1
|
Wang Y, Yu J, Pei Y. Identifying the key regulators orchestrating Epstein-Barr virus reactivation. Front Microbiol 2024; 15:1505191. [PMID: 39703703 PMCID: PMC11655498 DOI: 10.3389/fmicb.2024.1505191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/14/2024] [Indexed: 12/21/2024] Open
Abstract
Epstein-Barr virus (EBV) infects more than 90% of the human population worldwide and establishes lifelong infection in hosts by switching between latent and lytic infection. EBV latency can be reactivated under appropriate conditions, leading to expression of the viral lytic genes and production of infectious progeny viruses. EBV reactivation involves crosstalk between various factors and signaling pathways, and the subsequent complicated virus-host interplays determine whether EBV continues to propagate. However, the detailed mechanisms underlying these processes remain unclear. In this review, we summarize the critical factors regulating EBV reactivation and the associated mechanisms. This encompasses the transcription and post-transcriptional regulation of immediate-early (IE) genes, the functions of viral factors on viral DNA replication and progeny virus production, the mechanisms through which viral proteins disrupt and inhibit the host's innate immune response, and the host factors that modulate EBV reactivation. Finally, we explore the potential applications of novel technologies in studying EBV reactivation, providing novel insights into the investigation of mechanisms governing EBV reactivation and the development of anti-EBV therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Yonggang Pei
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Dremel SE, Didychuk AL. Better late than never: A unique strategy for late gene transcription in the beta- and gammaherpesviruses. Semin Cell Dev Biol 2023; 146:57-69. [PMID: 36535877 PMCID: PMC10101908 DOI: 10.1016/j.semcdb.2022.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
During lytic replication, herpesviruses express their genes in a temporal cascade culminating in expression of "late" genes. Two subfamilies of herpesviruses, the beta- and gammaherpesviruses (including human herpesviruses cytomegalovirus, Epstein-Barr virus, and Kaposi's sarcoma-associated herpesvirus), use a unique strategy to facilitate transcription of late genes. They encode six essential viral transcriptional activators (vTAs) that form a complex at a subset of late gene promoters. One of these vTAs is a viral mimic of host TATA-binding protein (vTBP) that recognizes a strikingly minimal cis-acting element consisting of a modified TATA box with a TATTWAA consensus sequence. vTBP is also responsible for recruitment of cellular RNA polymerase II (Pol II). Despite extensive work in the beta/gammaherpesviruses, the function of the other five vTAs remains largely unknown. The vTA complex and Pol II assemble on the promoter into a viral preinitiation complex (vPIC) to facilitate late gene transcription. Here, we review the properties of the vTAs and the promoters on which they act.
Collapse
Affiliation(s)
- Sarah E Dremel
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Allison L Didychuk
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Uddin MK, Watanabe T, Arata M, Sato Y, Kimura H, Murata T. Epstein-Barr Virus BBLF1 Mediates Secretory Vesicle Transport to Facilitate Mature Virion Release. J Virol 2023; 97:e0043723. [PMID: 37195206 PMCID: PMC10308924 DOI: 10.1128/jvi.00437-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/20/2023] [Indexed: 05/18/2023] Open
Abstract
Enveloped viruses undergo a complex multistep process of assembly, maturation, and release into the extracellular space utilizing host secretory machinery. Several studies of the herpesvirus subfamily have shown that secretory vesicles derived from the trans-Golgi network (TGN) or endosomes transport virions into the extracellular space. However, the regulatory mechanism underlying the release of Epstein-Barr virus, a human oncovirus, remains unclear. We demonstrate that disruption of BBLF1, a tegument component, suppressed viral release and resulted in the accumulation of viral particles on the inner side of the vesicular membrane. Organelle separation revealed the accumulation of infectious viruses in fractions containing vesicles derived from the TGN and late endosomes. Deficiency of an acidic amino acid cluster in BBLF1 reduced viral secretion. Moreover, truncational deletion of the C-terminal region of BBLF1 increased infectious virus production. These findings suggest that BBLF1 regulates the viral release pathway and reveal a new aspect of tegument protein function. IMPORTANCE Several viruses have been linked to the development of cancer in humans. Epstein-Barr virus (EBV), the first identified human oncovirus, causes a wide range of cancers. Accumulating literature has demonstrated the role of viral reactivation in tumorigenesis. Elucidating the functions of viral lytic genes induced by reactivation, and the mechanisms of lytic infection, is essential to understanding pathogenesis. Progeny viral particles synthesized during lytic infection are released outside the cell after the assembly, maturation, and release steps, leading to further infection. Through functional analysis using BBLF1-knockout viruses, we demonstrated that BBLF1 promotes viral release. The acidic amino acid cluster in BBLF1 was also important for viral release. Conversely, mutants lacking the C terminus exhibited more efficient virus production, suggesting that BBLF1 is involved in the fine-tuning of progeny release during the EBV life cycle.
