1
|
Gupta T, Chahota R. Unique ankyrin repeat proteins in the genome of poxviruses-Boon or Wane, a critical review. Gene 2024; 927:148759. [PMID: 38992761 DOI: 10.1016/j.gene.2024.148759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/29/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Ankyrin repeat is a 33-amino acid motif commonly observed in eukaryotes and, to a lesser extent, in prokaryotes and archaea and rarely in viruses. This motif plays a crucial role in regulating various cellular processes like the cell cycle, transcription, cell signaling, and inflammatory responses through interactions between proteins. Poxviruses exhibit a distinctive feature of containing multiple ankyrin repeat proteins within their genomes. All the genera of poxviruses possess these proteins except molluscipox virus, crocodylidpox virus, and red squirrel poxvirus. An intriguing characteristic has generated notable interest in studying the functions of these proteins within poxvirus biology. Within poxviruses, ankyrin repeat proteins exhibit a distinct configuration, featuring ankyrin repeats in the N-terminal region and a cellular F-box homolog in the C-terminal region, which enables interactions with the cellular Skp, Cullin, F-box containing ubiquitin ligase complex. Through the examination of experimental evidences and discussions from current literature, this review elucidates the organization and role of ankyrin repeat proteins in poxviruses. Various research studies have highlighted the significant importance of these proteins in poxviral pathogenesis and, acting as factors that enhance virulence. Consequently, they represent viable targets for developing genetically altered viruses with decreased virulence, thus displaying potential as candidates for vaccines and antiviral therapeutic development contributing to safer and more effective strategies against poxviral infections.
Collapse
Affiliation(s)
- Tania Gupta
- Department of Veterinary Microbiology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana, Punjab, 141012 India; Department of Veterinary Microbiology, DGCN College of Veterinary and Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, 176062 India
| | - Rajesh Chahota
- Department of Veterinary Microbiology, DGCN College of Veterinary and Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, 176062 India.
| |
Collapse
|
2
|
Sun Y, Nie W, Tian D, Ye Q. Human monkeypox virus: Epidemiologic review and research progress in diagnosis and treatment. J Clin Virol 2024; 171:105662. [PMID: 38432097 DOI: 10.1016/j.jcv.2024.105662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Monkeypox virus (MPXV) is responsible for causing a zoonotic disease called monkeypox (mpox), which sporadically infects humans in West and Central Africa. It first infected humans in 1970 and, along with the variola virus, belongs to the genus Orthopoxvirus in the poxvirus family. Since the World Health Organization declared the MPXV outbreak a "Public Health Emergency of International Concern" on July 23, 2022, the number of infected patients has increased dramatically. To control this epidemic and address this previously neglected disease, MPXV needs to be better understood and reevaluated. In this review, we cover recent research on MPXV, including its genomic and pathogenic characteristics, transmission, mutations and mechanisms, clinical characteristics, epidemiology, laboratory diagnosis, and treatment measures, as well as prevention of MPXV infection in light of the 2022 and 2023 global outbreaks. The 2022 MPXV outbreak has been primarily associated with close intimate contact, including sexual activity, with most cases diagnosed among men who have sex with men. The incubation period of MPXV infection usually lasts from 6 to 13 days, and symptoms include fever, muscle pains, headache, swollen lymph nodes, and a characteristic painful rash, including several stages, such as macules, papules, blisters, pustules, scabs, and scab shedding involving the genitals and anus. Polymerase chain reaction (PCR) is usually used to detect MPXV in skin lesion material. Treatment includes supportive care, antivirals, and intravenous vaccinia immune globulin. Smallpox vaccines have been designed with four givens emergency approval for use against MPXV infection.
