1
|
Genetic Diversity of the Noncoding Control Region of the Novel Human Polyomaviruses. Viruses 2020; 12:v12121406. [PMID: 33297530 PMCID: PMC7762344 DOI: 10.3390/v12121406] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
The genomes of polyomaviruses are characterized by their tripartite organization with an early region, a late region and a noncoding control region (NCCR). The early region encodes proteins involved in replication and transcription of the viral genome, while expression of the late region generates the capsid proteins. Transcription regulatory sequences for expression of the early and late genes, as well as the origin of replication are encompassed in the NCCR. Cell tropism of polyomaviruses not only depends on the appropriate receptors on the host cell, but cell-specific expression of the viral genes is also governed by the NCCR. Thus far, 15 polyomaviruses have been isolated from humans, though it remains to be established whether all of them are genuine human polyomaviruses (HPyVs). The sequences of the NCCR of these HPyVs show high genetic variability and have been best studied in the human polyomaviruses BK and JC. Rearranged NCCRs in BKPyV and JCPyV, the first HPyVs to be discovered approximately 30 years ago, have been associated with the pathogenic properties of these viruses in nephropathy and progressive multifocal leukoencephalopathy, respectively. Since 2007, thirteen novel PyVs have been isolated from humans: KIPyV, WUPyV, MCPyV, HPyV6, HPyV7, TSPyV, HPyV9, HPyV10, STLPyV, HPyV12, NJPyV, LIPyV and QPyV. This review describes all NCCR variants of the new HPyVs that have been reported in the literature and discusses the possible consequences of NCCR diversity in terms of promoter strength, putative transcription factor binding sites and possible association with diseases.
Collapse
|
2
|
McNees AL, Harrigal LJ, Kelly A, Minard CG, Wong C, Butel JS. Viral microRNA effects on persistent infection of human lymphoid cells by polyomavirus SV40. PLoS One 2018; 13:e0192799. [PMID: 29432481 PMCID: PMC5809058 DOI: 10.1371/journal.pone.0192799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/30/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Polyomaviruses, including simian virus 40 (SV40), display evidence of lymphotropic properties. This study analyzed the nature of SV40-human lymphocyte interactions in established cell lines and in primary lymphocytes. The effects of viral microRNA and the structure of the viral regulatory region on SV40 persistence were examined. RESULTS SV40 DNA was maintained in infected B cell and myeloid cell lines during cell growth for at least 28 days. Limiting dilution analysis showed that low amounts of SV40 DNA (~2 copies per cell) were retained over time. Infected B cells remained viable and able to proliferate. Genome copies of the SV40 microRNA-null mutant persisted at higher levels than the DNA of wild-type viruses. Complex viral regulatory regions produced modestly higher DNA levels than simple regulatory regions. Viral large T-antigen protein was detected at low frequency and at low levels in infected B cells. Following infection of primary lymphocytes, SV40 DNA was detected in CD19+ B cells and CD14+ monocytes, but not in CD3+ T cells. Rescue attempts using either lysates of SV40-infected B lymphocytes, coculture of live cells, or infectious center assays all showed that replication-competent SV40 could be recovered on rare occasions. SV40 infections altered the expression of several B cell surface markers, with more pronounced changes following infections with the microRNA-null mutant. CONCLUSION These findings indicate that SV40 can establish persistent infections in human B lymphocytes. The cells retain low copy numbers of viral DNA; the infections are nonproductive and noncytolytic but can occasionally produce infectious virus. SV40 microRNA negatively regulates the degree of viral effects on B cells. SIGNIFICANCE Lymphocytes may serve as viral reservoirs and may function to disseminate polyomaviruses to different tissues in a host. To our knowledge, this report is the first extensive analysis of viral microRNA effects on SV40 infection of human lymphocytes.
Collapse
Affiliation(s)
- Adrienne L. McNees
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lindsay J. Harrigal
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Aoife Kelly
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Charles G. Minard
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, United States of America
| | - Connie Wong
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Janet S. Butel
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
3
|
Abstract
Mammalian polyomaviruses are characterized by establishing persistent infections in healthy hosts and generally causing clinical disease only in hosts whose immune systems are compromised. Despite the fact that these viruses were discovered decades ago, our knowledge of the mechanisms that govern viral persistence and reactivation is limited. Whereas mouse polyomavirus has been studied in a fair amount of detail, our understanding of the human viruses in particular is mostly inferred from experiments aimed at addressing other questions. In this review, we summarize the state of our current knowledge, draw conclusions when possible, and suggest areas that are in need of further study.