Collapse
Affiliation(s)
- Md Kamal Uddin
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takahiro Watanabe
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masataka Arata
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoshitaka Sato
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takayuki Murata
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
4
|
Argirion I, Pfeiffer RM, Proietti C, Coghill AE, Yu KJ, Middeldorp JM, Sarathkumara YD, Hsu WL, Chien YC, Lou PJ, Wang CP, Rothman N, Lan Q, Chen CJ, Mbulaiteye SM, Jarrett RF, Glimelius I, Smedby KE, Hjalgrim H, Hildesheim A, Doolan DL, Liu Z. Comparative Analysis of the Humoral Immune Response to the EBV Proteome across EBV-Related Malignancies. Cancer Epidemiol Biomarkers Prev 2023; 32:687-696. [PMID: 36788424 PMCID: PMC10159936 DOI: 10.1158/1055-9965.epi-22-0452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/14/2022] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is linked to multiple cancers, including classical Hodgkin lymphoma (cHL), endemic Burkitt lymphoma (eBL), nasopharyngeal carcinoma (NPC), and extranodal natural killer/T-cell lymphoma (NKTCL). METHODS Anti-EBV IgG and IgA antibody responses targeting 202 sequences from 86 EBV proteins were measured using the same EBV whole proteome array across four case-control studies investigating EBV-positive cHL, eBL, NPC, and NKTCL (407 cases/620 controls). We grouped EBV-targeted antibodies into pathways by immunoglobulin type (IgA and IgG) and life-cycle stage (latent, immediate early lytic, early lytic, late lytic, and glycoprotein) and evaluated their association with each cancer type. In an additional analysis, we focused on the subset of 46 individual antibodies representing the top candidates for each cancer and compared their associations across the four cancer types using multivariable linear regression models. RESULTS IgA antibody responses targeting all EBV life-cycle stages were associated with NPC but limited to anti-early lytic stage for cHL. NPC and eBL were associated with IgG antibodies across the viral life cycle; cHL with antibodies in the early lytic, late lytic and glycoprotein stages; and NKTCL with antibodies in the latent, immediate early lytic and early lytic phases. EBNA3A, BBLF1, BDLF4, and BLRF2 IgG antibodies were associated with all cancer types. CONCLUSIONS Our observed similarities and differences across four EBV-associated cancers may inform EBV-related oncogenesis. IMPACT Understanding the comparative humoral immune response across EBV-related cancers may aid in identifying shared etiologic roles of EBV proteins and inform unique pathogenic processes for each cancer.
Collapse
Affiliation(s)
- Ilona Argirion
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Ruth M. Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Carla Proietti
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - Anna E. Coghill
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Epidemiology Program, Division of Population Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kelly J. Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | | | - Yomani D. Sarathkumara
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - Wan-Lun Hsu
- Master Program of Big Data in Biomedicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Data Science Center, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yin-Chu Chien
- Genomics Research Center, Academica Sinica, Taipei, Taiwan
- National Institute of Cancer Research, National Health Research Institute, Miaoli, Taiwan
| | - Pei-Jen Lou
- Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Cheng-Ping Wang
- Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Chien-Jen Chen
- Genomics Research Center, Academica Sinica, Taipei, Taiwan
- Graduate Institute of Epidemiology and Prevention Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Sam M. Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Ruth F. Jarrett
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ingrid Glimelius
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Karin E. Smedby
- Department of Medicine Solna, Division of Clinical Epidemiology, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Hjalgrim
- Statens Serum Institut, Copenhagen, Denmark
- Department of Haematology, Rigshospitalet, Copenhagen, Denmark
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Denise L. Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
5
|
Comprehensive Analyses of Intraviral Epstein-Barr Virus Protein-Protein Interactions Hint Central Role of BLRF2 in the Tegument Network. J Virol 2022; 96:e0051822. [PMID: 35862711 PMCID: PMC9327732 DOI: 10.1128/jvi.00518-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Protein-protein interactions (PPIs) are crucial for various biological processes. Epstein-Barr virus (EBV) proteins typically form complexes, regulating the replication and persistence of the viral genome in human cells. However, the role of EBV protein complexes under physiological conditions remains unclear. In this study, we performed comprehensive analyses of EBV PPIs in living cells using the NanoBiT system. We identified 195 PPIs, many of which have not previously been reported. Computational analyses of these PPIs revealed that BLRF2, which is only found in gammaherpesviruses, is a central protein in the structural network of EBV tegument proteins. To characterize the role of BLRF2, we generated two BLRF2 knockout EBV clones using CRISPR/Cas9. BLRF2 knockout significantly decreased the production of infectious virus particles, which was partially restored by exogenous BLRF2 expression. In addition, self-association of BLRF2 protein was found, and mutation of the residues crucial for the self-association affected stability of the protein. Our data imply that BLRF2 is a tegument network hub that plays important roles in progeny virion maturation. IMPORTANCE EBV remains a significant public health challenge, causing infectious mononucleosis and several cancer types. Therefore, the better understanding of the molecular mechanisms underlying EBV replication is of high clinical importance. As protein-protein interactions (PPIs) are major regulators of virus-associated pathogenesis, comprehensive analyses of PPIs are essential. Previous studies on PPIs in EBV or other herpesviruses have predominantly employed the yeast two-hybrid (Y2H) system, immunoprecipitation, and pulldown assays. Herein, using a novel luminescence-based method, we identified 195 PPIs, most of which have not previously been reported. Computational and functional analyses using knockout viruses revealed that BLRF2 plays a central role in the EBV life cycle, which makes it a valuable target for drug development.
