:110338. [PMID: 39667099 DOI: 10.1016/j.virol.2024.110338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
Oncolytic virotherapy has emerged as a promising immunotherapy strategy against cancer. As the first picornavirus tested in humans for its oncolytic potential, Senecavirus A (SVA) possesses several advantageous features, including its small size, rapid replication, and ability to penetrate the vascular system of solid tumors, allowing for the specific targeting and lysis of tumor cells. Additionally, SVA does not integrate into the host genome, thus avoiding potential genomic damage, and it lacks oncogenes or other virulence genes. Importantly, no significant pathogenic effects have been observed in humans or companion animals. Due to its simple genetic structure, SVA is amenable to various genetic modifications, allowing it to carry exogenous genes to further enhance tumor therapy. This review summarizes current knowledge of SVA's mechanisms of action and its progress in oncolytic therapy research, while also addressing the challenges and future directions.
Collapse
Affiliation(s)
- Xiaoya Zhao
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Wenjie Li
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yuan Sun
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
2
|
Peng Y, Li C, Zhang L, Yu R, Wang Y, Pan L, Guo H, Wei Y, Liu X. Cyclophilin A promotes porcine deltacoronavirus replication by regulating autophagy via the Ras/AKT/NF-κB pathway. Vet Microbiol 2024; 297:110190. [PMID: 39084161 DOI: 10.1016/j.vetmic.2024.110190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Porcine deltacoronavirus (PDCoV) is an important enteric coronavirus that has caused major worldwide economic losses in the pig industry. Previous studies have shown that cyclophilin A (CypA), a key player in aetiological agent infection, is involved in regulating viral infection. However, the role of CypA during PDCoV replication remains unknown. Therefore, in this study, the role of CypA in PDCoV replication was determined. The results demonstrated that PDCoV infection increased CypA expression in LLC-PK1 cells. CypA overexpression substantially promoted PDCoV replication. Proteomic analysis was subsequently used to assess changes in total protein expression levels after CypA overexpression. Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used to further determine the mechanisms by which CypA affects viral replication. Proteomic analysis revealed that CypA protein overexpression significantly upregulated 75 differentially expressed proteins and significantly downregulated 172 differentially expressed proteins. The differentially expressed proteins were involved mainly in autophagy and activation of the host innate immune pathway. Subsequent experimental results revealed that the CypA protein promoted viral replication by reducing the levels of natural immune cytokines and mitigated the inhibitory effect of chloroquine (CQ) on viral replication. Further investigation revealed that CypA could activate the Ras/AKT/NF-κB pathway, mediate autophagy signalling and promote PDCoV replication. In summary, the findings of this study may help elucidate the role of CypA in PDCoV replication.
Collapse
Affiliation(s)
- Yousheng Peng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China; State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Chenchen Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Liping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Ruiming Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China; State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Yonglu Wang
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Li Pan
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Xinsheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China.
| |
Collapse
|
3
|
Li H, Xie Z, Lei X, Chen M, Zheng T, Lin C, Ning Z. TRIM5 inhibits the replication of Senecavirus A by promoting the RIG-I-mediated type I interferon antiviral response. Vet Res 2024; 55:101. [PMID: 39143491 PMCID: PMC11323631 DOI: 10.1186/s13567-024-01354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/27/2024] [Indexed: 08/16/2024] Open
Abstract
Senecavirus A (SVA) is an emerging virus that poses a threat to swine herds worldwide. To date, the role of tripartite motif 5 (TRIM5) in the replication of viruses has not been evaluated. Here, TRIM5 was reported to inhibit SVA replication by promoting the type I interferon (IFN) antiviral response mediated by retinoic acid-inducible gene I (RIG-I). TRIM5 expression was significantly upregulated in SVA-infected cells, and TRIM5 overexpression inhibited viral replication and promoted IFN-α, IFN-β, interleukin-1beta (IL-1β), IL-6, and IL-18 expression. Conversely, interfering with the expression of TRIM5 had the opposite effect. Viral adsorption and entry assays showed that TRIM5 did not affect the adsorption of SVA but inhibited its entry. In addition, TRIM5 promoted the expression of RIG-I and RIG-I-mediated IFNs and proinflammatory cytokines, and this effect was also proven by inhibiting the expression of TRIM5. These findings expand the scope of knowledge on host factors inhibiting the replication of SVA and indicate that targeting TRIM5 may aid in the development of new agents against SVA.
Collapse
Affiliation(s)
- Huizi Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenxin Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoling Lei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Tingting Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Cunhao Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhangyong Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| |
Collapse
|
4
|
Shi Y, Wu Z, Zeng P, Song J, Guo J, Yang X, Zhou J, Liu J, Hou L. Seneca valley virus 3C protease blocks EphA2-Mediated mTOR activation to facilitate viral replication. Microb Pathog 2024; 191:106673. [PMID: 38705218 DOI: 10.1016/j.micpath.2024.106673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
The Seneca Valley virus (SVV) is a recently discovered porcine pathogen that causes vesicular diseases and poses a significant threat to the pig industry worldwide. Erythropoietin-producing hepatoma receptor A2 (EphA2) is involved in the activation of the AKT/mTOR signaling pathway, which is involved in autophagy. However, the regulatory relationship between SVV and EphA2 remains unclear. In this study, we demonstrated that EphA2 is proteolysed in SVV-infected BHK-21 and PK-15 cells. Overexpression of EphA2 significantly inhibited SVV replication, as evidenced by decreased viral protein expression, viral titers, and viral load, suggesting an antiviral function of EphA2. Subsequently, viral proteins involved in the proteolysis of EphA2 were screened, and the SVV 3C protease (3Cpro) was found to be responsible for this cleavage, depending on its protease activity. However, the protease activity sites of 3Cpro did not affect the interactions between 3Cpro and EphA2. We further determined that EphA2 overexpression inhibited autophagy by activating the mTOR pathway and suppressing SVV replication. Taken together, these results indicate that SVV 3Cpro targets EphA2 for cleavage to impair its EphA2-mediated antiviral activity and emphasize the potential of the molecular interactions involved in developing antiviral strategies against SVV infection.
