1
|
De Meyer A, Meuleman P. Preclinical animal models to evaluate therapeutic antiviral antibodies. Antiviral Res 2024; 225:105843. [PMID: 38548022 DOI: 10.1016/j.antiviral.2024.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 04/05/2024]
Abstract
Despite the availability of effective preventative vaccines and potent small-molecule antiviral drugs, effective non-toxic prophylactic and therapeutic measures are still lacking for many viruses. The use of monoclonal and polyclonal antibodies in an antiviral context could fill this gap and provide effective virus-specific medical interventions. In order to develop these therapeutic antibodies, preclinical animal models are of utmost importance. Due to the variability in viral pathogenesis, immunity and overall characteristics, the most representative animal model for human viral infection differs between virus species. Therefore, throughout the years researchers sought to find the ideal preclinical animal model for each virus. The most used animal models in preclinical research include rodents (mice, ferrets, …) and non-human primates (macaques, chimpanzee, ….). Currently, antibodies are tested for antiviral efficacy against a variety of viruses including different hepatitis viruses, human immunodeficiency virus (HIV), influenza viruses, respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and rabies virus. This review provides an overview of the current knowledge about the preclinical animal models that are used for the evaluation of therapeutic antibodies for the abovementioned viruses.
Collapse
Affiliation(s)
- Amse De Meyer
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
2
|
Verma AK, Aggarwal R. Repurposing potential of FDA-approved and investigational drugs for COVID-19 targeting SARS-CoV-2 spike and main protease and validation by machine learning algorithm. Chem Biol Drug Des 2020; 97:836-853. [PMID: 33289334 DOI: 10.1111/cbdd.13812] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/15/2020] [Accepted: 11/29/2020] [Indexed: 12/15/2022]
Abstract
The present study aimed to assess the repurposing potential of existing antiviral drug candidates (FDA-approved and investigational) against SARS-CoV-2 target proteins that facilitates viral entry and replication into the host body. To evaluate molecular affinities between antiviral drug candidates and SARS-CoV-2 associated target proteins such as spike protein (S) and main protease (Mpro ), a molecular interaction simulation was performed by docking software (MVD) and subsequently the applicability score was calculated by machine learning algorithm. Furthermore, the STITCH algorithm was used to predict the pharmacology network involving multiple pathways of active drug candidate(s). Pharmacophore features of active drug(s) molecule was also determined to predict structure-activity relationship (SAR). The molecular interaction analysis showed that cordycepin has strong binding affinities with S protein (-180) and Mpro proteins (-205) which were relatively highest among other drug candidates used. Interestingly, compounds with low IC50 showed high binding energy. Furthermore, machine learning algorithm also revealed high applicability scores (0.42-0.47) of cordycepin. It is worth mentioning that the pharmacology network depicted the involvement of cordycepin in different pathways associated with bacterial and viral diseases including tuberculosis, hepatitis B, influenza A, viral myocarditis, and herpes simplex infection. The embedded pharmacophore features with cordycepin also suggested strong SAR. Cordycepin's anti-SARS-CoV-2 activity indicated 65% (E-gene) and 42% (N-gene) viral replication inhibition after 48h of treatment. Since, cordycepin has both preclinical and clinical evidences on antiviral activity, in addition the present findings further validate and suggest repurposing potential of cordycepin against COVID-19.
Collapse
Affiliation(s)
- Akalesh Kumar Verma
- Cell and Biochemical Technology Laboratory, Department of Zoology, Cotton University, Guwahati, India
| | - Rohit Aggarwal
- Cosmic Cordycep Farms, Badarpur Said Tehsil Tigaon, Faridabad, Haryana, India
| |
Collapse
|
3
|
Nonhuman Primate Models for Studies of AIDS Virus Persistence During Suppressive Combination Antiretroviral Therapy. Curr Top Microbiol Immunol 2017; 417:69-109. [PMID: 29026923 DOI: 10.1007/82_2017_73] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Nonhuman primate (NHP) models of AIDS represent a potentially powerful component of the effort to understand in vivo sources of AIDS virus that persist in the setting of suppressive combination antiretroviral therapy (cART) and to develop and evaluate novel strategies for more definitive treatment of HIV infection (i.e., viral eradication "cure", or sustained off-cART remission). Multiple different NHP models are available, each characterized by a particular NHP species, infecting virus, and cART regimen, and each with a distinct capacity to recapitulate different aspects of HIV infection. Given these different biological characteristics, and their associated strengths and limitations, different models may be preferred to address different questions pertaining to virus persistence and cure research, or to evaluate different candidate intervention approaches. Recent developments in improved cART regimens for use in NHPs, new viruses, a wider array of sensitive virologic assay approaches, and a better understanding of pathogenesis should allow even greater contributions from NHP models to this important area of HIV research in the future.