Collapse
|
6
|
Lytic Replication and Reactivation from B Cells Is Not Required for Establishing or Maintaining Gammaherpesvirus Latency In Vivo. J Virol 2022; 96:e0069022. [PMID: 35647668 PMCID: PMC9215232 DOI: 10.1128/jvi.00690-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gammaherpesviruses (GHVs) are lymphotropic tumor viruses with a biphasic infectious cycle. Lytic replication at the primary site of infection is necessary for GHVs to spread throughout the host and establish latency in distal sites. Dissemination is mediated by infected B cells that traffic hematogenously from draining lymph nodes to peripheral lymphoid organs, such as the spleen. B cells serve as the major reservoir for viral latency, and it is hypothesized that periodic reactivation from latently infected B cells contributes to maintaining long-term chronic infection. While fundamentally important to an understanding of GHV biology, aspects of B cell infection in latency establishment and maintenance are incompletely defined, especially roles for lytic replication and reactivation in this cell type. To address this knowledge gap and overcome limitations of replication-defective viruses, we generated a recombinant murine gammaherpesvirus 68 (MHV68) in which ORF50, the gene that encodes the essential immediate-early replication and transcription activator protein (RTA), was flanked by loxP sites to enable conditional ablation of lytic replication by ORF50 deletion in cells that express Cre recombinase. Following infection of mice that encode Cre in B cells with this virus, splenomegaly and viral reactivation from splenocytes were significantly reduced; however, the number of latently infected splenocytes was equivalent to WT MHV68. Despite ORF50 deletion, MHV68 latency was maintained over time in spleens of mice at levels approximating WT, reactivation-competent MHV68. Treatment of infected mice with lipopolysaccharide (LPS), which promotes B cell activation and MHV68 reactivation ex vivo, yielded equivalent increases in the number of latently infected cells for both ORF50-deleted and WT MHV68, even when mice were simultaneously treated with the antiviral drug cidofovir to prevent reactivation. Together, these data demonstrate that productive viral replication in B cells is not required for MHV68 latency establishment and support the hypothesis that B cell proliferation facilitates latency maintenance in vivo in the absence of reactivation. IMPORTANCE Gammaherpesviruses establish lifelong chronic infections in cells of the immune system and place infected hosts at risk for developing lymphomas and other diseases. It is hypothesized that gammaherpesviruses must initiate acute infection in these cells to establish and maintain long-term infection, but this has not been directly tested. We report here the use of a viral genetic system that allows for cell-type-specific deletion of a viral gene that is essential for replication and reactivation. We employ this system in an in vivo model to reveal that viral replication is not required to initiate or maintain infection within B cells.
Collapse
|
7
|
The Central Role of the Ubiquitin-Proteasome System in EBV-Mediated Oncogenesis. Cancers (Basel) 2022; 14:cancers14030611. [PMID: 35158879 PMCID: PMC8833352 DOI: 10.3390/cancers14030611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Epstein–Barr virus (EBV) is the first discovered human tumor virus, which contributes to the oncogenesis of many human cancers. The ubiquitin–proteasome system is a key player during EBV-mediated oncogenesis and has been developed as a crucial therapeutic target for treatment. In this review, we briefly describe how EBV antigens can modulate the ubiquitin–proteasome system for targeted protein degradation and how they are regulated in the EBV life cycle to mediate oncogenesis. Additionally, the developed proteasome inhibitors are discussed for the treatment of EBV-associated cancers. Abstract Deregulation of the ubiquitin–proteasome system (UPS) plays a critical role in the development of numerous human cancers. Epstein–Barr virus (EBV), the first known human tumor virus, has evolved distinct molecular mechanisms to manipulate the ubiquitin–proteasome system, facilitate its successful infection, and drive opportunistic cancers. The interactions of EBV antigens with the ubiquitin–proteasome system can lead to oncogenesis through the targeting of cellular factors involved in proliferation. Recent studies highlight the central role of the ubiquitin–proteasome system in EBV infection. This review will summarize the versatile strategies in EBV-mediated oncogenesis that contribute to the development of specific therapeutic approaches to treat EBV-associated malignancies.
Collapse
|
8
|
Molecular Basis of Epstein-Barr Virus Latency Establishment and Lytic Reactivation. Viruses 2021; 13:v13122344. [PMID: 34960613 PMCID: PMC8706188 DOI: 10.3390/v13122344] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022] Open
Abstract
Epstein–Barr virus (EBV) is a causative agent of infectious mononucleosis and several types of cancer. Like other herpesviruses, it establishes an asymptomatic, life-long latent infection, with occasional reactivation and shedding of progeny viruses. During latency, EBV expresses a small number of viral genes, and exists as an episome in the host–cell nucleus. Expression patterns of latency genes are dependent on the cell type, time after infection, and milieu of the cell (e.g., germinal center or peripheral blood). Upon lytic induction, expression of the viral immediate-early genes, BZLF1 and BRLF1, are induced, followed by early gene expression, viral DNA replication, late gene expression, and maturation and egress of progeny virions. Furthermore, EBV reactivation involves more than just progeny production. The EBV life cycle is regulated by signal transduction, transcription factors, promoter sequences, epigenetics, and the 3D structure of the genome. In this article, the molecular basis of EBV latency establishment and reactivation is summarized.
Collapse
|
9
|
Inagaki T, Sato Y, Ito J, Takaki M, Okuno Y, Yaguchi M, Masud HMAA, Watanabe T, Sato K, Iwami S, Murata T, Kimura H. Direct Evidence of Abortive Lytic Infection-Mediated Establishment of Epstein-Barr Virus Latency During B-Cell Infection. Front Microbiol 2021; 11:575255. [PMID: 33613459 PMCID: PMC7888302 DOI: 10.3389/fmicb.2020.575255] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/15/2020] [Indexed: 12/25/2022] Open
Abstract
Viral infection induces dynamic changes in transcriptional profiles. Virus-induced and antiviral responses are intertwined during the infection. Epstein-Barr virus (EBV) is a human gammaherpesvirus that provides a model of herpesvirus latency. To measure the transcriptome changes during the establishment of EBV latency, we infected EBV-negative Akata cells with EBV-EGFP and performed transcriptome sequencing (RNA-seq) at 0, 2, 4, 7, 10, and 14 days after infection. We found transient downregulation of mitotic division-related genes, reflecting reprogramming of cell growth by EBV, and a burst of viral lytic gene expression in the early phase of infection. Experimental and mathematical investigations demonstrate that infectious virions were not produced in the pre-latent phase, suggesting the presence of an abortive lytic infection. Fate mapping using recombinant EBV provided direct evidence that the abortive lytic infection in the pre-latent phase converges to latent infection during EBV infection of B-cells, shedding light on novel roles of viral lytic gene(s) in establishing latency. Furthermore, we find that the BZLF1 protein, which is a key regulator of reactivation, was dispensable for abortive lytic infection in the pre-latent phase, suggesting the divergent regulation of viral gene expressions from a productive lytic infection.