Collapse
Affiliation(s)
- Yongyan Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zhi Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Penghui Zeng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jinshuo Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaoyu Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.
| |
Collapse
|
5
|
Chen M, Zhang X, Kong F, Gao P, Ge X, Zhou L, Han J, Guo X, Zhang Y, Yang H. Senecavirus A induces mitophagy to promote self-replication through direct interaction of 2C protein with K27-linked ubiquitinated TUFM catalyzed by RNF185. Autophagy 2024; 20:1286-1313. [PMID: 38084826 PMCID: PMC11210902 DOI: 10.1080/15548627.2023.2293442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/20/2023] [Accepted: 12/04/2023] [Indexed: 01/04/2024] Open
Abstract
Senecavirus A (SVA) is a newly emerging picornavirus associated with swine vesicular lesions and neonatal mortality, threatening the global pig industry. Despite sustained efforts, the molecular mechanisms of SVA pathogenesis have not yet been fully elucidated. Here, we demonstrate for the first time that SVA infection can induce complete mitophagy in host cells, which depends on SVA replication. Mitophagy has been subsequently proven to promote SVA replication in host cells. Genome-wide screening of SVA proteins involved in inducing mitophagy showed that although VP2, VP3, 2C, and 3A proteins can independently induce mitophagy, only the 2C protein mediates mitophagy through direct interaction with TUFM (Tu translation elongation factor, mitochondrial). The glutamic acids at positions 196 and 211 of TUFM were shown to be two key sites for its interaction with 2C protein. Moreover, TUFM was discovered to interact directly with BECN1 and indirectly with the ATG12-ATG5 conjugate. Further experiments revealed that TUFM needs to undergo ubiquitination modification before being recognized by the macroautophagy/autophagy receptor protein SQSTM1/p62, and E3 ubiquitin ligase RNF185 catalyzes K27-linked polyubiquitination of TUFM through the interaction between RNF185's transmembrane domain 1 and TUFM to initiate SVA-induced mitophagy. The ubiquitinated TUFM is recognized and bound by SQSTM1, which in turn interacts with MAP1LC3/LC3, thereby linking the 2C-anchored mitochondria to the phagophore for sequestration into mitophagosomes, which ultimately fuse with lysosomes to achieve complete mitophagy. Overall, our results elucidated the molecular mechanism by which SVA induces mitophagy to promote self-replication and provide new insights into SVA pathogenesis.Abbreviations: aa: amino acid; Baf A1: bafilomycin A1; BHK-21: baby hamster kidney-21; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; co-IP: co-immunoprecipitation; CQ: chloroquine; DAPI: 4',6-diamidino-2'-phenylindole; DMSO: dimethyl sulfoxide; EGFP: enhanced green fluorescent protein; ER: endoplasmic reticulum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GST: glutathione S-transferase; HA: hemagglutinin; hpi: hours post-infection; hpt: hours post-transfection; IPTG: isopropyl β-D-1-thiogalactopyranoside; mAb: monoclonal antibody; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; Mdivi-1: mitochondrial division inhibitor-1; MOI: multiplicity of infection; mRFP: monomeric red fluorescent protein; MS: mass spectrometry; ORF: open reading frame; PBS: phosphate-buffered saline; SD: standard deviation; SQSTM1/p62: sequestosome 1; ST: swine testis; SVA: Senecavirus A; TCID50: 50% tissue culture infectious dose; TIMM23: translocase of inner mitochondrial membrane 23; TM: transmembrane; TOMM20: translocase of outer mitochondrial membrane 20; TUFM: Tu translation elongation factor, mitochondrial; Ub: ubiquitin; UV: ultraviolet; VDAC1: voltage dependent anion channel 1; WT: wild-type; μg: microgram; μm: micrometer; μM: micromole.
Collapse
Affiliation(s)
- Meirong Chen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xin Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fanshu Kong
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Peng Gao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xinna Ge
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jun Han
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xin Guo
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongning Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Yang X, Liu R, Du Y, Mei C, Zhang G, Wang C, Yang Y, Xu Z, Li W, Liu X. circRNA_8521 promotes Senecavirus A infection by sponging miRNA-324 to regulate LC3A. Vet Res 2024; 55:43. [PMID: 38581048 PMCID: PMC10996121 DOI: 10.1186/s13567-024-01291-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/28/2024] [Indexed: 04/07/2024] Open
Abstract
Senecavirus A (SVA) causes outbreaks of vesicular disease in pigs, which imposes a considerable economic burden on the pork industry. As current SVA prevention measures are ineffective, new strategies for controlling SVA are urgently needed. Circular (circ)RNA is a newly characterized class of widely expressed, endogenous regulatory RNAs, which have been implicated in viral infection; however, whether circRNAs regulate SVA infection remains unknown. To investigate the influence of circRNAs on SVA infection in porcine kidney 15 (PK-15) cells, RNA sequencing technology was used to analyze the circRNA expression profiles of SVA-infected and uninfected PK-15 cells, the interactions between circRNAs, miRNAs, and mRNAs potentially implicated in SVA infection were predicted using bioinformatics tools. The prediction accuracy was verified using quantitative real-time (qRT)-PCR, Western blotting, as well as dual-luciferase reporter and RNA pull-down assays. The results showed that 67 circRNAs were differentially expressed as a result of SVA infection. We found that circ_8521 was significantly upregulated in SVA-infected PK-15 cells and promoted SVA infection. circ_8521 interacted with miR-324. miR-324 bound to LC3A mRNA which inhibited the expression of LC3A. Knockdown of LC3A inhibited SVA infection. However, circ_8521 promoted the expression of LC3A by binding to miR-324, thereby promoting SVA infection. We demonstrated that circ_8521 functioned as an endogenous miR-324 sponge to sequester miR-324, which promoted LC3A expression and ultimately SVA infection.
Collapse
Affiliation(s)
- Xiwang Yang
- Southwest University, College of Veterinary Medicine, Chongqing, 400715, China
| | - Rui Liu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
| | - Yunsha Du
- Southwest University, College of Veterinary Medicine, Chongqing, 400715, China
| | - Caiqiu Mei
- Ya'an People's Hospital, Ya'an, 625000, China
| | - Guangneng Zhang
- School of Public Health, Southern Medical University, Guangzhou, 511495, China
| | - Chen Wang
- Southwest University, College of Veterinary Medicine, Chongqing, 400715, China
| | - Yijun Yang
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
| | - Zhiwen Xu
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610052, China
| | - Wenting Li
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, China.
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Xiao Liu
- Southwest University, College of Veterinary Medicine, Chongqing, 400715, China.
- State Key Laboratory of Silkworm Genome Biology, Chongqing, 400715, China.
| |
Collapse
|
7
|
Song J, Guo Y, Wang D, Quan R, Wang J, Liu J. Seneca Valley virus 3C protease cleaves OPTN (optineurin) to Impair selective autophagy and type I interferon signaling. Autophagy 2024; 20:614-628. [PMID: 37930946 PMCID: PMC10936645 DOI: 10.1080/15548627.2023.2277108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
Seneca Valley virus (SVV) causes vesicular disease in pigs, posing a threat to global pork production. OPTN (optineurin) is a macroautophagy/autophagy receptor that restricts microbial propagation by targeting specific viral or bacterial proteins for degradation. OPTN is degraded and cleaved at glutamine 513 following SVV infection via the activity of viral 3C protease (3C[pro]), resulting in N-terminal and a C-terminal OPTN fragments. Moreover, OPTN interacts with VP1 and targets VP1 for degradation to inhibit viral replication. The N-terminal cleaved OPTN sustained its interaction with VP1, whereas the degradation capacity targeting VP1 decreased. The inhibitory effect of N-terminal OPTN against SVV infection was significantly reduced, C-terminal OPTN failed to inhibit viral replication, and degradation of VP1 was blocked. The knockdown of OPTN resulted in reduced TBK1 activation and phosphorylation of IRF3, whereas overexpression of OPTN led to increased TBK1-IRF3 signaling. Additionally, the N-terminal OPTN diminished the activation of the type I IFN (interferon) pathway. These results show that SVV 3C[pro] targets OPTN because its cleavage impairs its function in selective autophagy and type I IFN production, revealing a novel model in which the virus develops diverse strategies for evading host autophagic machinery and type I IFN response for survival.Abbreviations: Co-IP: co-immunoprecipitation; GFP-green fluorescent protein; hpi: hours post-infection; HRP: horseradish peroxidase; IFN: interferon; IFNB/IFN-β: interferon beta; IRF3: interferon regulatory factor 3; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; OPTN: optineurin; PBS: phosphate-buffered saline; SVV: Seneca Valley virus; SQSTM1: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TCID50: 50% tissue culture infectious doses; UBAN: ubiquitin binding in TNIP/ABIN (TNFAIP3/A20 and inhibitor of NFKB/NF-kB) and IKBKG/NEMO; UBD: ubiquitin-binding domain; ZnF: zinc finger.
