1
|
Schultz S, Gomard-Henshaw K, Muller M. RNA Modifications and Their Role in Regulating KSHV Replication and Pathogenic Mechanisms. J Med Virol 2025; 97:e70140. [PMID: 39740054 DOI: 10.1002/jmv.70140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025]
Abstract
Kaposi's sarcoma-associated herpesvirus is an oncogenic gammaherpesvirus that plays a major role in several human malignancies, including Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. The complexity of KSHV biology is reflected in the sophisticated regulation of its biphasic life cycle, consisting of a quiescent latent phase and virion-producing lytic replication. KSHV expresses coding and noncoding RNAs, including microRNAs and long noncoding RNAs, which play crucial roles in modulating viral gene expression, immune evasion, and intercellular communication. Recent studies have highlighted the importance of RNA modifications, also known as the epitranscriptome, in regulating KSHV-encoded RNAs, adding a novel layer of posttranscriptional control previously unknown. These RNA modifications, such as N6-methyladenosine, A-to-I editing, and N4-acetylcytidine, are involved in fine-tuning KSHV gene expression during both latency and lytic replication. Understanding the role of RNA modifications in KSHV infection is essential for revealing new regulatory mechanisms and identifying therapeutic opportunities. Targeting these RNA modifications could serve as a strategy to disrupt key viral processes, offering promising insights into KSHV pathogenesis and therapeutic interventions.
Collapse
Affiliation(s)
- S Schultz
- Microbiology Department, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| | - K Gomard-Henshaw
- Microbiology Department, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| | - M Muller
- Microbiology Department, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
2
|
Nakajima KI, Inagaki T, Espera JM, Izumiya Y. Kaposi's sarcoma-associated herpesvirus (KSHV) LANA prevents KSHV episomes from degradation. J Virol 2024; 98:e0126823. [PMID: 38240588 PMCID: PMC10878079 DOI: 10.1128/jvi.01268-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/14/2023] [Indexed: 02/21/2024] Open
Abstract
Protein knockdown with an inducible degradation system is a powerful tool for studying proteins of interest in living cells. Here, we adopted the auxin-inducible degron (AID) approach to detail Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) function in latency maintenance and inducible viral lytic gene expression. We fused the mini-auxin-inducible degron (mAID) tag at the LANA N-terminus with KSHV bacterial artificial chromosome 16 recombination, and iSLK cells were stably infected with the recombinant KSHV encoding mAID-LANA. Incubation with 5-phenyl-indole-3-acetic acid, a derivative of natural auxin, rapidly degraded LANA within 1.5 h. In contrast to our hypothesis, depletion of LANA alone did not trigger lytic reactivation but rather decreased inducible lytic gene expression when we stimulated reactivation with a combination of ORF50 protein expression and sodium butyrate. Decreased overall lytic gene induction seemed to be associated with a rapid loss of KSHV genomes in the absence of LANA. The rapid loss of viral genomic DNA was blocked by a lysosomal inhibitor, chloroquine. Furthermore, siRNA-mediated knockdown of cellular innate immune proteins, cyclic AMP-GMP synthase (cGAS) and simulator of interferon genes (STING), and other autophagy-related genes rescued the degradation of viral genomic DNA upon LANA depletion. Reduction of the viral genome was not observed in 293FT cells that lack the expression of cGAS. These results suggest that LANA actively prevents viral genomic DNA from sensing by cGAS-STING signaling axis, adding novel insights into the role of LANA in latent genome maintenance.IMPORTANCESensing of pathogens' components is a fundamental cellular immune response. Pathogens have therefore evolved strategies to evade such cellular immune responses. KSHV LANA is a multifunctional protein and plays an essential role in maintaining the latent infection by tethering viral genomic DNA to the host chromosome. We adopted the inducible protein knockdown approach and found that depletion of LANA induced rapid degradation of viral genomic DNA, which is mediated by innate immune DNA sensors and autophagy pathway. These observations suggest that LANA may play a role in hiding KSHV episome from innate immune DNA sensors. Our study thus provides new insights into the role of LANA in latency maintenance.