Collapse
Affiliation(s)
- Tomoki Inagaki
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshitaka Sato
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mitsuaki Takaki
- Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Okuno
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Masahiro Yaguchi
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - H. M. Abdullah Al Masud
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Microbiology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Takahiro Watanabe
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shingo Iwami
- Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, Japan
- MIRAI, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Takayuki Murata
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
10
|
[Dynamic changes of cellular environment during Epstein-Barr virus productive replication]. Uirusu 2020; 70:83-90. [PMID: 33967117 DOI: 10.2222/jsv.70.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Productive (lytic) replication of DNA viruses elicits host cell DNA damage responses, which cause both beneficial and detrimental effects on viral replication. Viruses utilize them and selectively cancel the 'noisy' downstream signaling pathways, leading to maintain high S-phase CDK activities required for viral replication. To achieve this fine tuning of cellular environment, herpesviruses encode many (>70) genes in their genome, which are expressed in a strictly regulated temporal cascade (immediate-early, early, and late). Here, I introduce and discuss how Epstein-Barr virus, an oncogenic herpesvirus, hijacks the cellular environment and adapt it for the progeny production.
Collapse
|
11
|
Watanabe T, Sato Y, Masud HMAA, Takayama M, Matsuda H, Hara Y, Yanagi Y, Yoshida M, Goshima F, Murata T, Kimura H. Antitumor activity of cyclin-dependent kinase inhibitor alsterpaullone in Epstein-Barr virus-associated lymphoproliferative disorders. Cancer Sci 2019; 111:279-287. [PMID: 31743514 PMCID: PMC6942432 DOI: 10.1111/cas.14241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Epstein‐Barr virus (EBV) is a well‐established tumor virus that has been implicated in a wide range of immunodeficiency‐associated lymphoproliferative disorders (LPDs). Although rituximab, a CD20 mAb, has proven effective against EBV‐associated LPDs, prolonged use of this drug could lead to resistance due to the selective expansion of CD20− cells. We have previously shown that cyclin‐dependent kinase (CDK) inhibitors are able to specifically suppress the expression of viral late genes, particularly those encoding structural proteins; however, the therapeutic effect of CDK inhibitors against EBV‐associated LPDs is not clear. In this study, we examined whether CDK inhibitors confer a therapeutic effect against LPDs in vivo. Treatment with alsterpaullone, an inhibitor of the CDK2 complex, resulted in a survival benefit and suppressed tumor invasion in a mouse model of LPDs. Inhibition of CDK efficiently induced G1 cell cycle arrest and apoptosis in EBV‐positive B cells. These results suggest that alsterpaullone suppresses cell cycle progression, resulting in the antitumor effect observed in vivo.
Collapse
Affiliation(s)
- Takahiro Watanabe
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshitaka Sato
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - H M Abdullah Al Masud
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Takayama
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Matsuda
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuya Hara
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Yanagi
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Yoshida
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumi Goshima
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Murata
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
12
|
Li J, Walsh A, Lam TT, Delecluse HJ, El-Guindy A. A single phosphoacceptor residue in BGLF3 is essential for transcription of Epstein-Barr virus late genes. PLoS Pathog 2019; 15:e1007980. [PMID: 31461506 PMCID: PMC6713331 DOI: 10.1371/journal.ppat.1007980] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023] Open
Abstract
Almost one third of herpesvirus proteins are expressed with late kinetics. Many of these late proteins serve crucial structural functions such as formation of virus particles, attachment to host cells and internalization. Recently, we and others identified a group of Epstein-Barr virus early proteins that form a pre-initiation complex (vPIC) dedicated to transcription of late genes. Currently, there is a fundamental gap in understanding the role of post-translational modifications in regulating assembly and function of the complex. Here, we used mass spectrometry to map potential phosphorylation sites in BGLF3, a core component of the vPIC module that connects the BcRF1 viral TATA box binding protein to other components of the complex. We identified threonine 42 (T42) in BGLF3 as a phosphoacceptor residue. T42 is conserved in BGLF3 orthologs encoded by other gamma herpesviruses. Abolishing phosphorylation at T42 markedly reduced expression of vPIC-dependent late genes and disrupted production of new virus particles, but had no effect on early gene expression, viral DNA replication, or expression of vPIC-independent late genes. We complemented failure of BGLF3(T42A) to activate late gene expression by ectopic expression of other components of vPIC. Only BFRF2 and BVLF1 were sufficient to suppress the defect in late gene expression associated with BGLF3(T42A). These results were corroborated by the ability of wild type BGLF3 but not BGLF3(T42A) to form a trimeric complex with BFRF2 and BVLF1. Our findings suggest that phosphorylation of BGLF3 at threonine 42 serves as a new checkpoint for subsequent formation of BFRF2:BGLF3:BVLF1; a trimeric subcomplex essential for transcription of late genes. Our findings provide evidence that post-translational modifications regulate the function of the vPIC nanomachine that initiates synthesis of late transcripts in herpesviruses.