Collapse
Affiliation(s)
- Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yitong Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Han Y, Wang C, Lu K, Dong X, Chang Z, Zhang R, Hou Q, Wang X, Xiao S, Liu H, Yang Z. Bovine parainfluenza type 3 virus induces incomplete autophagy to promote viral replication by activated beclin1 in vitro. Vet Microbiol 2024; 290:109972. [PMID: 38183839 DOI: 10.1016/j.vetmic.2023.109972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Bovine Parainfluenza virus Type 3 (BPIV3) is one of the most important pathogens in cattle, capable of causing severe respiratory symptoms. Numerous studies have shown that autophagy plays a diverse role in the infection process of various pathogens. The influence of autophagy machinery on BPIV3 infection has not yet been confirmed. In the present study, we initially demonstrated that the expression of LC3 was significantly increased and exhibited a notable increase in double or single-membrane vesicles under a transmission electron microscope during BPIV3 infection. These observations unequivocally establish the induction of steady-state autophagy in vitro consequent to BPIV3 infection. Furthermore, quantification of autophagic flux substantiates the induction of an incomplete autophagic process during BPIV3 infection. Additionally, through targeted interventions, we demonstrate the regulatory impact of pharmacological agents influencing autophagy and RNA interference targeting an autophagy-associated protein on viral replication. Intriguingly, our data revealed that BPIV3 infection enhanced the phosphorylation of rapamycin kinase (mTOR). This result demonstrated that mTOR does not operate as a counteractive regulator of BPIV3-induced autophagy. Instead, we discern an augmentation in the expression of Beclin1, a key autophagy initiator, which complexes with Vps34, constituting a Class III phosphatidylinositol 3-kinase. This phenomenon serves as a hallmark in the inaugural phase of autophagy initiation during BPIV3 infection. Collectively, these discernments underscore that BPIV3 infection actively stimulates autophagy, thereby enhancing viral replication through the activation of Beclin1, independently of the mTOR signaling pathway. This nuanced comprehension significantly contributes to unraveling the intricate molecular mechanisms governing BPIV3-induced autophagy.
Collapse
Affiliation(s)
- Yu Han
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Chongyang Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Kejia Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoyu Dong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhengwu Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Riteng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qili Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
9
|
Tao Q, Xu L, Zhang Y, Yang Y, Liu Z, Xu T, Lai S, Ai Y, Zhu L, Xu Z. The construction and immunogenicity analyses of a recombinant pseudorabies virus with Senecavirus A VP3 protein co-expression. Vet Microbiol 2024; 290:110011. [PMID: 38310713 DOI: 10.1016/j.vetmic.2024.110011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/06/2024]
Abstract
Senecavirus A (SVA)-associated porcine idiopathic vesicular disease (PIVD) and Pseudorabies (PR) are highly contagious swine disease that pose a significant threat to the global pig industry. In the absence of an effective commercial vaccine, outbreaks caused by SVA have occurred in many parts of the world. In this study, the PRV variant strain PRV-XJ was used as the parental strain to construct a recombinant PRV strain with the TK/gE/gI proteins deletion and the VP3 protein co-expression, named rPRV-XJ-ΔTK/gE/gI-VP3. The results revealed that PRV is a suitable viral live vector for VP3 protein expressing. As a vaccine, rPRV-XJ-ΔTK/gE/gI-VP3 is safe for mice, vaccination with it did not cause any clinical symptoms of PRV. Intranasal immunization with rPRV-XJ-ΔTK/gE/gI-VP3 induced strong cellular immune response and high levels of specific antibody against VP3 and gB and neutralizing antibodies against both PRV and SVA in mice. It provided 100% protection to mice against the challenge of virulent strain PRV-XJ, and alleviated the pathological lesion of heart and liver tissue in SVA infected mice. rPRV-XJ-ΔTK/gE/gI-VP3 appears to be a promising vaccine candidate against PRV and SVA for the control of the PRV variant and SVA.
Collapse
Affiliation(s)
- Qian Tao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanting Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zheyan Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Siyuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanru Ai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China.
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China.
| |
Collapse
|
10
|
Zhuang Y, Liu W, Chen F, Xie M, Zhang H, Huang Z, Zhang X, Liu J, Ma K, Feng H, Ruan S, He J, Zhang W, Zou F, Kang X, Fan Y, Zhang G, Chen Z. Nitric oxide-induced lipophagic defects contribute to testosterone deficiency in rats with spinal cord injury. Front Endocrinol (Lausanne) 2024; 15:1360499. [PMID: 38455652 PMCID: PMC10918589 DOI: 10.3389/fendo.2024.1360499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/30/2024] [Indexed: 03/09/2024] Open
Abstract
Introduction Males with acute spinal cord injury (SCI) frequently exhibit testosterone deficiency and reproductive dysfunction. While such incidence rates are high in chronic patients, the underlying mechanisms remain elusive. Methods and results Herein, we generated a rat SCI model, which recapitulated complications in human males, including low testosterone levels and spermatogenic disorders. Proteomics analyses showed that the differentially expressed proteins were mostly enriched in lipid metabolism and steroid metabolism and biosynthesis. In SCI rats, we observed that testicular nitric oxide (NO) levels were elevated and lipid droplet-autophagosome co-localization in testicular interstitial cells was decreased. We hypothesized that NO impaired lipophagy in Leydig cells (LCs) to disrupt testosterone biosynthesis and spermatogenesis. As postulated, exogenous NO donor (S-nitroso-N-acetylpenicillamine (SNAP)) treatment markedly raised NO levels and disturbed lipophagy via the AMPK/mTOR/ULK1 pathway, and ultimately impaired testosterone production in mouse LCs. However, such alterations were not fully observed when cells were treated with an endogenous NO donor (L-arginine), suggesting that mouse LCs were devoid of an endogenous NO-production system. Alternatively, activated (M1) macrophages were predominant NO sources, as inducible NO synthase inhibition attenuated lipophagic defects and testosterone insufficiency in LCs in a macrophage-LC co-culture system. In scavenging NO (2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO)) we effectively restored lipophagy and testosterone levels both in vitro and in vivo, and importantly, spermatogenesis in vivo. Autophagy activation by LYN-1604 also promoted lipid degradation and testosterone synthesis. Discussion In summary, we showed that NO-disrupted-lipophagy caused testosterone deficiency following SCI, and NO clearance or autophagy activation could be effective in preventing reproductive dysfunction in males with SCI.