Collapse
|
4
|
Xu Y, Li YF, Zhang D, Dockendorf M, Tetteh E, Rizk ML, Grobler JA, Lai MT, Gobburu J, Ankrom W. Characterizing Class-Specific Exposure-Viral Load Suppression Response of HIV Antiretrovirals Using A Model-Based Meta-Analysis. Clin Transl Sci 2016; 9:192-200. [PMID: 27171172 PMCID: PMC5351339 DOI: 10.1111/cts.12395] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/31/2016] [Indexed: 11/29/2022] Open
Abstract
We applied model‐based meta‐analysis of viral suppression as a function of drug exposure and in vitro potency for short‐term monotherapy in human immunodeficiency virus type 1 (HIV‐1)‐infected treatment‐naïve patients to set pharmacokinetic targets for development of nonnucleoside reverse transcriptase inhibitors (NNRTIs) and integrase strand transfer inhibitors (InSTIs). We developed class‐specific models relating viral load kinetics from monotherapy studies to potency normalized steady‐state trough plasma concentrations. These models were integrated with a literature assessment of doses which demonstrated to have long‐term efficacy in combination therapy, in order to set steady‐state trough concentration targets of 6.17‐ and 2.15‐fold above potency for NNRTIs and InSTIs, respectively. Both the models developed and the pharmacokinetic targets derived can be used to guide compound selection during preclinical development and to predict the dose–response of new antiretrovirals to inform early clinical trial design.
Collapse
Affiliation(s)
- Y Xu
- Merck Sharp & Dohme Corp, Kenilworth, New Jersey, USA
| | - Y F Li
- Merck Sharp & Dohme Corp, Kenilworth, New Jersey, USA
| | - D Zhang
- Merck Sharp & Dohme Corp, Kenilworth, New Jersey, USA
| | - M Dockendorf
- Merck Sharp & Dohme Corp, Kenilworth, New Jersey, USA
| | - E Tetteh
- Merck Sharp & Dohme Corp, Kenilworth, New Jersey, USA
| | - M L Rizk
- Merck Sharp & Dohme Corp, Kenilworth, New Jersey, USA
| | - J A Grobler
- Merck Sharp & Dohme Corp, Kenilworth, New Jersey, USA
| | - M-T Lai
- Merck Sharp & Dohme Corp, Kenilworth, New Jersey, USA
| | - J Gobburu
- Center of Translational Science, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - W Ankrom
- Merck Sharp & Dohme Corp, Kenilworth, New Jersey, USA
| |
Collapse
|
5
|
Chang S, Zhuang D, Guo W, Li L, Zhang W, Liu S, Li H, Liu Y, Bao Z, Han J, Song H, Li J. The Antiviral Activity of Approved and Novel Drugs against HIV-1 Mutations Evaluated under the Consideration of Dose-Response Curve Slope. PLoS One 2016; 11:e0149467. [PMID: 26930645 PMCID: PMC4773073 DOI: 10.1371/journal.pone.0149467] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/01/2016] [Indexed: 11/23/2022] Open
Abstract
Objectives This study was designed to identify common HIV-1 mutation complexes affecting the slope of inhibition curve, and to propose a new parameter incorporating both the IC50 and the slope to evaluate phenotypic resistance. Methods Utilizing site-directed mutagenesis, we constructed 22 HIV-1 common mutation complexes. IC50 and slope of 10 representative approved drugs and a novel agent against these mutations were measured to determine the resistance phenotypes. The values of new parameter incorporating both the IC50 and the slope of the inhibition curve were calculated, and the correlations between parameters were assessed. Results Depending on the class of drug, there were intrinsic differences in how the resistance mutations affected the drug parameters. All of the mutations resulted in large increases in the IC50s of nucleoside reverse transcriptase inhibitors. The effects of the mutations on the slope were the most apparent when examining their effects on the inhibition of non-nucleoside reverse transcriptase inhibitors and protease inhibitors. For example, some mutations, such as V82A, had no effect on IC50, but reduced the slope. We proposed a new concept, termed IIPatoxic, on the basis of IC50, slope and the maximum limiting concentrations of the drug. The IIPatoxic values of 10 approved drugs and 1 novel agent were calculated, and were closely related to the IIPmax values (r > 0.95, p < 0.001). Conclusions This study confirms that resistance mutations cannot be accurately assessed by IC50 alone, because it tends to underestimate the degree of resistance. The slope parameter is of very importance in the measurement of drug resistance and the effect can be applied to more complex patterns of resistance. This is the most apparent when testing the effects of the mutations on protease inhibitors activity. We also propose a new index, IIPatoxic, which incorporates both the IC50 and the slope. This new index could complement current IIP indices, thereby enabling predict the efficacy of pre-clinical drugs for which human pharmacokinetic is not available.