Collapse
Affiliation(s)
- Yanhong Sun
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Wenjian Nie
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Dandan Tian
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Qing Ye
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China.
| |
Collapse
|
3
|
Wang Y, Liu S, Yan J, Baseer-Tariq S, Salla B, Ji L, Li M, Chi P, Deng L. Activating neutrophils by co-administration of immunogenic recombinant modified vaccinia virus Ankara and granulocyte colony-stimulating factor for the treatment of malignant peripheral nerve sheath tumor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569123. [PMID: 38076896 PMCID: PMC10705442 DOI: 10.1101/2023.11.29.569123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is a rare, aggressive soft-tissue sarcoma with a poor prognosis and is insensitive to immune checkpoint blockade (ICB) therapy. Loss-of-function of the histone modifying polycomb repressive complex 2 (PRC2) components, EED or SUZ12, is one of the main mechanisms of malignant transformation. In a murine model of MPNST, PRC2-loss tumors have an "immune desert" phenotype and intratumoral (IT) delivery immunogenic modified vaccinia virus Ankara (MVA) sensitized the PRC2-loss tumors to ICB. Here we show that IT MQ833, a second-generation recombinant modified vaccinia virus Ankara virus, results in neutrophil recruitment and activation and neutrophil-dependent tumor killing in the MPNST model. MQ833 was engineered by deleting three viral immune evasion genes, E5R, E3L, and WR199, and expressing three transgenes, including the two membrane-bound Flt3L and OX40L, and IL-12 with an extracellular matrix anchoring signal. Furthermore, we explored strategies to enhance anti-tumor effects of MQ833 by co-administration of granulocyte colony-stimulating factor (G-CSF).
Collapse
|
4
|
Yang N, Wang Y, Dai P, Li T, Zierhut C, Tan A, Zhang T, Xiang JZ, Ordureau A, Funabiki H, Chen Z, Deng L. Vaccinia E5 is a major inhibitor of the DNA sensor cGAS. Nat Commun 2023; 14:2898. [PMID: 37217469 PMCID: PMC10201048 DOI: 10.1038/s41467-023-38514-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
The DNA sensor cyclic GMP-AMP synthase (cGAS) is critical in host antiviral immunity. Vaccinia virus (VACV) is a large cytoplasmic DNA virus that belongs to the poxvirus family. How vaccinia virus antagonizes the cGAS-mediated cytosolic DNA-sensing pathway is not well understood. In this study, we screened 80 vaccinia genes to identify potential viral inhibitors of the cGAS/Stimulator of interferon gene (STING) pathway. We discovered that vaccinia E5 is a virulence factor and a major inhibitor of cGAS. E5 is responsible for abolishing cGAMP production during vaccinia virus (Western Reserve strain) infection of dendritic cells. E5 localizes to the cytoplasm and nucleus of infected cells. Cytosolic E5 triggers ubiquitination of cGAS and proteasome-dependent degradation via interacting with cGAS. Deleting the E5R gene from the Modified vaccinia virus Ankara (MVA) genome strongly induces type I IFN production by dendritic cells (DCs) and promotes DC maturation, and thereby improves antigen-specific T cell responses.
Collapse
Affiliation(s)
- Ning Yang
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Yi Wang
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Peihong Dai
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Tuo Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Christian Zierhut
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY, 10065, USA
- The Institute of Cancer Research, London, SW3 6JB, UK
| | - Adrian Tan
- Genomic Resources Core Facility, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Tuo Zhang
- Genomic Resources Core Facility, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Jenny Zhaoying Xiang
- Genomic Resources Core Facility, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Alban Ordureau
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Zhijian Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Liang Deng
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
5
|
Poxviral ANKR/F-box Proteins: Substrate Adapters for Ubiquitylation and More. Pathogens 2022; 11:pathogens11080875. [PMID: 36014996 PMCID: PMC9414399 DOI: 10.3390/pathogens11080875] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
Poxviruses are double-stranded DNA viruses that infect insects and a variety of vertebrate species. The large genomes of poxviruses contain numerous genes that allow these viruses to successfully establish infection, including those that help evade the host immune response and prevent cell death. Ankyrin-repeat (ANKR)/F-box proteins are almost exclusively found in poxviruses, and they function as substrate adapters for Skp1-Cullin-1-F-box protein (SCF) multi-subunit E3 ubiquitin (Ub)-ligases. In this regard, they use their C-terminal F-box domain to bind Skp1, Cullin-1, and Roc1 to recruit cellular E2 enzymes to facilitate the ubiquitylation, and subsequent proteasomal degradation, of proteins bound to their N-terminal ANKRs. However, these proteins do not just function as substrate adapters as they also have Ub-independent activities. In this review, we examine both Ub-dependent and -independent activities of ANKR/F-box proteins and discuss how poxviruses use these proteins to counteract the host innate immune response, uncoat their genome, replicate, block cell death, and influence transcription. Finally, we consider important outstanding questions that need to be answered in order to better understand the function of this versatile protein family.