Collapse
Affiliation(s)
- Yuge Zhuang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenyuan Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Feilong Chen
- Department of Pathology, Panyu Maternal and Child Care Service Centre of Guangzhou, Guangzhou, Guangdong, China
| | - Minyu Xie
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hanbin Zhang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zicong Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoyuan Zhang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinsheng Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ke Ma
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongrui Feng
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Shipeng Ruan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing He
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Wansong Zhang
- Department of Urology, The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Feng Zou
- Department of Urology, The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Xiangjin Kang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yong Fan
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guofei Zhang
- Department of Urology, The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Zhenguo Chen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Zhen JB, Wang RB, Zhang YH, Sun F, Lin LH, Li ZX, Han Y, Lu YX. Effects of Trichinella spiralis and its serine protease inhibitors on autophagy of host small intestinal cells. Infect Immun 2023; 91:e0010323. [PMID: 37874164 PMCID: PMC10652968 DOI: 10.1128/iai.00103-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 10/25/2023] Open
Abstract
In eukaryotes, autophagy is induced as an innate defense mechanism against pathogenic microorganisms by self-degradation. Although trichinellosis is a foodborne zoonotic disease, there are few reports on the interplay between Trichinella spiralissurvival strategies and autophagy-mediated host defense. Therefore, this study focused on the association between T. spiralis and autophagy of host small intestinal cells. In this study, the autophagy-related indexes of host small intestinal cells after T. spiralis infection were detected using transmission electron microscopy, hematoxylin and eosin staining, immunohistochemistry, quantitative real-time polymerase chain reaction, and Western blotting. The results showed that autophagosomes and autolysosomes were formed in small intestinal cells, intestinal villi appeared edema, epithelial compactness was decreased, microtubule-associated protein 1A/1B-light chain 3B (LC3B) was expressed in lamina propria stromal cells of small intestine, and the expression of autophagy-related genes and proteins was changed significantly, indicating that T. spiralis induced autophagy of host small intestinal cells. Then, the effect of T. spiralis on autophagy-related pathways was explored by Western blotting. The results showed that the expression of autophagy-related pathway proteins was changed, indicating that T. spiralis regulated autophagy by affecting autophagy-related pathways. Finally, the roles of T. spiralis serine protease inhibitors (TsSPIs), such as T. spiralis Kazal-type SPI (TsKaSPI) and T. spiralis Serpin-type SPI (TsAdSPI), were further discussed in vitro and in vivo experiments. The results revealed that TsSPIs induced autophagy by influencing autophagy-related pathways, and TsAdSPI has more advantages. Overall, our results indicated that T. spiralis induced autophagy of host small intestinal cells, and its TsSPIs play an important role in enhancing autophagy flux by affecting autophagy-related pathways. These findings lay a foundation for further exploring the pathogenesis of intestinal dysfunction of host after T. spiralis infection, and also provide some experimental and theoretical basis for the prevention and treatment of trichinellosis.
Collapse
Affiliation(s)
- Jing-Bo Zhen
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Rui-Biao Wang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yu-Heng Zhang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Feng Sun
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Li-Hao Lin
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhi-Xin Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yang Han
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yi-Xin Lu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
12
|
Bai L, Zhang R, Zheng H, Zhang Z, Zhang Z, Li Y. Seneca Valley Virus Degrades STING via PERK and ATF6-Mediated Reticulophagy. Viruses 2023; 15:2209. [PMID: 38005886 PMCID: PMC10674438 DOI: 10.3390/v15112209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Seneca Valley Virus (SVV), a member of the Picornaviridae family, is an emerging porcine virus that can cause vesicular disease in pigs. However, the immune evasion mechanism of SVV remains unclear, as does its interaction with other pathways. STING (Stimulator of interferon genes) is typically recognized as a critical factor in innate immune responses to DNA virus infection, but its role during SVV infection remains poorly understood. In the present study, we observed that STING was degraded in SVV-infected PK-15 cells, and SVV replication in the cells was affected when STING was knockdown or overexpressed. The STING degradation observed was blocked when the SVV-induced autophagy was inhibited by using autophagy inhibitors (Chloroquine, Bafilomycin A1) or knockdown of autophagy related gene 5 (ATG5), suggesting that SVV-induced autophagy is responsible for STING degradation. Furthermore, the STING degradation was inhibited when reticulophagy regulator 1 (FAM134B), a reticulophagy related receptor, was knocked down, indicating that SVV infection induces STING degradation via reticulophagy. Further study showed that in eukaryotic translation initiation factor 2 alpha kinase 3 (PERK)/activating transcription factor 6 (ATF6) deficient cells, SVV infection failed to induce reticulophagy-medaited STING degradation, indicating that SVV infection caused STING degradation via PERK/ATF6-mediated reticulophagy. Notably, blocking reticulophagy effectively hindered SVV replication. Overall, our study suggested that SVV infection resulted in STING degradation via PERK and ATF6-mediated reticulophagy, which may be an immune escape strategy of SVV. This finding improves the understanding of the intricate interplay between viruses and their hosts and provides a novel strategy for the development of novel antiviral drugs.
Collapse
Affiliation(s)
- Ling Bai
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (L.B.); (H.Z.); (Z.Z.)
| | - Rui Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China;
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (L.B.); (H.Z.); (Z.Z.)
| | - Zhixiong Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (L.B.); (H.Z.); (Z.Z.)
| | - Zhidong Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China;
| | - Yanmin Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China;
| |
Collapse
|
13
|
Yan J, Gao Y, Bai J, Li J, Li M, Liu X, Jiang P. SERPINB1 promotes Senecavirus A replication by degrading IKBKE and regulating the IFN pathway via autophagy. J Virol 2023; 97:e0104523. [PMID: 37811994 PMCID: PMC10617579 DOI: 10.1128/jvi.01045-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/21/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE Senecavirus A (SVA) is an emerging picornavirus associated with vesicular disease, which wide spreads around the world. It has evolved multiple strategies to evade host immune surveillance. The mechanism and pathogenesis of the virus infection remain unclear. In this study, we show that SERPINB1, a member of the SERPINB family, promotes SVA replication, and regulates both innate immunity and the autophagy pathway. SERPINB1 catalyzes K48-linked polyubiquitination of IκB kinase epsilon (IKBKE) and degrades IKBKE through the proteasome pathway. Inhibition of IKBKE expression by SERPINB1 induces autophagy to decrease type I interferon signaling, and ultimately promotes SVA proliferation. These results provide importantly the theoretical basis of SVA replication and pathogenesis. SERPINB1 could be a potential therapeutic target for the control of viral infection.