Collapse
Affiliation(s)
- Jinlin Li
- Department of Pediatrics Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ann Walsh
- Department of Pediatrics Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - TuKiet T. Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Keck MS and Proteomics Resource, Yale University, New Haven, Connecticut, United States of America
| | - Henri-Jacques Delecluse
- Department of Tumor Virology, German Cancer Research Center, Im Neuenheimer Feld, Heidelberg, Germany
| | - Ayman El-Guindy
- Department of Pediatrics Yale University School of Medicine, New Haven, Connecticut, United States of America
- Yale Cancer Center, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
13
|
Chakravorty A, Sugden B, Johannsen EC. An Epigenetic Journey: Epstein-Barr Virus Transcribes Chromatinized and Subsequently Unchromatinized Templates during Its Lytic Cycle. J Virol 2019; 93:e02247-18. [PMID: 30700606 PMCID: PMC6450099 DOI: 10.1128/jvi.02247-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Epstein-Barr virus (EBV) lytic phase, like those of all herpesviruses, proceeds via an orderly cascade that integrates DNA replication and gene expression. EBV early genes are expressed independently of viral DNA amplification, and several early gene products facilitate DNA amplification. On the other hand, EBV late genes are defined by their dependence on viral DNA replication for expression. Recently, a set of orthologous genes found in beta- and gammaherpesviruses have been determined to encode a viral preinitiation complex (vPIC) that mediates late gene expression. The EBV vPIC requires an origin of lytic replication in cis, implying that the vPIC mediates transcription from newly replicated DNA. In agreement with this implication, EBV late gene mRNAs localize to replication factories. Notably, these factories exclude canonical histones. In this review, we compare and contrast the mechanisms and epigenetics of EBV early and late gene expression. We summarize recent findings, propose a model explaining the dependence of EBV late gene expression on lytic DNA amplification, and suggest some directions for future study.
Collapse
Affiliation(s)
- Adityarup Chakravorty
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Bill Sugden
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eric C Johannsen
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
14
|
S-Like-Phase Cyclin-Dependent Kinases Stabilize the Epstein-Barr Virus BDLF4 Protein To Temporally Control Late Gene Transcription. J Virol 2019; 93:JVI.01707-18. [PMID: 30700607 DOI: 10.1128/jvi.01707-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/23/2019] [Indexed: 12/27/2022] Open
Abstract
Temporally controlled gene expression is necessary for the propagation of herpesviruses. To achieve this, herpesviruses encode several transcriptional regulators. In Epstein-Barr virus, BcRF1 associates with five viral proteins (BDLF4, BGLF3, BFRF2, BVLF1, and BDLF3.5) to form the viral late (L) gene regulatory complex, which is called the viral preinitiation complex (vPIC), on TATT-containing promoters. However, regulation of the vPIC has been largely unexplored. In this study, we performed two screens using a kinase inhibitor library and identified a series of cyclin-dependent kinase (CDK) inhibitors that downregulated the expression of L genes without any impact on viral DNA replication through destabilization of the BDLF4 protein. Knockdown of CDK2 by short hairpin RNA (shRNA) and proteasome inhibitor treatment showed that phosphorylation of the BDLF4 protein prevented ubiquitin-mediated degradation. Moreover, we demonstrated that cyclin A- and E-associated CDK2 complexes phosphorylated BDLF4 in vitro, and we identified several serine/threonine phosphorylation sites in BDLF4. Phosphoinactive and phosphomimic mutants revealed that phosphorylation at threonine 91 plays a role in stabilizing BDLF4. Therefore, our findings indicate that S-like-phase CDKs mediate the regulation of L gene expression through stabilization of the BDLF4 protein, which makes the temporal L gene expression system more robust.IMPORTANCE Late (L) genes represent more than one-third of the herpesvirus genome, suggesting that many of these genes are indispensable for the life cycle of the virus. With the exception of BCRF1, BDLF2, and BDLF3, Epstein-Barr virus L genes are transcribed by viral regulators, which are known as the viral preinitiation complex (vPIC) and the host RNA polymerase II complex. Because the vPIC is conserved in beta- and gammaherpesviruses, studying the control of viral L gene expression by the vPIC contributes to the development of drugs that specifically inhibit these processes in beta- and gammaherpesvirus infections/diseases. In this study, we demonstrated that CDK inhibitors induced destabilization of the vPIC component BDLF4, leading to a reduction in L gene expression and subsequent progeny production. Our findings suggest that CDK inhibitors may be a therapeutic option against beta- and gammaherpesviruses in combination with existing inhibitors of herpesvirus lytic replication, such as ganciclovir.
Collapse
|
15
|
Defective Epstein-Barr virus in chronic active infection and haematological malignancy. Nat Microbiol 2019; 4:404-413. [PMID: 30664667 DOI: 10.1038/s41564-018-0334-0] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023]
Abstract
Epstein-Barr virus (EBV) infection is highly prevalent in humans and is implicated in various diseases, including cancer1,2. Chronic active EBV infection (CAEBV) is an intractable disease classified as a lymphoproliferative disorder in the 2016 World Health Organization lymphoma classification1,2. CAEBV is characterized by EBV-infected T/natural killer (NK) cells and recurrent/persistent infectious mononucleosis-like symptoms3. Here, we show that CAEBV originates from an EBV-infected lymphoid progenitor that acquires DDX3X and other mutations, causing clonal evolution comprising multiple cell lineages. Conspicuously, the EBV genome in CAEBV patients harboured frequent intragenic deletions (27/77) that were also common in various EBV-associated neoplastic disorders (28/61), including extranodal NK/T-cell lymphoma and EBV-positive diffuse large B-cell lymphoma, but were not detected in infectious mononucleosis or post-transplant lymphoproliferative disorders (0/47), which suggests a unique role of these mutations in neoplastic proliferation of EBV-infected cells. These deletions frequently affected BamHI A rightward transcript microRNA clusters (31 cases) and several genes that are essential for producing viral particles (20 cases). The deletions observed in our study are thought to reactivate the lytic cycle by upregulating the expression of two immediate early genes, BZLF1 and BRLF14-7, while averting viral production and subsequent cell lysis. In fact, the deletion of one of the essential genes, BALF5, resulted in upregulation of the lytic cycle and the promotion of lymphomagenesis in a xenograft model. Our findings highlight a pathogenic link between intragenic EBV deletions and EBV-associated neoplastic proliferations.