Collapse
Affiliation(s)
- Michael J Imperiale
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109;
| | - Mengxi Jiang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
4
|
Abstract
The hamster species used as research models include the Syrian (golden), Mesocricetus auratus; the Chinese (striped-back), Cricetulus griseus; the Armenian (gray), C. migratorius; the European, Cricetus cricetus; and the Djungarian, Phodopus campbelli (Russian dwarf) and P. sungorus (Siberian dwarf). Hamsters are classified as members of the order Rodentia, suborder Myomorpha, superfamily Muroidea and in family Cricetidae. Animals in this family are characterized by large cheek pouches, thick bodies, short tails, and an excess of loose skin. They have incisors that erupt continuously and cuspidate molars that do not continue to grow ((I 1/1, C 0/0, PM 0/0, M 3/3) × 2 = 16). In 2010, it was reported that approximately 146,000 hamsters were used in research in the United States (United States Department of Agriculture, 2010).
Collapse
Affiliation(s)
- Emily L. Miedel
- University of Pennsylvania, University Laboratory Animal Resources, Philadelphia, PA, USA
| | | |
Collapse
|
5
|
Zhang S, Sroller V, Zanwar P, Chen CJ, Halvorson SJ, Ajami NJ, Hecksel CW, Swain JL, Wong C, Sullivan CS, Butel JS. Viral microRNA effects on pathogenesis of polyomavirus SV40 infections in syrian golden hamsters. PLoS Pathog 2014; 10:e1003912. [PMID: 24516384 PMCID: PMC3916418 DOI: 10.1371/journal.ppat.1003912] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/18/2013] [Indexed: 12/05/2022] Open
Abstract
Effects of polyomavirus SV40 microRNA on pathogenesis of viral infections in vivo are not known. Syrian golden hamsters are the small animal model for studies of SV40. We report here effects of SV40 microRNA and influence of the structure of the regulatory region on dynamics of SV40 DNA levels in vivo. Outbred young adult hamsters were inoculated by the intracardiac route with 1×107 plaque-forming units of four different variants of SV40. Infected animals were sacrificed from 3 to 270 days postinfection and viral DNA loads in different tissues determined by quantitative real-time polymerase chain reaction assays. All SV40 strains displayed frequent establishment of persistent infections and slow viral clearance. SV40 had a broad tissue tropism, with infected tissues including liver, kidney, spleen, lung, and brain. Liver and kidney contained higher viral DNA loads than other tissues; kidneys were the preferred site for long-term persistent infection although detectable virus was also retained in livers. Expression of SV40 microRNA was demonstrated in wild-type SV40-infected tissues. MicroRNA-negative mutant viruses consistently produced higher viral DNA loads than wild-type SV40 in both liver and kidney. Viruses with complex regulatory regions displayed modestly higher viral DNA loads in the kidney than those with simple regulatory regions. Early viral transcripts were detected at higher levels than late transcripts in liver and kidney. Infectious virus was detected infrequently. There was limited evidence of increased clearance of microRNA-deficient viruses. Wild-type and microRNA-negative mutants of SV40 showed similar rates of transformation of mouse cells in vitro and tumor induction in weanling hamsters in vivo. This report identified broad tissue tropism for SV40 in vivo in hamsters and provides the first evidence of expression and function of SV40 microRNA in vivo. Viral microRNA dampened viral DNA levels in tissues infected by SV40 strains with simple or complex regulatory regions. The recent discovery of virally encoded microRNAs (miRNAs) raises the possibility of additional regulatory processes being involved in viral replication, immune recognition, and host cell survival. In this study, we sought to characterize the effect of SV40-encoded miRNAs and the structure of the viral regulatory region on infections in outbred Syrian golden hamsters. Results revealed that SV40 has a wide tissue tropism, including liver, kidney, spleen, lung, and brain, with kidney the preferred site for long-term persistent infection. Significant increases in tissue-associated viral DNA loads were observed with miRNA-negative mutant strains, whereas the presence of SV40 miRNAs had no effect on tumor induction and little effect on viral clearance. Our results provide the first evidence for SV40 miRNA expression and function in an in vivo animal model and highlight the complexity of regulation of SV40 viral replication and persistent infections.