Collapse
Affiliation(s)
- Shuai Chang
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing, China
| | - Daomin Zhuang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Science, Beijing, China
| | - Wei Guo
- NO. 201 hospital, Liaoyang, Liaoning, China
| | - Lin Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Science, Beijing, China
| | - Wenfu Zhang
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing, China
| | - Siyang Liu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Science, Beijing, China
| | - Hanping Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Science, Beijing, China
| | - Yongjian Liu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Science, Beijing, China
| | - Zuoyi Bao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Science, Beijing, China
| | - Jingwan Han
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Science, Beijing, China
| | - Hongbin Song
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing, China
- * E-mail: (JYL); (HBS)
| | - Jingyun Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Science, Beijing, China
- * E-mail: (JYL); (HBS)
| |
Collapse
|
6
|
Shimura K, Miyazato P, Oishi S, Fujii N, Matsuoka M. Impact of HIV-1 infection pathways on susceptibility to antiviral drugs and on virus spread. Virology 2015; 484:364-376. [PMID: 26186575 DOI: 10.1016/j.virol.2015.06.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 06/08/2015] [Accepted: 06/26/2015] [Indexed: 11/19/2022]
Abstract
The infection routes of HIV-1 can affect several viral properties, including dissemination, pathogenesis, and immune evasion. In this study, we evaluated the inhibitory activity of a wide variety of anti-HIV drugs, focusing on the impact that different infection pathways have on their efficacy. Compared to cell-free infection, inhibitory activities were reduced in cell-to-cell productive transmission for all drugs tested. We detected weak reporter-expressing target cells after cell-to-cell transmission in the presence of integrase strand transfer inhibitors (INSTIs). Further analysis revealed that this expression was mainly due to unintegrated circular HIV (cHIV) DNAs, consisting of 1-LTR and 2-LTR circles. When in vitro-constructed cHIV DNAs were introduced into cells, the production of infectious and intercellular transmittable virions was observed, suggesting that cHIV DNA could be a source of infectious virus. These results highlight some advantages of the cell-to-cell infection mode for viral expansion, particularly in the presence of anti-retroviral drugs.
Collapse
Affiliation(s)
- Kazuya Shimura
- Institute for Virus Research, Kyoto University, Kyoto, Japan.