Collapse
|
16
|
Encyclopedia of EBV-Encoded Lytic Genes: An Update. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:395-412. [DOI: 10.1007/978-981-10-7230-7_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Djavadian R, Hayes M, Johannsen E. CAGE-seq analysis of Epstein-Barr virus lytic gene transcription: 3 kinetic classes from 2 mechanisms. PLoS Pathog 2018; 14:e1007114. [PMID: 29864140 PMCID: PMC6005644 DOI: 10.1371/journal.ppat.1007114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/14/2018] [Accepted: 05/21/2018] [Indexed: 01/18/2023] Open
Abstract
Epstein-Barr virus (EBV) lytic replication proceeds through an ordered cascade of gene expression that integrates lytic DNA amplification and late gene transcription. We and others previously demonstrated that 6 EBV proteins that have orthologs in β- and γ-, but not in α-herpesviruses, mediate late gene transcription in a lytic DNA replication-dependent manner. We proposed a model in which the βγ gene-encoded viral pre-initiation complex (vPIC) mediates transcription from newly replicated viral DNA. While this model explains the dependence of late gene transcription on lytic DNA replication, it does not account for this dependence in α-herpesviruses nor for recent reports that some EBV late genes are transcribed independently of vPIC. To rigorously define which transcription start sites (TSS) are dependent on viral lytic DNA replication or the βγ complex, we performed Cap Analysis of Gene Expression (CAGE)-seq on cells infected with wildtype EBV or EBV mutants defective for DNA replication, βγ function, or lacking an origin of lytic replication (OriLyt). This approach identified 16 true-late, 32 early, and 16 TSS that are active at low levels early and are further upregulated in a DNA replication-dependent manner (leaky late). Almost all late gene transcription is vPIC-dependent, with BCRF1 (vIL10), BDLF2, and BDLF3 transcripts being notable exceptions. We present evidence that leaky late transcription is not due to a distinct mechanism, but results from superimposition of the early and late transcription mechanisms at the same promoter. Our results represent the most comprehensive characterization of EBV lytic gene expression kinetics reported to date and suggest that most, but not all EBV late genes are vPIC-dependent.
Collapse
Affiliation(s)
- Reza Djavadian
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Oncology (McArdle Laboratory for Cancer Research), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Mitchell Hayes
- Department of Oncology (McArdle Laboratory for Cancer Research), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Eric Johannsen
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Oncology (McArdle Laboratory for Cancer Research), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
18
|
Li D, Fu W, Swaminathan S. Continuous DNA replication is required for late gene transcription and maintenance of replication compartments in gammaherpesviruses. PLoS Pathog 2018; 14:e1007070. [PMID: 29813138 PMCID: PMC5993329 DOI: 10.1371/journal.ppat.1007070] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/08/2018] [Accepted: 05/02/2018] [Indexed: 12/11/2022] Open
Abstract
Late gene transcription in herpesviruses is dependent on viral DNA replication in cis but the mechanistic basis for this linkage remains unknown. DNA replication results in demethylated DNA, topological changes, removal of proteins and recruitment of proteins to promoters. One or more of these effects of DNA replication may facilitate late gene transcription. Using 5-azacytidine to promote demethylation of DNA, we demonstrate that late gene transcription cannot be rescued by DNA demethylation. Late gene transcription precedes significant increases in DNA copy number, indicating that increased template numbers also do not contribute to the linkage between replication and late gene transcription. By using serial, timed blockade of DNA replication and measurement of late gene mRNA accumulation, we demonstrate that late gene transcription requires ongoing DNA replication. Consistent with these findings, blocking DNA replication led to dissolution of DNA replication complexes which also contain RNA polymerase II and BGLF4, an EBV protein required for transcription of several late genes. These data indicate that ongoing DNA replication maintains integrity of a replication-transcription complex which is required for recruitment and retention of factors necessary for late gene transcription. Herpesviruses exhibit both latent and lytic replication cycles. Gammaherpesviruses such as Kaposi’s sarcoma-associated herpesvirus and Epstein Barr virus undergo lytic replication when they reactivate from latency. During this process, when infectious virions are produced, an orderly cascade of gene expression occurs. Late lytic genes, which primarily encode structural components of the virion, are only transcribed after replication of the DNA genome has occurred. Unlike early lytic genes, late gene transcription is tightly linked to viral DNA replication; if viral DNA replication is blocked, late gene mRNA accumulation is severely inhibited. The mechanism by which late gene transcription is linked to DNA replication has remained elusive. In this paper we show that a process of continuous DNA replication is required. If one blocks DNA replication, further transcription also ceases, indicating that concurrent DNA replication is required to maintain late transcription. We also show that when DNA replication is blocked, the nuclear complexes in which herpesviruses are replicating dissociate. These replication complexes also serve as factories of viral transcription. When the complexes disperse, proteins required for transcription dissociate from the DNA replication machinery. These data indicate that ongoing DNA replication is necessary to maintain the physical and functional integrity of these structures. Our study provides new insight into this linkage that ensures coordination between viral replication and late gene expression.
Collapse
Affiliation(s)
- Dajiang Li
- Division of Infectious Diseases, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Wenmin Fu
- Division of Infectious Diseases, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Sankar Swaminathan
- Division of Infectious Diseases, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Medicine, George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
| |
Collapse
|
19
|
The Epstein-Barr Virus BRRF1 Gene Is Dispensable for Viral Replication in HEK293 cells and Transformation. Sci Rep 2017; 7:6044. [PMID: 28729695 PMCID: PMC5519699 DOI: 10.1038/s41598-017-06413-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/14/2017] [Indexed: 12/13/2022] Open
Abstract
The Epstein-Barr virus (EBV) is a gamma-herpesvirus associated with several malignancies. It establishes a latent infection in B lymphocytes and is occasionally reactivated to enter the lytic cycle. Here we examined the role of the EBV gene BRRF1, which is expressed in the lytic state. We first confirmed, using a DNA polymerase inhibitor, that the BRRF1 gene is expressed with early kinetics. A BRRF1-deficient recombinant virus was constructed using a bacterial artificial chromosome system. No obvious differences were observed between the wild-type, BRRF1-deficient mutant and the revertant virus in HEK293 cells in terms of viral lytic protein expression, viral DNA synthesis, progeny production, pre-latent abortive lytic gene expression and transformation of primary B cells. However, reporter assays indicated that BRRF1 may activate transcription in promoter- and cell type-dependent manners. Taken together, BRRF1 is dispensable for viral replication in HEK293 cells and transformation of B cells, but it may have effects on transcription.