Collapse
Affiliation(s)
- Junfang Yan
- Key Laboratory of Animal Diseases Diagnostic and Immunology, MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yanni Gao
- Key Laboratory of Animal Diseases Diagnostic and Immunology, MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Jian Li
- Key Laboratory of Animal Diseases Diagnostic and Immunology, MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Minjing Li
- Key Laboratory of Animal Diseases Diagnostic and Immunology, MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xing Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| |
Collapse
|
14
|
Song J, Guo Y, Wang D, Quan R, Wang J, Liu J. Seneca Valley virus 3C pro antagonizes type I interferon response by targeting STAT1-STAT2-IRF9 and KPNA1 signals. J Virol 2023; 97:e0072723. [PMID: 37819133 PMCID: PMC10617416 DOI: 10.1128/jvi.00727-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/10/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Type I interferon (IFN) signaling plays a principal role in host innate immune responses against invading viruses. Viruses have evolved diverse mechanisms that target the Janus kinase-signal transducer and activator of transcription (STAT) signaling pathway to modulate IFN response negatively. Seneca Valley virus (SVV), an emerging porcine picornavirus, has received great interest recently because it poses a great threat to the global pork industry. However, the molecular mechanism by which SVV evades host innate immunity remains incompletely clear. Our results revealed that SVV proteinase (3Cpro) antagonizes IFN signaling by degrading STAT1, STAT2, and IRF9, and cleaving STAT2 to escape host immunity. SVV 3Cpro also degrades karyopherin 1 to block IFN-stimulated gene factor 3 nuclear translocation. Our results reveal a novel molecular mechanism by which SVV 3Cpro antagonizes the type I IFN response pathway by targeting STAT1-STAT2-IRF9 and karyopherin α1 signals, which has important implications for our understanding of SVV-evaded host innate immune responses.
Collapse
Affiliation(s)
- Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yitong Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China
| |
Collapse
|
15
|
Zhang XY, Li YY, Huang HX, Zhao CC, Lei XX, Zhao BP, Lu JY, Lan T, Sun WC. Seneca Valley virus 3C pro antagonizes host innate immune responses and programmed cell death. Front Microbiol 2023; 14:1235620. [PMID: 37869659 PMCID: PMC10588452 DOI: 10.3389/fmicb.2023.1235620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Seneca Valley virus (SVV), a member of the Picornaviridae family, may cause serious water blister diseases in pregnant sows and acute death in newborn piglets, which have resulted in economic losses in pig production. The 3C protease is a vital enzyme for SVV maturation and is capable of regulating protein cleavage and RNA replication of the virus. Additionally, this protease can impede the host's innate immune response by targeting the interferon pathway's principal factor and enhance virus replication by modulating the host's RNA metabolism while simultaneously triggering programmed cell death. This article reviews recent studies on SVV 3C functions, which include viral replication promotion, cell apoptosis modulation and host immune response evasion, and provides a theoretical basis for research on preventing and controlling SVV infection.
Collapse
Affiliation(s)
- Xin-yu Zhang
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Yu-ying Li
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Hai-xin Huang
- Institute of Virology, Wenzhou University, Wenzhou, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Chen-chen Zhao
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Xiao-xiao Lei
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Bao-peng Zhao
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Jing-yi Lu
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Tian Lan
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Wen-chao Sun
- Institute of Virology, Wenzhou University, Wenzhou, China
| |
Collapse
|
16
|
Luo W, Qi H, Huang Z, Guo M, Peng D, Yang Z, Fan Z, Wang Q, Qin Q, Yang M, Lee X. Autophagy induced by Cyprinid herpesvirus 3 (CyHV-3) facilitated intracellular viral replication and extracellular viral yields in common carp brain cells. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109049. [PMID: 37678483 DOI: 10.1016/j.fsi.2023.109049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
Autophagy is a conservative and important process that exists in all eukaryotic cells in nature. Cyprinid herpesvirus 3 (CyHV-3), also known as KHV (Koi Herpesvirus), is a pathogen that mainly infecting common carp and koi. In the present study, we identified the CcLC3B gene, with a length of 379 bp and displaying a close evolutionary relationship with other sixteen different species, the tissue distribution and expression pattern of CcLC3 were also identified. We found that CyHV-3 infection could promote autophagy in CCB cells at the early stage but inhibit autophagy at the late stage by using confocal fluorescence microscopy, transmission electron microscopy and western blotting. And we measured the protein levels associated with the Akt/mTOR signalling pathway, intracellular replication of CyHV-3 at the mRNA and protein levels as well as viral titters. Collectively, the results taken together suggested that CyHV-3 infection could promote autophagy in CCB cells at the early stage but inhibit autophagy at the late stage via mTOR and that promoting autophagy could facilitate CyHV-3 intracellular replication and extracellular viral yields in CCB cells. These findings revealed the relationship between CyHV-3 and autophagy and provided a novel treatment strategy targeting the autophagy signalling pathway against CyHV-3 infection.
Collapse
Affiliation(s)
- Wei Luo
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bio Resource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Hemei Qi
- Guangzhou Jinan Biomedicine Research and Development Centre, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, PR China
| | - Zhihong Huang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bio Resource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Min Guo
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bio Resource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Dikuang Peng
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bio Resource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Zimin Yang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bio Resource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Zihan Fan
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bio Resource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Qing Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, Guangdong, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bio Resource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Min Yang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bio Resource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Xuezhu Lee
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bio Resource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
17
|
Chen L, Yang L, Li Y, Liu T, Yang B, Liu L, Wu R. Autophagy and Inflammation: Regulatory Roles in Viral Infections. Biomolecules 2023; 13:1454. [PMID: 37892135 PMCID: PMC10604974 DOI: 10.3390/biom13101454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Autophagy is a highly conserved intracellular degradation pathway in eukaryotic organisms, playing an adaptive role in various pathophysiological processes throughout evolution. Inflammation is the immune system's response to external stimuli and tissue damage. However, persistent inflammatory reactions can lead to a range of inflammatory diseases and cancers. The interaction between autophagy and inflammation is particularly evident during viral infections. As a crucial regulator of inflammation, autophagy can either promote or inhibit the occurrence of inflammatory responses. In turn, inflammation can establish negative feedback loops by modulating autophagy to suppress excessive inflammatory reactions. This interaction is pivotal in the pathogenesis of viral diseases. Therefore, elucidating the regulatory roles of autophagy and inflammation in viral infections will significantly enhance our understanding of the mechanisms underlying related diseases. Furthermore, it will provide new insights and theoretical foundations for disease prevention, treatment, and drug development.