Collapse
Affiliation(s)
- Shaojie Zhang
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Vojtech Sroller
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Preeti Zanwar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Chun Jung Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Steven J. Halvorson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nadim J. Ajami
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Corey W. Hecksel
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jody L. Swain
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Connie Wong
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Christopher S. Sullivan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Janet S. Butel
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
6
|
Swain JL, Sroller V, Wong C, Zhang S, Halvorson SJ, Herron AJ, Kozinetz CA, Butel JS. Effects of route of inoculation and viral genetic variation on antibody responses to polyomavirus SV40 in Syrian golden hamsters. Comp Med 2012; 62:400-408. [PMID: 23114044 PMCID: PMC3472605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/29/2011] [Accepted: 04/29/2012] [Indexed: 06/01/2023]
Abstract
Genetic variants of polyomavirus SV40 are powerful agents with which to define viral effects on cells and carcinogenesis pathways. We hypothesized that differences in biologic variation among viral strains affect the process of viral infection and are reflected in antibody responses to the viral nonstructural large T-antigen (TAg) protein but not in neutralizing antibody responses against the inoculated viral particles. We analyzed the production of TAg antibody and neutralizing antibody in Syrian golden hamsters that were inoculated with SV40 viral strains by intracardiac, intravenous, or intraperitoneal routes and remained tumor free. Compared with the intraperitoneal route, intravascular (that is, intravenous, intracardiac) inoculation resulted in increased frequency of responsiveness to TAg but not in higher TAg antibody titers. The intravascular route was superior both for eliciting neutralizing antibody responses and for higher titers of those responses. Viruses with complex regulatory regions induced TAg antibody more often than did viruses with simple regulatory regions after intraperitoneal but not intravascular injections, with no differences in antibody titers. This viral genetic variation had no effect on neutralizing antibody production after intraperitoneal or intravascular inoculations or on neutralizing antibody titers achieved. These findings confirm that SV40 variants differ in their biologic properties. Route of inoculation combined with viral genetic variation significantly influence the development of serum antibodies to SV40 TAg in tumor-free hamsters. Route of inoculation-but not viral genetic variation-is an important factor in production of neutralizing antibody to SV40.
Collapse
Affiliation(s)
- Jody L Swain
- Center for Comparative Medicine
- Department of Molecular Virology and Microbiology
| | | | - Connie Wong
- Department of Molecular Virology and Microbiology
| | | | | | - Alan J Herron
- Center for Comparative Medicine
- Department of Pathology and Immunology, and
| | | | | |
Collapse
|
7
|
Qi F, Carbone M, Yang H, Gaudino G. Simian virus 40 transformation, malignant mesothelioma and brain tumors. Expert Rev Respir Med 2012; 5:683-97. [PMID: 21955238 DOI: 10.1586/ers.11.51] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Simian virus 40 (SV40) is a DNA virus isolated in 1960 from contaminated polio vaccines, that induces mesotheliomas, lymphomas, brain and bone tumors, and sarcomas, including osteosarcomas, in hamsters. These same tumor types have been found to contain SV40 DNA and proteins in humans. Mesotheliomas and brain tumors are the two tumor types that have been most consistently associated with SV40, and the range of positivity has varied about from 6 to 60%, although a few reported 100% of positivity and a few reported 0%. It appears unlikely that SV40 infection alone is sufficient to cause human malignancy, as we did not observe an epidemic of cancers following the administration of SV40-contaminated vaccines. However, it seems possible that SV40 may act as a cofactor in the pathogenesis of some tumors. In vitro and animal experiments showing cocarcinogenicity between SV40 and asbestos support this hypothesis.
Collapse
Affiliation(s)
- Fang Qi
- University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | | | | |
Collapse
|
8
|
Valentine H, Daugherity EK, Singh B, Maurer KJ. The Experimental Use of Syrian Hamsters. THE LABORATORY RABBIT, GUINEA PIG, HAMSTER, AND OTHER RODENTS 2012. [PMCID: PMC7149563 DOI: 10.1016/b978-0-12-380920-9.00034-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The Syrian hamster (Mesocricetus auratus) is a widely used experimental animal model. This chapter focuses primarily on the most current research uses of the hamster. More classical uses are covered only as they pertain to these current uses. Hamsters possess unique anatomical and physiological features, which make them desirable research models. Unlike other commonly used laboratory rodents, hamsters possess a cheek pouch, which can be easily everted and examined at both the gross and microscopic level. The hamster's relative size also allows for better visualization of certain biological systems including the respiratory and reproductive systems when compared to the mouse. Further, laboratory hamsters develop a variety of inherited diseases, which display similarities to human conditions. Hamsters possessing some of these inherited traits are commercially available. They are susceptible to a variety of carcinogens and develop tumors that other research animals less commonly develop. Also they are susceptible to the induction of a variety of metabolic disorders through the use of dietary manipulations. The antagonistic nature of hamsters is used to study the effect of treatment on male aggressive and defensive behaviors. Syrian hamsters display several unique characteristics that make them desired models for carcinogenesis studies.