Collapse
|
20
|
Kaposi's sarcoma-associated herpesvirus ORF34 is essential for late gene expression and virus production. Sci Rep 2017; 7:329. [PMID: 28336944 PMCID: PMC5428543 DOI: 10.1038/s41598-017-00401-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 02/27/2017] [Indexed: 12/28/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. KSHV establishes a life-long infection in its host and alternates between a latent and lytic infection state. During lytic infection, lytic-related genes are expressed in a temporal manner and categorized as immediate early, early, and late gene transcripts. ORF34 is an early-late gene that interacts with several viral transcription-associated factors, however its physiological importance remains poorly understood. Here, we investigated the role of ORF34 during KSHV infection by generating ORF34-deficient KSHV, using a bacterial artificial chromosome system. Our results reveal that ORF34-deficient KSHV exhibited significantly attenuated late gene expression and viral production but did not affect viral DNA replication. ORF34 interacted with transcription factors ORF18, ORF24, ORF31, and ORF66, and a novel ORF34-interaction partner, ORF23. The C-terminal region of ORF34 was important for interaction with ORF24 and viral production. Our data support a model, in which ORF34 serves as a hub for recruiting a viral transcription complex to ORF24 to promote late viral gene expression.
Collapse
|
21
|
Watanabe T, Sakaida K, Yoshida M, Masud HMAA, Sato Y, Goshima F, Kimura H, Murata T. The C-Terminus of Epstein-Barr Virus BRRF2 Is Required for its Proper Localization and Efficient Virus Production. Front Microbiol 2017; 8:125. [PMID: 28197146 PMCID: PMC5281634 DOI: 10.3389/fmicb.2017.00125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/18/2017] [Indexed: 02/02/2023] Open
Abstract
Epstein-Barr virus (EBV) is a human gammaherpesvirus associated with several malignancies. We reported previously that an EBV lytic gene product BRRF2 is involved in the maturation of progeny virus. To analyze the domain(s) needed for efficient production of progeny, we prepared a series of deletion mutants and found two functional domains in the N- and C-terminal regions by complementation assays. Immunofluorescence analyses revealed that BRRF2 lacking the C-terminal region demonstrated aberrant localization in both the nucleus and cytoplasm, whereas wild-type BRRF2 was localized predominantly in the cytoplasm. We also confirmed that wild-type BRRF2 co-localized with Rab5, an endosomal marker, at least partly. Additionally, serine 511 of BRRF2 was phosphorylated during lytic infection; however, a mutant in which the serine was substituted with alanine still augmented the yield as efficiently as did wild-type BRRF2. These results showed that the C-terminal region of BRRF2 is involved in the predominant localization of BRRF2 to the cytoplasm and in the efficient production of infectious virus.
Collapse
Affiliation(s)
- Takahiro Watanabe
- Department of Virology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Keiya Sakaida
- Department of Virology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Masahiro Yoshida
- Department of Virology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | | | - Yoshitaka Sato
- Department of Virology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Fumi Goshima
- Department of Virology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Takayuki Murata
- Department of Virology, Nagoya University Graduate School of Medicine Nagoya, Japan
| |
Collapse
|
22
|
McKenzie J, Lopez-Giraldez F, Delecluse HJ, Walsh A, El-Guindy A. The Epstein-Barr Virus Immunoevasins BCRF1 and BPLF1 Are Expressed by a Mechanism Independent of the Canonical Late Pre-initiation Complex. PLoS Pathog 2016; 12:e1006008. [PMID: 27855219 PMCID: PMC5113994 DOI: 10.1371/journal.ppat.1006008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022] Open
Abstract
Subversion of host immune surveillance is a crucial step in viral pathogenesis. Epstein-Barr virus (EBV) encodes two immune evasion gene products, BCRF1 (viral IL-10) and BPLF1 (deubiquitinase/deneddylase); both proteins suppress antiviral immune responses during primary infection. The BCRF1 and BPLF1 genes are expressed during the late phase of the lytic cycle, an essential but poorly understood phase of viral gene expression. Several late gene regulators recently identified in beta and gamma herpesviruses form a viral pre-initiation complex for transcription. Whether each of these late gene regulators is necessary for transcription of all late genes is not known. Here, studying viral gene expression in the absence and presence of siRNAs to individual components of the viral pre-initiation complex, we identified two distinct groups of late genes. One group includes late genes encoding the two immunoevasins, BCRF1 and BPLF1, and is transcribed independently of the viral pre-initiation complex. The second group primarily encodes viral structural proteins and is dependent on the viral pre-initiation complex. The protein kinase BGLF4 is the only known late gene regulator necessary for expression of both groups of late genes. ChIP-seq analysis showed that the transcription activator Rta associates with the promoters of eight late genes including genes encoding the viral immunoevasins. Our results demonstrate that late genes encoding immunomodulatory proteins are transcribed by a mechanism distinct from late genes encoding viral structural proteins. Understanding the mechanisms that specifically regulate expression of the late immunomodulatory proteins could aid the development of antiviral drugs that impair immune evasion by the oncogenic EB virus. Late proteins are expressed during the productive cycle of Epstein-Barr virus (EBV) after the onset of viral DNA replication. Many late proteins serve structural functions; they form the capsid shell around the viral genome or mediate attachment and fusion of the virus to the host cell. EBV also encodes two late proteins that suppress the immune system during primary infection. The current model suggests that transcription of all late genes is regulated by a common mechanism involving seven late gene regulators. Here, we demonstrate that late genes encoding two viral immune suppressants are transcribed by a mechanism different from that regulating late genes encoding structural proteins. Abolishing expression of the late immunomodulators without disrupting expression of the antigenic viral structural proteins could serve as an approach to block EBV de novo infection and its associated malignancies.