Collapse
Affiliation(s)
- Ken-ichi Nakajima
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Tomoki Inagaki
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Jonna Magdallene Espera
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Yoshihiro Izumiya
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, California, USA
| |
Collapse
|
3
|
Izumiya Y, Algalil A, Espera JM, Miura H, Izumiya C, Inagaki T, Kumar A. Kaposi's sarcoma-associated herpesvirus terminal repeat regulates inducible lytic gene promoters. J Virol 2024; 98:e0138623. [PMID: 38240593 PMCID: PMC10878276 DOI: 10.1128/jvi.01386-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/02/2024] [Indexed: 02/21/2024] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV) genome consists of an approximately 140-kb unique coding region flanked by 30-40 copies of a 0.8-kb terminal repeat (TR) sequence. A gene enhancer recruits transcription-related enzymes by having arrays of transcription factor binding sites. Here, we show that KSHV TR possesses transcription regulatory function with latency-associated nuclear antigen (LANA). Cleavage under targets and release using nuclease demonstrated that TR fragments were occupied by LANA-interacting histone-modifying enzymes in naturally infected cells. The TR was enriched with histone H3K27 acetylation (H3K27Ac) and H3K4 tri-methylation (H3K4me3) modifications and also expressed nascent RNAs. The sites of H3K27Ac and H3K4me3 modifications were also conserved in the KSHV unique region among naturally infected primary effusion lymphoma cells. KSHV origin of lytic replication (Ori-Lyt) showed similar protein and histone modification occupancies with that of TR. In the Ori-Lyt region, the LANA and LANA-interacting proteins colocalized with an H3K27Ac-modified nucleosome along with paused RNA polymerase II. The KSHV transactivator KSHV replication and transcription activator (K-Rta) recruitment sites franked the LANA-bound nucleosome, and reactivation evicted the LANA-bound nucleosome. Including TR fragments in reporter plasmid enhanced inducible viral gene promoter activities independent of the orientations. In the presence of TR in reporter plasmids, K-Rta transactivation was drastically increased, while LANA acquired the promoter repression function. KSHV TR, therefore, functions as an enhancer for KSHV inducible genes. However, in contrast to cellular enhancers bound by multiple transcription factors, perhaps the KSHV enhancer is predominantly regulated by the LANA nuclear body.IMPORTANCEEnhancers are a crucial regulator of differential gene expression programs. Enhancers are the cis-regulatory sequences determining target genes' spatiotemporal and quantitative expression. Here, we show that Kaposi's sarcoma-associated herpesvirus (KSHV) terminal repeats fulfill the enhancer definition for KSHV inducible gene promoters. The KSHV enhancer is occupied by latency-associated nuclear antigen (LANA) and its interacting proteins, such as CHD4. Neighboring terminal repeat (TR) fragments to lytic gene promoters drastically enhanced KSHV replication and transcription activator and LANA transcription regulatory functions. This study, thus, proposes a new latency-lytic switch model in which TR accessibility to the KSHV gene promoters regulates viral inducible gene expression.
Collapse
Affiliation(s)
- Yoshihiro Izumiya
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Adhraa Algalil
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
- Midwestern University College of Dental Medicine, Glendale, Arizona, USA
| | - Jonna M. Espera
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Hiroki Miura
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Chie Izumiya
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Tomoki Inagaki
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Ashish Kumar
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| |
Collapse
|
4
|
Morgens DW, Nandakumar D, Didychuk AL, Yang KJ, Glaunsinger BA. A Two-tiered functional screen identifies herpesviral transcriptional modifiers and their essential domains. PLoS Pathog 2022; 18:e1010236. [PMID: 35041709 PMCID: PMC8797222 DOI: 10.1371/journal.ppat.1010236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/28/2022] [Accepted: 12/29/2021] [Indexed: 11/19/2022] Open
Abstract
While traditional methods for studying large DNA viruses allow the creation of individual mutants, CRISPR/Cas9 can be used to rapidly create thousands of mutant dsDNA viruses in parallel, enabling the pooled screening of entire viral genomes. Here, we applied this approach to Kaposi’s sarcoma-associated herpesvirus (KSHV) by designing a sgRNA library containing all possible ~22,000 guides targeting the 154 kilobase viral genome, corresponding to one cut site approximately every 8 base pairs. We used the library to profile viral sequences involved in transcriptional activation of late genes, whose regulation involves several well characterized features including dependence on viral DNA replication and a known set of viral transcriptional activators. Upon phenotyping all possible Cas9-targeted viruses for transcription of KSHV late genes we recovered these established regulators and identified a new required factor (ORF46), highlighting the utility of the screening pipeline. By performing targeted deep sequencing of the viral genome to distinguish between knock-out and in-frame alleles created by Cas9, we identify the DNA binding but not catalytic domain of ORF46 to be required for viral DNA replication and thus late gene expression. Our pooled Cas9 tiling screen followed by targeted deep viral sequencing represents a two-tiered screening paradigm that may be widely applicable to dsDNA viruses.