Collapse
|
6
|
Lant S, Maluquer de Motes C. Poxvirus Interactions with the Host Ubiquitin System. Pathogens 2021; 10:pathogens10081034. [PMID: 34451498 PMCID: PMC8399815 DOI: 10.3390/pathogens10081034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
The ubiquitin system has emerged as a master regulator of many, if not all, cellular functions. With its large repertoire of conjugating and ligating enzymes, the ubiquitin system holds a unique mechanism to provide selectivity and specificity in manipulating protein function. As intracellular parasites viruses have evolved to modulate the cellular environment to facilitate replication and subvert antiviral responses. Poxviruses are a large family of dsDNA viruses with large coding capacity that is used to synthetise proteins and enzymes needed for replication and morphogenesis as well as suppression of host responses. This review summarises our current knowledge on how poxvirus functions rely on the cellular ubiquitin system, and how poxviruses exploit this system to their own advantage, either facilitating uncoating and genome release and replication or rewiring ubiquitin ligases to downregulate critical antiviral factors. Whilst much remains to be known about the intricate interactions established between poxviruses and the host ubiquitin system, our knowledge has revealed crucial viral processes and important restriction factors that open novel avenues for antiviral treatment and provide fundamental insights on the biology of poxviruses and other virus families.
Collapse
|
7
|
Novel Class of Viral Ankyrin Proteins Targeting the Host E3 Ubiquitin Ligase Cullin-2. J Virol 2018; 92:JVI.01374-18. [PMID: 30258003 PMCID: PMC6232478 DOI: 10.1128/jvi.01374-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023] Open
Abstract
Ankyrin repeat (ANK) domains are among the most abundant motifs in eukaryotic proteins. ANK proteins are rare amongst viruses, with the exception of poxviruses, which presumably acquired them from the host via horizontal gene transfer. The architecture of poxvirus ANK proteins is, however, different from that of their cellular counterparts, and this precludes a direct acquisition event. Here we combine bioinformatics analysis and quantitative proteomics to discover a new class of viral ANK proteins with a domain organization that relates to cellular ANK proteins. These noncanonical viral ANK proteins, termed ANK/BC, interact with host Cullin-2 via a C-terminal BC box resembling that of cellular Cullin-2 substrate adaptors such as the von Hippel-Lindau protein. Mutagenesis of the BC box-like sequence abrogates binding to Cullin-2, whereas fusion of this motif to an ANK-only protein confers Cullin-2 association. We demonstrated that these viral ANK/BC proteins are potent immunomodulatory proteins suppressing the activation of the proinflammatory transcription factors NF-κB and interferon (IFN)-responsive factor 3 (IRF-3) and the production of cytokines and chemokines, including interferon, and that association with Cullin-2 is required for optimal inhibitory activity. ANK/BC proteins exist in several orthopoxviruses and cluster into 2 closely related orthologue groups in a phylogenetic lineage that is separate from that of canonical ANK/F-box proteins. Given the existence of cellular proteins with similar architecture, viral ANK/BC proteins may be closely related to the original ANK gene acquired by an ancestral orthopoxvirus. These findings uncover a novel viral strategy to antagonize innate immunity and shed light on the origin of the poxviral ANK protein family.IMPORTANCE Viruses encode multiple proteins aimed at modulating cellular homeostasis and antagonizing the host antiviral response. Most of these genes were originally acquired from the host and subsequently adapted to benefit the virus. ANK proteins are common in eukaryotes but are unusual amongst viruses, with the exception of poxviruses, where they represent one of the largest protein families. We report here the existence of a new class of viral ANK proteins, termed ANK/BC, that provide new insights into the origin of poxvirus ANK proteins. ANK/BC proteins target the host E3 ubiquitin ligase Cullin-2 via a C-terminal BC box domain and are potent suppressors of the production of inflammatory cytokines, including interferon. The existence of cellular ANK proteins whose architecture is similar suggests the acquisition of a host ANK/BC gene by an ancestral orthopoxvirus and its subsequent duplication and adaptation to widen the repertoire of immune evasion strategies.