Collapse
Affiliation(s)
- Jessica McKenzie
- Department of Pediatrics Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Francesc Lopez-Giraldez
- Yale Center for Genome Analysis (YCGA), Yale University, West Haven, Connecticut, United States of America
| | - Henri-Jacques Delecluse
- Department of Tumor Virology, German Cancer Research Center, Im Neuenheimer Feld, Heidelberg, Germany
| | - Ann Walsh
- Department of Pediatrics Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ayman El-Guindy
- Department of Pediatrics Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
23
|
Djavadian R, Chiu YF, Johannsen E. An Epstein-Barr Virus-Encoded Protein Complex Requires an Origin of Lytic Replication In Cis to Mediate Late Gene Transcription. PLoS Pathog 2016; 12:e1005718. [PMID: 27348612 PMCID: PMC4922670 DOI: 10.1371/journal.ppat.1005718] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/02/2016] [Indexed: 11/19/2022] Open
Abstract
Epstein-Barr virus lytic replication is accomplished by an intricate cascade of gene expression that integrates viral DNA replication and structural protein synthesis. Most genes encoding structural proteins exhibit "true" late kinetics-their expression is strictly dependent on lytic DNA replication. Recently, the EBV BcRF1 gene was reported to encode a TATA box binding protein homolog, which preferentially recognizes the TATT sequence found in true late gene promoters. BcRF1 is one of seven EBV genes with homologs found in other β- and γ-, but not in α-herpesviruses. Using EBV BACmids, we systematically disrupted each of these "βγ" genes. We found that six of them, including BcRF1, exhibited an identical phenotype: intact viral DNA replication with loss of late gene expression. The proteins encoded by these six genes have been found by other investigators to form a viral protein complex that is essential for activation of TATT-containing reporters in EBV-negative 293 cells. Unexpectedly, in EBV infected 293 cells, we found that TATT reporter activation was weak and non-specific unless an EBV origin of lytic replication (OriLyt) was present in cis. Using two different replication-defective EBV genomes, we demonstrated that OriLyt-mediated DNA replication is required in cis for TATT reporter activation and for late gene expression from the EBV genome. We further demonstrate by fluorescence in situ hybridization that the late BcLF1 mRNA localizes to EBV DNA replication factories. These findings support a model in which EBV true late genes are only transcribed from newly replicated viral genomes.
Collapse
Affiliation(s)
- Reza Djavadian
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Oncology (McArdle Laboratory for Cancer Research), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Ya-Fang Chiu
- Department of Oncology (McArdle Laboratory for Cancer Research), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Eric Johannsen
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Oncology (McArdle Laboratory for Cancer Research), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
24
|
Gruffat H, Marchione R, Manet E. Herpesvirus Late Gene Expression: A Viral-Specific Pre-initiation Complex Is Key. Front Microbiol 2016; 7:869. [PMID: 27375590 PMCID: PMC4893493 DOI: 10.3389/fmicb.2016.00869] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/23/2016] [Indexed: 12/20/2022] Open
Abstract
During their productive cycle, herpesviruses exhibit a strictly regulated temporal cascade of gene expression that can be divided into three general stages: immediate-early (IE), early (E), and late (L). This expression program is the result of a complex interplay between viral and cellular factors at both the transcriptional and post-transcriptional levels, as well as structural differences within the promoter architecture for each of the three gene classes. Since the cellular enzyme RNA polymerase II (RNAP-II) is responsible for the transcription of herpesvirus genes, most viral promoters contain DNA motifs that are common with those of cellular genes, although promoter complexity decreases from immediate-early to late genes. Immediate-early and early promoters contain numerous cellular and viral cis-regulating sequences upstream of a TATA box, whereas late promoters differ significantly in that they lack cis-acting sequences upstream of the transcription start site (TSS). Moreover, in the case of the β- and γ-herpesviruses, a TATT box motif is frequently found in the position where the consensus TATA box of eukaryotic promoters usually localizes. The mechanisms of transcriptional regulation of the late viral gene promoters appear to be different between α-herpesviruses and the two other herpesvirus subfamilies (β and γ). In this review, we will compare the mechanisms of late gene transcriptional regulation between HSV-1, for which the viral IE transcription factors – especially ICP4 – play an essential role, and the two other subfamilies of herpesviruses, with a particular emphasis on EBV, which has recently been found to code for its own specific TATT-binding protein.
Collapse
Affiliation(s)
- Henri Gruffat
- International Center for Infectiology Research, Oncogenic Herpesviruses Team, Université de Lyon, LyonFrance; Inserm, U1111, LyonFrance.; Ecole Normale Supérieure de Lyon, LyonFrance; CNRS, UMR5308, LyonFrance; Université Lyon 1, LyonFrance
| | - Roberta Marchione
- International Center for Infectiology Research, Oncogenic Herpesviruses Team, Université de Lyon, LyonFrance; Inserm, U1111, LyonFrance.; Ecole Normale Supérieure de Lyon, LyonFrance; CNRS, UMR5308, LyonFrance; Université Lyon 1, LyonFrance
| | - Evelyne Manet
- International Center for Infectiology Research, Oncogenic Herpesviruses Team, Université de Lyon, LyonFrance; Inserm, U1111, LyonFrance.; Ecole Normale Supérieure de Lyon, LyonFrance; CNRS, UMR5308, LyonFrance; Université Lyon 1, LyonFrance
| |
Collapse
|