| | - Paola Miyazato
- Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Masao Matsuoka
- Institute for Virus Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Wang W, Yao N, Ju B, Dong Z, Cong Z, Jiang H, Qin C, Wei Q. A simian-human immunodeficiency virus carrying the rt gene from Chinese CRF01_AE strain of HIV is sensitive to nucleoside reverse transcriptase inhibitors and has a highly genetic stability in vivo. Microbes Infect 2014; 16:461-71. [PMID: 24709063 DOI: 10.1016/j.micinf.2014.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/14/2014] [Accepted: 03/27/2014] [Indexed: 11/16/2022]
Abstract
Human immunodeficiency virus (HIV)-1 subtype CRF01_AE is one of the major HIV-1 subtypes that dominate the global epidemic. However, its drug resistance, associated mutations, and viral fitness have not been systemically studied, because available chimeric simian-HIVs (SHIVs) usually express the HIV-1 reverse transcriptase (rt) gene of subtype B HIV-1, which is different from subtype CRF01_AE HIV-1. In this study, a recombinant plasmid, pRT-SHIV/AE, was constructed to generate a chimeric RT-SHIV/AE by replacing the rt gene of simian immunodeficiency virus (SIVmac239) with the counterpart of Chinese HIV-1 subtype CRF01_AE. The infectivity, replication capacity, co-receptor tropism, drug sensitivity, and genetic stability of RT-SHIV/AE were characterized. The new chimeric RT-SHIV/AE effectively infected and replicated in human T cell line and rhesus peripheral blood mononuclear cells (rhPBMC). The rt gene of RT-SHIV/AE lacked the common mutation (T215I) associated with drug resistance. RT-SHIV-AE retained infectivity and immunogenicity, similar to that of its counterpart RT-SHIV/TC virus following intravenous inoculation in Chinese rhesus macaque. RT-SHIV-AE was more sensitive to nucleoside reverse transcriptase inhibitors (NRTIs) than the RT-SHIV/TC. RT-SHIV/AE was genetically stable in Chinese rhesus macaque. The new chimeric RT-SHIV/AE may be a valuable tool for evaluating the efficacy of the rt-based antiviral drugs against the subtype CRF01_AE HIV-1.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Beijing 100021, PR China; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing 100021, PR China; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 100021, PR China; Comparative Medical Center, Peking Union Medical College, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 100021, PR China
| | - Nan Yao
- Comparative Medical Center, Peking Union Medical College, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 100021, PR China
| | - Bin Ju
- Comparative Medical Center, Peking Union Medical College, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 100021, PR China
| | - Zhihui Dong
- Comparative Medical Center, Peking Union Medical College, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 100021, PR China
| | - Zhe Cong
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Beijing 100021, PR China; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing 100021, PR China; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 100021, PR China; Comparative Medical Center, Peking Union Medical College, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 100021, PR China
| | - Hong Jiang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Beijing 100021, PR China; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing 100021, PR China; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 100021, PR China; Comparative Medical Center, Peking Union Medical College, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 100021, PR China
| | - Chuan Qin
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Beijing 100021, PR China; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing 100021, PR China; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 100021, PR China; Comparative Medical Center, Peking Union Medical College, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 100021, PR China.
| | - Qiang Wei
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Beijing 100021, PR China; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing 100021, PR China; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 100021, PR China; Comparative Medical Center, Peking Union Medical College, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 100021, PR China.
| |
Collapse
|
8
|
González-Díaz H, Herrera-Ibatá DM, Duardo-Sánchez A, Munteanu CR, Orbegozo-Medina RA, Pazos A. ANN Multiscale Model of Anti-HIV Drugs Activity vs AIDS Prevalence in the US at County Level Based on Information Indices of Molecular Graphs and Social Networks. J Chem Inf Model 2014; 54:744-55. [DOI: 10.1021/ci400716y] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Humberto González-Díaz
- Department
of Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48940, Leioa, Vizcaya, Spain
- IKERBASQUE, Basque
Foundation for Science, 48011, Bilbao, Vizcaya, Spain
| | - Diana María Herrera-Ibatá
- Department of Information and Communication Technologies, University of A Coruña UDC, 15071, A Coruña, A Coruña, Spain
| | - Aliuska Duardo-Sánchez
- Department of Information and Communication Technologies, University of A Coruña UDC, 15071, A Coruña, A Coruña, Spain
| | - Cristian R. Munteanu
- Department of Information and Communication Technologies, University of A Coruña UDC, 15071, A Coruña, A Coruña, Spain
| | - Ricardo Alfredo Orbegozo-Medina
- Department
of Microbiology and Parasitology, University of Santiago de Compostela (USC), 15782, Santiago de Compostela, A Coruña, Spain
| | - Alejandro Pazos
- Department of Information and Communication Technologies, University of A Coruña UDC, 15071, A Coruña, A Coruña, Spain
| |
Collapse
|
9
|