Collapse
Affiliation(s)
- David W. Morgens
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, United States of America
- * E-mail: (DM); (BG)
| | - Divya Nandakumar
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, United States of America
| | - Allison L. Didychuk
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, United States of America
| | - Kevin J. Yang
- Department of Molecular and Cell Biology, UC Berkeley, Berkeley, California, United States of America
| | - Britt A. Glaunsinger
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, UC Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, UC Berkeley, Berkeley, California, United States of America
- * E-mail: (DM); (BG)
| |
Collapse
|
5
|
A panel of KSHV mutants in the polycistronic kaposin locus for precise analysis of individual protein products. J Virol 2021; 96:e0156021. [PMID: 34936820 PMCID: PMC8906436 DOI: 10.1128/jvi.01560-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the cause of several human cancers, including the endothelial cell (EC) malignancy, Kaposi’s sarcoma. Unique KSHV genes absent from other human herpesvirus genomes, the “K-genes,” are important for KSHV replication and pathogenesis. Among these, the kaposin transcript is highly expressed in all phases of infection, but its complex polycistronic nature has hindered functional analysis to date. At least three proteins are produced from the kaposin transcript: Kaposin A (KapA), B (KapB), and C (KapC). To determine the relative contributions of kaposin proteins during KSHV infection, we created a collection of mutant viruses unable to produce kaposin proteins individually or in combination. In previous work, we showed KapB alone recapitulated the elevated proinflammatory cytokine transcripts associated with KS via the disassembly of RNA granules called processing bodies (PBs). Using the new ΔKapB virus, we showed that KapB was necessary for this effect during latent KSHV infection. Moreover, we observed that despite the ability of all kaposin-deficient latent iSLK cell lines to produce virions, all displayed low viral episome copy number, a defect that became more pronounced after primary infection of naive ECs. For ΔKapB, provision of KapB in trans failed to complement the defect, suggesting a requirement for the kaposin locus in cis. These findings demonstrate that our panel of kaposin-deficient viruses enables precise analysis of the respective contributions of individual kaposin proteins to KSHV replication. Moreover, our mutagenesis approach serves as a guide for the functional analysis of other complex multicistronic viral loci. IMPORTANCE Kaposi’s sarcoma-associated herpesvirus (KSHV) expresses high levels of the kaposin transcript during both latent and lytic phases of replication. Due to its repetitive, GC-rich nature and polycistronic coding capacity, until now no reagents existed to permit a methodical analysis of the role of individual kaposin proteins in KSHV replication. We report the creation of a panel of recombinant viruses and matched producer cell lines that delete kaposin proteins individually or in combination. We demonstrate the utility of this panel by confirming the requirement of one kaposin translation product to a key KSHV latency phenotype. This study describes a new panel of molecular tools for the KSHV field to enable precise analysis of the roles of individual kaposin proteins during KSHV infection.
Collapse
|
6
|
Proximity Biotin Labeling Reveals Kaposi's Sarcoma-Associated Herpesvirus Interferon Regulatory Factor Networks. J Virol 2021; 95:JVI.02049-20. [PMID: 33597212 PMCID: PMC8104114 DOI: 10.1128/jvi.02049-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/10/2021] [Indexed: 01/04/2023] Open
Abstract
Viral protein interaction with a host protein shows at least two sides: (i) taking host protein functions for its own benefit and (ii) disruption of existing host protein complex formation to inhibit undesirable host responses. Due to the use of affinity precipitation approaches, the majority of studies have focused on how the virus takes advantage of the newly formed protein interactions for its own replication. Studies on “hit-and-run” effects by viral proteins are difficult when using traditional affinity precipitation-based techniques under dynamic conditions, because only proteins interacting at a specific instance in time can be precipitated by affinity purification. Recent advances in proximity labeling (PL) have enabled identification of both static and dynamic protein-protein interactions. In this study, we applied a PL method by generating recombinant Kaposi’s sarcoma-associated herpesvirus (KSHV). KSHV, a gammaherpesvirus, uniquely encodes four interferon regulatory factors (IRF-1 to -4) that suppress host interferon responses, and we examined KSHV IRF-1 and IRF-4 neighbor proteins to identify cellular proteins involved in innate immune regulation. PL identified 213 and 70 proteins as neighboring proteins of viral IRF-1 (vIRF-1) and vIRF-4 during viral reactivation, and 47 proteins were shared between the two vIRFs; the list also includes three viral proteins, ORF17, thymidine kinase, and vIRF-4. Functional annotation of respective interacting proteins showed highly overlapping biological roles such as mRNA processing and transcriptional regulation by TP53. Innate immune regulation by these commonly interacting 44 cellular proteins was examined with small interfering RNAs (siRNAs), and the splicing factor 3B family proteins were found to be associated with interferon transcription and to act as suppressors of KSHV reactivation. We propose that recombinant mini-TurboID-KSHV is a powerful tool to probe key cellular proteins that play a role in KSHV replication and that selective splicing factors have a function in the regulation of innate immune responses. IMPORTANCE Viral protein interaction with a host protein shows at least two sides: (i) taking host protein functions for its own benefit and (ii) disruption of existing host protein complex formation to inhibit undesirable host responses. Due to the use of affinity precipitation approaches, the majority of studies have focused on how the virus takes advantage of the newly formed protein interactions for its own replication. Proximity labeling (PL), however, can also highlight transient and negative effects—those interactions which lead to dissociation from the existing protein complex. Here, we highlight the power of PL in combination with recombinant KSHV to study viral host interactions.
Collapse
|