Collapse
|
8
|
The Virology of Taterapox Virus In Vitro. Viruses 2018; 10:v10090463. [PMID: 30158437 PMCID: PMC6163509 DOI: 10.3390/v10090463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/08/2018] [Accepted: 08/16/2018] [Indexed: 11/29/2022] Open
Abstract
Taterapox virus (TATV) is phylogenetically the closest related virus to variola—the etiological agent of smallpox. Despite the similarity, few studies have evaluated the virus. In vivo, TATV can infect several animals but produces an inapparent infection in wild-type mice; however, TATV does cause morbidity and mortality in some immunocompromised strains. We employed in vitro techniques to compare TATV to ectromelia (ECTV) and vaccinia (VACV) viruses. Both ECTV and TATV replicate efficiently in primate cell lines but TATV replicates poorly in murine cells lines. Furthermore, TATV induces cytopathic effects, but to a lesser extent than ECTV, and changes cytoskeletal networks differently than both ECTV and VACV. Bioinformatic studies revealed differences in several immunomodulator open reading frames that could contribute to the reduced virulence of TATV, which were supported by in vitro cytokine assays.
Collapse
|
9
|
Identification of Poxvirus Genome Uncoating and DNA Replication Factors with Mutually Redundant Roles. J Virol 2018; 92:JVI.02152-17. [PMID: 29343579 DOI: 10.1128/jvi.02152-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022] Open
Abstract
Genome uncoating is essential for replication of most viruses. For poxviruses, the process is divided into two stages: removal of the envelope, allowing early gene expression, and breaching of the core wall, allowing DNA release, replication, and late gene expression. Subsequent studies showed that the host proteasome and the viral D5 protein, which has an essential role in DNA replication, are required for vaccinia virus (VACV) genome uncoating. In a search for additional VACV uncoating proteins, we noted a report that described a defect in DNA replication and late expression when the gene encoding a 68-kDa ankyrin repeat/F-box protein (68k-ank), associated with the cellular SCF (Skp1, cullin1, F-box-containing complex) ubiquitin ligase complex, was deleted from the attenuated modified vaccinia virus Ankara (MVA). Here we showed that the 68k-ank deletion mutant exhibited diminished genome uncoating, formation of DNA prereplication sites, and degradation of viral cores as well as an additional, independent defect in DNA synthesis. Deletion of the 68k-ank homolog of VACV strain WR, however, was without effect, suggesting the existence of compensating genes. By inserting VACV genes into an MVA 68k-ank deletion mutant, we discovered that M2, a member of the poxvirus immune evasion (PIE) domain superfamily and a regulator of NF-κB, and C5, a member of the BTB/Kelch superfamily associated with cullin-3-based ligase complexes, independently rescued the 68k-ank deletion phenotype. Thus, poxvirus uncoating and DNA replication are intertwined processes involving at least three viral proteins with mutually redundant functions in addition to D5.IMPORTANCE Poxviruses comprise a family of large DNA viruses that infect vertebrates and invertebrates and cause diseases of medical and zoological importance. Poxviruses, unlike most other DNA viruses, replicate in the cytoplasm, and their large genomes usually encode 200 or more proteins with diverse functions. About 90 genes may be essential for chordopoxvirus replication based either on their conservation or individual gene deletion studies. However, this number may underestimate the true number of essential functions because of redundancy. Here we show that any one of three seemingly unrelated and individually nonessential proteins is required for the incompletely understood processes of genome uncoating and DNA replication, an example of synthetic lethality. Thus, poxviruses appear to have a complex genetic interaction network that has not been fully appreciated and which will require multifactor deletion screens to assess.