Collapse
Affiliation(s)
- Li Chen
- School of Medicine, Jiamusi University, Jiamusi 154007, China; (L.C.); (Y.L.); (T.L.); (B.Y.)
| | - Limin Yang
- School of Medicine, Dalian University, Dalian 116622, China;
| | - Yingyu Li
- School of Medicine, Jiamusi University, Jiamusi 154007, China; (L.C.); (Y.L.); (T.L.); (B.Y.)
| | - Tianrun Liu
- School of Medicine, Jiamusi University, Jiamusi 154007, China; (L.C.); (Y.L.); (T.L.); (B.Y.)
| | - Bolun Yang
- School of Medicine, Jiamusi University, Jiamusi 154007, China; (L.C.); (Y.L.); (T.L.); (B.Y.)
| | - Lei Liu
- School of Medicine, Jiamusi University, Jiamusi 154007, China; (L.C.); (Y.L.); (T.L.); (B.Y.)
| | - Rui Wu
- School of Medicine, Jiamusi University, Jiamusi 154007, China; (L.C.); (Y.L.); (T.L.); (B.Y.)
| |
Collapse
|
18
|
Wang Q, Meng H, Ge D, Shan H, Geri L, Liu F. Structural and nonstructural proteins of Senecavirus A: Recent research advances, and lessons learned from those of other picornaviruses. Virology 2023; 585:155-163. [PMID: 37348144 DOI: 10.1016/j.virol.2023.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Senecavirus A (SVA) is an emerging virus, causing vesicular disease in swine. SVA is a single-stranded, positive-sense RNA virus, which is the only member of the genus Senecavirus in the family Picornaviridae. SVA genome encodes 12 proteins: L, VP4, VP2, VP3, VP1, 2A, 2B, 2C, 3A, 3B, 3C and 3D. The VP1 to VP4 are structural proteins, and the others are nonstructural proteins. The replication of SVA in host cells is a complex process coordinated by an elaborate interplay between the structural and nonstructural proteins. Structural proteins are primarily involved in the invasion and assembly of virions. Nonstructural proteins modulate viral RNA translation and replication, and also take part in antagonizing the antiviral host response and in disrupting some cellular processes to allow virus replication. Here, we systematically reviewed the molecular functions of SVA structural and nonstructural proteins by reference to literatures of SVA itself and other picornaviruses.
Collapse
Affiliation(s)
- Qianqian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China; College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Hailan Meng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Dong Ge
- Qingdao Lijian Bio-tech Co., Ltd., Qingdao, 266114, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Letu Geri
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010011, China.
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
19
|
Xu K, Mo X, Wang Y, Zeng Z, Xu Z, Yue D, Li G, Li T, Liu J, Yuan J. Downregulation of miR-527 alleviates sepsis-induced acute kidney injury via targeting Beclin1. Histol Histopathol 2023; 38:443-452. [PMID: 36200697 DOI: 10.14670/hh-18-531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
BACKGROUND Sepsis-induced acute kidney injury (AKI) is known to result from the inflammatory responses. MiRNAs participate in the development of sepsis-induced AKI. Nevertheless, the function of miR-527 in sepsis-induced AKI remains unclear. METHODS Cell viability was evaluated by CCK8 assay, and TUNEL staining was applied to assess cell apoptosis. Pro-inflammatory cytokine (TNF-α, IL-6 and IL-1β) levels were evaluated by ELISA. Meanwhile, the relation among miR-527 and Beclin1 was detected by dual luciferase report assay. Western blot and RT-qPCR were used to examine the protein and mRNA levels, respectively. Furthermore, an in vivo model was constructed to assess the function of miR-527 in sepsis-induced AKI. RESULTS MiR-527 downregulation significantly alleviated the symptoms of sepsis-induced AKI in mice. MiR-527 level in HK-2 cells was significantly upregulated by LPS, and downregulation of miR-527 notably reversed LPS-induced inhibition of HK-2 cell viability by inhibiting apoptosis. In addition, LPS greatly increased TNF-α, IL-6 and IL-1β levels in supernatant of HK-2 cells, while miR-527 inhibitor partially restored this phenomenon. Meanwhile, Beclin1 was found to be the downstream mRNA of miR-527, and miR-527 inhibitor notably upregulated the level of LC3. MiR-527 downregulation reversed LPS-induced HK-2 cell injury through suppression of TGF-β pathway. CONCLUSION Downregulation of miR-527 alleviated sepsis-induced AKI via targeting Beclin1. Thus, miR-527 might act as a vital mediator in sepsis-induced AKI.
Collapse
Affiliation(s)
- Ke Xu
- Department of Critical Care Medicine, First People's Hospital of Chenzhou, Chenzhou, Hunan, China
| | - Xiaojun Mo
- Department of Emergency, First People's Hospital of Chenzhou, Chenzhou, Hunan, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yijun Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Emergency, First People's Hospital of Chenzhou, Chenzhou, Hunan, China.
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ziqiang Xu
- Department of Emergency, First People's Hospital of Chenzhou, Chenzhou, Hunan, China
| | - Dongyou Yue
- Department of Emergency, First People's Hospital of Chenzhou, Chenzhou, Hunan, China
| | - Guicheng Li
- Department of Critical Care Medicine, First People's Hospital of Chenzhou, Chenzhou, Hunan, China
| | - Tao Li
- Department of Critical Care Medicine, First People's Hospital of Chenzhou, Chenzhou, Hunan, China
| | - Junhong Liu
- Department of Emergency, First People's Hospital of Chenzhou, Chenzhou, Hunan, China
| | - Jiemin Yuan
- Department of Emergency, First People's Hospital of Chenzhou, Chenzhou, Hunan, China
| |
Collapse
|
20
|
Lai M, De Carli A, Filipponi C, Iacono E, La Rocca V, Lottini G, Piazza CR, Quaranta P, Sidoti M, Pistello M, Freer G. Lipid balance remodelling by human positive-strand RNA viruses and the contribution of lysosomes. Antiviral Res 2022; 206:105398. [PMID: 35985406 DOI: 10.1016/j.antiviral.2022.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022]
Abstract
A marked reorganization of internal membranes occurs in the cytoplasm of cells infected by single stranded positive-sense RNA viruses. Most cell compartments change their asset to provide lipids for membrane rearrangement into replication organelles, where to concentrate viral proteins and enzymes while hiding from pathogen pattern recognition molecules. Because the endoplasmic reticulum is a central hub for lipid metabolism, when viruses hijack the organelle to form their replication organelles, a cascade of events change the intracellular environment. This results in a marked increase in lipid consumption, both by lipolysis and lipophagy of lipid droplets. In addition, lipids are used to produce energy for viral replication. At the same time, inflammation is started by signalling lipids, where lysosomal processing plays a relevant role. This review is aimed at providing an overview on what takes place after human class IV viruses have released their genome into the host cell and the consequences on lipid metabolism, including lysosomes.