Schiffer JT, Swan DA, Stone D, Jerome KR. Predictors of hepatitis B cure using gene therapy to deliver DNA cleavage enzymes: a mathematical modeling approach. PLoS Comput Biol 2013; 9:e1003131. [PMID: 23861664 PMCID: PMC3701691 DOI: 10.1371/journal.pcbi.1003131] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/22/2013] [Indexed: 12/16/2022] Open
Abstract
Most chronic viral infections are managed with small molecule therapies that inhibit replication but are not curative because non-replicating viral forms can persist despite decades of suppressive treatment. There are therefore numerous strategies in development to eradicate all non-replicating viruses from the body. We are currently engineering DNA cleavage enzymes that specifically target hepatitis B virus covalently closed circular DNA (HBV cccDNA), the episomal form of the virus that persists despite potent antiviral therapies. DNA cleavage enzymes, including homing endonucleases or meganucleases, zinc-finger nucleases (ZFNs), TAL effector nucleases (TALENs), and CRISPR-associated system 9 (Cas9) proteins, can disrupt specific regions of viral DNA. Because DNA repair is error prone, the virus can be neutralized after repeated cleavage events when a target sequence becomes mutated. DNA cleavage enzymes will be delivered as genes within viral vectors that enter hepatocytes. Here we develop mathematical models that describe the delivery and intracellular activity of DNA cleavage enzymes. Model simulations predict that high vector to target cell ratio, limited removal of delivery vectors by humoral immunity, and avid binding between enzyme and its DNA target will promote the highest level of cccDNA disruption. Development of de novo resistance to cleavage enzymes may occur if DNA cleavage and error prone repair does not render the viral episome replication incompetent: our model predicts that concurrent delivery of multiple enzymes which target different vital cccDNA regions, or sequential delivery of different enzymes, are both potentially useful strategies for avoiding multi-enzyme resistance. The underlying dynamics of cccDNA persistence are unlikely to impact the probability of cure provided that antiviral therapy is given concurrently during eradication trials. We conclude by describing experiments that can be used to validate the model, which will in turn provide vital information for dose selection for potential curative trials in animals and ultimately humans. Innovative new approaches are being developed to eradicate viral infections that until recently were considered incurable. We are interested in engineering DNA cleavage enzymes that can cut and incapacitate persistent viruses. One hurdle is that these enzymes must be delivered to infected cells as genes within viral vectors that are not harmful to humans. In this paper, we developed a series of equations that describe the delivery of these enzymes to their intended targets, as well the activity of DNA cutting within the cell. While our mathematical model is catered towards hepatitis B virus infection, it is widely applicable to other infections such as HIV, as well as oncologic and metabolic diseases characterized by aberrant gene expression. Certain enzymes may bind DNA more avidly than others, while different enzymes may also bind cooperatively if targeted to different regions of viral DNA. We predict that such enzymes, if delivered efficiently to a high proportion of infected cells, will be critical to increase the probability of cure. We also demonstrate that our equations will serve as a useful tool for identifying the most important features of a curative regimen, and ultimately for guiding clinical trial dosing schedules to ensure hepatitis B eradication with the smallest number of possible doses.
Collapse
Affiliation(s)
- Joshua T Schiffer
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
| | | | | | | |
Collapse
|
10
|
Del Prete GQ, Lifson JD. Considerations in the development of nonhuman primate models of combination antiretroviral therapy for studies of AIDS virus suppression, residual virus, and curative strategies. Curr Opin HIV AIDS 2013; 8:262-72. [PMID: 23698559 PMCID: PMC3939607 DOI: 10.1097/coh.0b013e328361cf40] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Animal models will be critical for preclinical evaluations of novel HIV eradication and/or functional cure strategies in the setting of suppressive combination antiretroviral therapy (cART). Here, the strengths, limitations, and challenges of recent efforts to develop nonhuman primate (NHP) models of cART-mediated suppression for use in studies of persistent virus and curative approaches are discussed. RECENT FINDINGS Several combinations of NHP species and viruses that recapitulate key aspects of human HIV infection have been adapted for cART-mediated suppression studies. Different cART regimens incorporating drugs targeting multiple different steps of the viral replication cycle have provided varying levels of virologic suppression, dependent in part upon the host species, virus, drug regimen and timing, and virologic monitoring assay sensitivity. New, increasingly sensitive virologic monitoring approaches for measurements of plasma viral RNA, cell-associated and tissue-associated viral RNA and DNA, and the replication-competent residual viral pool in the setting of cART in NHP models are being developed to allow for the assessment of persistent virus on cART and to evaluate the impact of viral induction/eradication strategies in vivo. SUMMARY Given the vagaries of each specific virus and host species, and cART regimen, each model will require further development and analysis to determine their appropriate application for addressing specific experimental questions.
Collapse
Affiliation(s)
- Gregory Q. Del Prete
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| |
Collapse
|