Collapse
|
10
|
Volz A, Sutter G. Modified Vaccinia Virus Ankara: History, Value in Basic Research, and Current Perspectives for Vaccine Development. Adv Virus Res 2016; 97:187-243. [PMID: 28057259 PMCID: PMC7112317 DOI: 10.1016/bs.aivir.2016.07.001] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Safety tested Modified Vaccinia virus Ankara (MVA) is licensed as third-generation vaccine against smallpox and serves as a potent vector system for development of new candidate vaccines against infectious diseases and cancer. Historically, MVA was developed by serial tissue culture passage in primary chicken cells of vaccinia virus strain Ankara, and clinically used to avoid the undesirable side effects of conventional smallpox vaccination. Adapted to growth in avian cells MVA lost the ability to replicate in mammalian hosts and lacks many of the genes orthopoxviruses use to conquer their host (cell) environment. As a biologically well-characterized mutant virus, MVA facilitates fundamental research to elucidate the functions of poxvirus host-interaction factors. As extremely safe viral vectors MVA vaccines have been found immunogenic and protective in various preclinical infection models. Multiple recombinant MVA currently undergo clinical testing for vaccination against human immunodeficiency viruses, Mycobacterium tuberculosis or Plasmodium falciparum. The versatility of the MVA vector vaccine platform is readily demonstrated by the swift development of experimental vaccines for immunization against emerging infections such as the Middle East Respiratory Syndrome. Recent advances include promising results from the clinical testing of recombinant MVA-producing antigens of highly pathogenic avian influenza virus H5N1 or Ebola virus. This review summarizes our current knowledge about MVA as a unique strain of vaccinia virus, and discusses the prospects of exploiting this virus as research tool in poxvirus biology or as safe viral vector vaccine to challenge existing and future bottlenecks in vaccinology.
Collapse
Affiliation(s)
- A Volz
- German Center for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Munich, Germany
| | - G Sutter
- German Center for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Munich, Germany.
| |
Collapse
|
11
|
Herbert MH, Squire CJ, Mercer AA. Poxviral ankyrin proteins. Viruses 2015; 7:709-38. [PMID: 25690795 PMCID: PMC4353913 DOI: 10.3390/v7020709] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 02/08/2023] Open
Abstract
Multiple repeats of the ankyrin motif (ANK) are ubiquitous throughout the kingdoms of life but are absent from most viruses. The main exception to this is the poxvirus family, and specifically the chordopoxviruses, with ANK repeat proteins present in all but three species from separate genera. The poxviral ANK repeat proteins belong to distinct orthologue groups spread over different species, and align well with the phylogeny of their genera. This distribution throughout the chordopoxviruses indicates these proteins were present in an ancestral vertebrate poxvirus, and have since undergone numerous duplication events. Most poxviral ANK repeat proteins contain an unusual topology of multiple ANK motifs starting at the N-terminus with a C-terminal poxviral homologue of the cellular F-box enabling interaction with the cellular SCF ubiquitin ligase complex. The subtle variations between ANK repeat proteins of individual poxviruses suggest an array of different substrates may be bound by these protein-protein interaction domains and, via the F-box, potentially directed to cellular ubiquitination pathways and possible degradation. Known interaction partners of several of these proteins indicate that the NF-κB coordinated anti-viral response is a key target, whilst some poxviral ANK repeat domains also have an F-box independent affect on viral host-range.