Collapse
Affiliation(s)
- Michele Lai
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Alessandro De Carli
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy; Department of Medical Biotechnologies, University of Siena, Italy.
| | - Carolina Filipponi
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Elena Iacono
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Veronica La Rocca
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy; Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy.
| | - Giulia Lottini
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy; Department of Medical Biotechnologies, University of Siena, Italy.
| | - Carmen Rita Piazza
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy; Department of Medical Biotechnologies, University of Siena, Italy.
| | - Paola Quaranta
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Maria Sidoti
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Mauro Pistello
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| | - Giulia Freer
- Centro Retrovirus, Dipartimento di Ricerca Traslazionale, Strada Statale del Brennero 2, University of Pisa, Pisa, 56127, Italy.
| |
Collapse
|
21
|
Wen Y, Chen Z, Tian Y, Yang M, Dong Q, Yang Y, Ding H. Incomplete autophagy promotes the proliferation of Mycoplasma hyopneumoniae through the JNK and Akt pathways in porcine alveolar macrophages. Vet Res 2022; 53:62. [PMID: 35927699 PMCID: PMC9351181 DOI: 10.1186/s13567-022-01074-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/24/2022] [Indexed: 11/10/2022] Open
Abstract
Autophagy is an important conserved homeostatic process related to nutrient and energy deficiency and organelle damage in diverse eukaryotic cells and has been reported to play an important role in cellular responses to pathogens and bacterial replication. The respiratory bacterium Mycoplasma hyopneumoniae has been identified to enter porcine alveolar macrophages, which are considered important immune cells. However, little is known about the role of autophagy in the pathogenesis of M. hyopneumoniae infection of porcine alveolar macrophages. Our experiments demonstrated that M. hyopneumoniae infection enhanced the formation of autophagosomes in porcine alveolar macrophages but prevented the fusion of autophagosomes with lysosomes, thereby blocking autophagic flux and preventing the acidification and destruction of M. hyopneumoniae in low-pH surroundings. In addition, using different autophagy regulators to intervene in the autophagy process, we found that incomplete autophagy promoted the intracellular proliferation of M. hyopneumoniae. We also found that blocking the phosphorylation of JNK and Akt downregulated the autophagy induced by M. hyopneumoniae, but pathways related to two mitogen-activated protein kinases (Erk1/2 and p38) did not affect the process. Collectively, M. hyopneumoniae induced incomplete autophagy in porcine alveolar macrophages through the JNK and Akt signalling pathways; conversely, incomplete autophagy prevented M. hyopneumoniae from entering and degrading lysosomes to realize the proliferation of M. hyopneumoniae in porcine alveolar macrophages. These findings raise the possibility that targeting the autophagic pathway may be effective for the prevention or treatment of M. hyopneumoniae infection.
Collapse
Affiliation(s)
- Yukang Wen
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Zhengkun Chen
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Yaqin Tian
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Mei Yang
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Qingshuang Dong
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Yujiao Yang
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Honglei Ding
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
22
|
Song J, Quan R, Wang D, Liu J. Seneca Valley Virus 3C pro Cleaves Heterogeneous Nuclear Ribonucleoprotein K to Facilitate Viral Replication. Front Microbiol 2022; 13:945443. [PMID: 35875542 PMCID: PMC9298500 DOI: 10.3389/fmicb.2022.945443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/10/2022] [Indexed: 02/03/2023] Open
Abstract
Seneca Valley virus (SVV) has emerged as an important pathogen that is associated with idiopathic vesicular infection in pigs, causing a potential threat to the global swine industry. The heterogeneous nuclear ribonucleoprotein K (hnRNP K) that shuttles between the nucleus and cytoplasm plays an important role in viral infection. In this study, we observed that infection with SVV induced cleavage, degradation, and cytoplasmic redistribution of hnRNP K in cultured cells, which was dependent on the activity of viral 3Cpro protease. Also, the 3Cpro induced degradation of hnRNP K via the caspase pathway. Further studies demonstrated that SVV 3Cpro cleaved hnRNP K at residue Q364, and the expression of the cleavage fragment hnRNP K (aa.365–464) facilitates viral replication, which is similar to full-length hnRNP K, whereas hnRNP K (aa.1–364) inhibits viral replication. Additionally, hnRNP K interacts with the viral 5′ untranslated region (UTR), and small interfering RNA (siRNA)-mediated knockdown of hnRNP K results in significant inhibition of SVV replication. Overall, our results demonstrated that the hnRNP K positively regulates SVV replication in a protease activity-dependent fashion in which the cleaved C-terminal contributes crucially to the upregulation of SVV replication. This finding of the role of hnRNP K in promoting SVV propagation provides a novel antiviral strategy to utilize hnRNP K as a potential target for therapy.
Collapse
Affiliation(s)
- Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
23
|
Improvement of Myocardial Cell Injury by miR-199a-3p/mTOR Axis through Regulating Cell Apoptosis and Autophagy. J Immunol Res 2022; 2022:1642301. [PMID: 35785031 PMCID: PMC9242751 DOI: 10.1155/2022/1642301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background Myocardial ischemia-reperfusion injury (MIRI) is characterized by its high incidence rate and mortality. miR-199a-3p is thought to be strongly linked with the development of some myocardial diseases, but the influence of miR-199a-3p in MIRI remains unclear. Methods AC16 cells were used. The concentrations of mammalian target of rapamycin (mTOR), light chain 3 II/light chain 3 I, and Beclin-1 were detected with western blotting and qRT-PCR. The binding site between mTOR and miR-199a-3p was evaluated via luciferase report assay. Cell apoptosis was evaluated through flow cytometry. Results Knockdown of miR-199a-3p accelerated the myocardial cell injury after L-oxygen treatment. Increased expression of mTOR and suppressed autophagy were observed after knockdown of miR-199a-3p. Knockdown of miR-199a-3p or overexpression of mTOR greatly aggravated cell injury through inhibiting autophagy. Conclusions. This study might be helpful for the therapeutic method of MIRI through by regulating miR-199a-3p/mTOR.