Collapse
|
9
|
Wellehan JF, Rivera R, Archer LL, Benham C, Muller JK, Colegrove KM, Gulland FM, St. Leger JA, Venn-Watson SK, Nollens HH. Characterization of California sea lion polyomavirus 1: Expansion of the known host range of the Polyomaviridae to Carnivora. INFECTION GENETICS AND EVOLUTION 2011; 11:987-96. [DOI: 10.1016/j.meegid.2011.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 02/11/2011] [Accepted: 03/17/2011] [Indexed: 11/29/2022]
|
10
|
Patel NC, Halvorson SJ, Sroller V, Arrington AS, Wong C, Smith EO, Vilchez RA, Butel JS. Viral regulatory region effects on vertical transmission of polyomavirus SV40 in hamsters. Virology 2009; 386:94-101. [PMID: 19181358 DOI: 10.1016/j.virol.2008.12.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 11/18/2008] [Accepted: 12/26/2008] [Indexed: 02/06/2023]
Abstract
Viral strain differences influence the oncogenic potential of polyomavirus simian virus 40 (SV40). We hypothesized that viral strain differences might also affect vertical transmission of SV40 in susceptible hosts. Pregnant Syrian golden hamsters were inoculated intraperitoneally with 10(7) plaque-forming units of SV40 and offspring were sacrificed post-delivery (1-21 days, 6 months). Organ extracts were analyzed for SV40 DNA by polymerase chain reaction assay. Transmission of SV40 from mother to offspring was detected in over half of litters. Most placentas were virus-positive. Mothers inoculated with SV40 strains containing complex regulatory regions transmitted virus more frequently than those infected with simple enhancer viruses (p<0.001). Virus was detected more often in progeny brain than in spleen (p<0.05). Several progeny were virus-positive at 6 months of age, suggesting viral persistence. Maternal animals retained virus in several tissues through day 21 and developed T-antigen antibodies. These results indicate that SV40 replicates in hamsters, vertical transmission of SV40 can occur, and the viral regulatory region influences transmission.
Collapse
Affiliation(s)
- Niraj C Patel
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, MS: BCM385, Houston, TX 77030-3411, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
McNees AL, Vilchez RA, Heard TC, Sroller V, Wong C, Herron AJ, Hamilton MJ, Davis WC, Butel JS. SV40 lymphomagenesis in Syrian golden hamsters. Virology 2008; 384:114-24. [PMID: 19038412 DOI: 10.1016/j.virol.2008.10.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 08/29/2008] [Accepted: 10/15/2008] [Indexed: 11/30/2022]
Abstract
Simian virus 40 (SV40) isolates differ in oncogenic potential in Syrian golden hamsters following intraperitoneal inoculation. Here we describe the effect of intravenous exposure on tumor induction by SV40. Strains SVCPC (simple regulatory region) and VA45-54(2E) (complex regulatory region) were highly oncogenic following intravenous inoculation, producing a spectrum of tumor types. Three lymphoma cell lines were established; all expressed SV40 T-antigen, were immortalized for growth in culture, and were tumorigenic following transplantation in vivo. New monoclonal antibodies directed against hamster lymphocyte surface antigens are described. The cell lines expressed MHC class II and macrophage markers and were highly phagocytic, indicating a histiocytic origin. Many hamsters that remained tumor-free developed SV40 T-antigen antibodies, suggesting that viral replication occurred. This study shows that route of exposure influences the pathogenesis of SV40-mediated carcinogenesis, that SV40 strain VA45-54(2E) is lymphomagenic in hamsters, that hamster lymphoid cells of histiocytic origin can be transformed in vivo and established in culture, and that reagents to hamster leukocyte differentiation molecules are now available.
Collapse
Affiliation(s)
- Adrienne L McNees
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|