Collapse
|
24
|
Wu X, Wang S, Li C, Shi J, Peng Z, Liu C, Han H, Ma Y, Zheng L, Xu S, Du W, Li J, Zhang F. CRISPR/Cas9-Mediated Knockout of the Dicer and Ago2 Genes in BHK-21 Cell Promoted Seneca Virus A Replication and Enhanced Autophagy. Front Cell Infect Microbiol 2022; 12:865744. [PMID: 35573771 PMCID: PMC9093602 DOI: 10.3389/fcimb.2022.865744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
RNA interference (RNAi) is a major form of antiviral defense in host cells, and Ago2 and Dicer are the major proteins of RNAi. The Senecavirus A (SVA) is a reemerging virus, resulting in vesicular lesions in sows and a sharp decline in neonatal piglet production. In this study, CRISPR/Cas9 technology was used to knock out Ago2 and Dicer genes in BHK-21 cell lines used for SVA vaccine production. Cell clones with homozygous frameshift mutations of Ago2 and Dicer genes were successfully identified. The two knockout cell lines were named BHK-DicerΔ- and BHK-Ago2Δ-. Results showed that the two genes’ knockout cell lines were capable of stable passage and the cell growth rate did not change significantly. The replication rate and virus titers of SVA were significantly increased in knockout cell lines, indicating that RNAi could inhibit SVA replication. In addition, compared with normal cells, autophagy was significantly enhanced after SVA-infected knockout cell lines, while there was no significant difference in autophagy between the knockout and normal cell lines without SVA. The results confirmed that SVA could enhance the autophagy in knockout cells and promote viral replication. The two knockout cell lines can obtain viruses with high viral titers and have good application prospects in the production of SVA vaccine. At the same time, the RNAi knockout cell lines provide convenience for further studies on RNAi and SVA resistance to RNAi, and it lays a foundation for further study of SVA infection characteristics and screening of new therapeutic drugs and drug targets.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shuo Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| | - Chen Li
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianli Shi
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhe Peng
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chang Liu
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hong Han
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yingru Ma
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Limei Zheng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Shaojian Xu
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wei Du
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Jun Li
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine Shandong Academy of Agricultural Sciences, Jinan, China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Jun Li, ; Fan Zhang,
| | - Fan Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
- *Correspondence: Jun Li, ; Fan Zhang,
| |
Collapse
|
25
|
Song J, Quan R, Wang D, Liu J. Seneca Valley Virus 3C pro Mediates Cleavage and Redistribution of Nucleolin To Facilitate Viral Replication. Microbiol Spectr 2022; 10:e0030422. [PMID: 35357201 PMCID: PMC9045095 DOI: 10.1128/spectrum.00304-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/04/2022] [Indexed: 11/21/2022] Open
Abstract
Seneca Valley virus (SVV) is a recently discovered pathogen that poses a significant threat to the global pig industry. It has been shown that many viruses are reliant on nucleocytoplasmic trafficking of nucleolin (NCL) for their own replication. Here, we demonstrate that NCL, a critical protein component of the nucleolus, is cleaved and translocated out of the nucleoli following SVV infection. Furthermore, our data suggest that SVV 3C protease (3Cpro) is responsible for this cleavage and subsequent delocalization from the nucleoli, and that inactivation of this protease activity abolished this cleavage and translocation. SVV 3Cpro cleaved NCL at residue Q545, and the cleavage fragment (aa 1 to 545) facilitated viral replication, which was similar to the activities described for full-length NCL. Small interfering RNA-mediated knockdown indicated that NCL is required for efficient viral replication and viral protein expression. In contrast, lentivirus-mediated overexpression of NCL significantly enhanced viral replication. Taken together, these results indicate that SVV 3Cpro targets NCL for its cleavage and redistribution, which contributes to efficient viral replication, thereby emphasizing the potential target of antiviral strategies for the control of SVV infection. IMPORTANCE The nucleolus is a subnuclear cellular compartment, and nucleolin (NCL) resides predominantly in the nucleolus. NCL participates in viral replication, translation, internalization, and also serves as a receptor for virus entry. The interaction between NCL and SVV is still unknown. Here, we demonstrate that SVV 3Cpro targets NCL for its cleavage and nucleocytoplasmic transportation, which contributes to efficient viral replication. Our results reveal novel function of SVV 3Cpro and provide further insight into the mechanisms by which SVV utilizes nucleoli for efficient replication.
Collapse
Affiliation(s)
- Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China
| |
Collapse
|
26
|
Comparative Proteomic Analysis Reveals Mx1 Inhibits Senecavirus A Replication in PK-15 Cells by Interacting with the Capsid Proteins VP1, VP2 and VP3. Viruses 2022; 14:v14050863. [PMID: 35632606 PMCID: PMC9147370 DOI: 10.3390/v14050863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 01/27/2023] Open
Abstract
As an emergent picornavirus pathogenic to pigs, Senecavirus A (SVA) can replicate in pig kidneys and proliferates well in porcine kidney epithelial PK-15 cells. Here, tandem mass tags (TMT) labeling coupled with liquid chromatography–tandem mass spectrometry (LC-MS/MS) was used to analyze the proteome dynamic changes in PK-15 cells during SVA infection. In total, 314, 697 and 426 upregulated differentially expressed proteins (DEPs) and 131, 263 and 342 downregulated DEPs were identified at 12, 24 and 36 hpi, respectively. After ensuring reliability of the proteomic data by quantitative PCR and Western blot testing of five randomly selected DEPs, Mx1, eIF4E, G6PD, TOP1 and PGAM1, all the DEPs were subjected to multiple bioinformatics analyses, including GO, COG, KEGG and STRING. The results reveal that the DEPs were mainly involved in host innate and adaptive immune responses in the early and middle stages of SVA infection, while the DEPs mainly participated in various metabolic processes in the late stage of infection. Finally, we demonstrated that Mx1 protein exerts antiviral activity against SVA by interacting with VP1 and VP2 proteins dependent on its GTPase, oligomerization and interaction activities, while Mx1 interacts with VP3 only depending on its oligomerization activity. Collectively, our study provides valuable clues for further investigation of SVA pathogenesis.
Collapse
|
27
|
Luo D, Wang H, Wang Q, Liang W, Liu B, Xue D, Yang Y, Ma B. Senecavirus A as an Oncolytic Virus: Prospects, Challenges and Development Directions. Front Oncol 2022; 12:839536. [PMID: 35371972 PMCID: PMC8968071 DOI: 10.3389/fonc.2022.839536] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Oncolytic viruses have the capacity to selectively kill infected tumor cells and trigger protective immunity. As such, oncolytic virotherapy has become a promising immunotherapy strategy against cancer. A variety of viruses from different families have been proven to have oncolytic potential. Senecavirus A (SVA) was the first picornavirus to be tested in humans for its oncolytic potential and was shown to penetrate solid tumors through the vascular system. SVA displays several properties that make it a suitable model, such as its inability to integrate into human genome DNA and the absence of any viral-encoded oncogenes. In addition, genetic engineering of SVA based on the manipulation of infectious clones facilitates the development of recombinant viruses with improved therapeutic indexes to satisfy the criteria of safety and efficacy regulations. This review summarizes the current knowledge and strategies of genetic engineering for SVA, and addresses the current challenges and future directions of SVA as an oncolytic agent.
Collapse
Affiliation(s)
- Dankun Luo
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haiwei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qiang Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenping Liang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Liu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dongbo Xue
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Yang
- Departments of Biochemistry and Molecular Biology and Oncology, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Biao Ma
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
28
|
Chen Y, Zhong W, Xie Z, Li B, Li H, Gao K, Ning Z. Suppressor of cytokine signaling 1 (SOCS1) inhibits antiviral responses to facilitate Senecavirus A infection by regulating the NF-κB signaling pathway. Virus Res 2022; 313:198748. [PMID: 35304133 DOI: 10.1016/j.virusres.2022.198748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 11/19/2022]
Abstract
Senecavirus A (SVA) is a new virus inducing porcine idiopathic vesicular disease that causes significant economic losses. Although some progress has been made in etiological research, the role of host factors in SVA infection remains unclear. This study investigated the role of the host factor, suppressor of cytokine signaling 1 (SOCS1), in SVA infection. The expression of SOCS1 was significantly upregulated with infection of SVA in a dose-dependent manner, and SOCS1 inhibited the expression of type I interferons (IFN-α, IFN-β) and the production of interferon stimulating genes (ISGs) (ISG56, ISG54, PKR), thereby facilitating viral replication. Further results showed that inhibition of antiviral responses of SOCS1 was achieved by regulating the NF-κB signaling pathway, which attenuates the production of IFNs and pro-inflammatory cytokines. These findings provide a new perspective of SVA pathogenesis and may partially explain the persistence of this infection. Moreover, the data indicate that targeting SOCS1 can help in developing new agents against SVA infection.
Collapse
Affiliation(s)
- Yongjie Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Wenxia Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhenxin Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Baojian Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Huizi Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Kuipeng Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhangyong Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Maoming Branch, Maoming 525000, China.
| |
Collapse
|