Collapse
Affiliation(s)
- Michael H Herbert
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand.
| | - Christopher J Squire
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand.
| | - Andrew A Mercer
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.
| |
Collapse
|
12
|
Orthopoxvirus genes that mediate disease virulence and host tropism. Adv Virol 2012; 2012:524743. [PMID: 22899927 PMCID: PMC3413996 DOI: 10.1155/2012/524743] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 05/31/2012] [Indexed: 12/16/2022] Open
Abstract
In the course of evolution, viruses have developed various molecular mechanisms to evade the defense reactions of the host organism. When understanding the mechanisms used by viruses to overcome manifold defense systems of the animal organism, represented by molecular factors and cells of the immune system, we would not only comprehend better but also discover new patterns of organization and function of these most important reactions directed against infectious agents. Here, study of the orthopoxviruses pathogenic for humans, such as variola (smallpox), monkeypox, cowpox, and vaccinia viruses, may be most important. Analysis of the experimental data, presented in this paper, allows to infer that variola virus and other orthopoxviruses possess an unexampled set of genes whose protein products efficiently modulate the manifold defense mechanisms of the host organisms compared with the viruses from other families.
Collapse
|
13
|
Verheust C, Goossens M, Pauwels K, Breyer D. Biosafety aspects of modified vaccinia virus Ankara (MVA)-based vectors used for gene therapy or vaccination. Vaccine 2012; 30:2623-32. [DOI: 10.1016/j.vaccine.2012.02.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/01/2012] [Accepted: 02/05/2012] [Indexed: 11/16/2022]
|
14
|
Shchelkunov SN. Interaction of orthopoxviruses with the cellular ubiquitin-ligase system. Virus Genes 2010; 41:309-18. [PMID: 20703935 DOI: 10.1007/s11262-010-0519-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Accepted: 07/28/2010] [Indexed: 02/06/2023]
Abstract
Protein modification by ubiquitin or ubiquitin-like polypeptides is important for the fate and functions of the majority of proteins in the eukaryotic cell and can be involved in regulation of various biological processes, including protein metabolism (degradation), protein transport to several cellular compartments, rearrangement of cytoskeleton, and transcription of cytoprotective genes. The accumulated experimental data suggest that the ankyrin-F-box-like and BTB-kelch-like proteins of orthopoxviruses, represented by the largest viral multigene families, interact with the cellular Cullin-1- and Cullin-3-containing ubiquitin-protein ligases, respectively. In addition, orthopoxviruses code for their own RING-domain-containing ubiquitin ligase. In this review, this author discusses the differences between variola (smallpox), monkeypox, cowpox, vaccinia, and ectromelia (mousepox) viruses in the organization of ankyrin-F-box and BTB-kelch protein families and their likely functions.
Collapse
Affiliation(s)
- Sergei N Shchelkunov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 10, Novosibirsk, Russia.
| |
Collapse
|
15
|
Blanié S, Gelfi J, Bertagnoli S, Camus-Bouclainville C. MNF, an ankyrin repeat protein of myxoma virus, is part of a native cellular SCF complex during viral infection. Virol J 2010; 7:56. [PMID: 20211013 PMCID: PMC2842262 DOI: 10.1186/1743-422x-7-56] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 03/08/2010] [Indexed: 01/02/2023] Open
Abstract
Myxoma virus (MYXV), a member of the Poxviridae family, is the agent responsible for myxomatosis, a fatal disease in the European rabbit (Oryctolagus cuniculus). Like all poxviruses, MYXV is known for encoding multiple proteins that regulate cellular signaling pathways. Among them, four proteins share the same ANK/PRANC structure: M148R, M149R, MNF (Myxoma Nuclear factor) and M-T5, all of them described as virulence factors. This family of poxvirus proteins, recently identified, has drawn considerable attention for its potential role in modulating the host ubiquitin-proteasome system during viral infection. To date, many members of this novel protein family have been shown to interact with SCF components, in vitro. Here, we focus on MNF gene, which has been shown to express a nuclear protein presenting nine ANK repeats, one of which has been identified as a nuclear localization signal. In transfection, MNF has been shown to colocalise with the transcription factor NF-κB in the nucleus of TNFα-stimulated cells. Functionally, MNF is a critical virulence factor since its deletion generates an almost apathogenic virus. In this study, to pursue the investigation of proteins interacting with MNF and of its mechanism of action, we engineered a recombinant MYXV expressing a GFP-linked MNF under the control of MNF native promoter. Infection of rabbits with MYXV-GFPMNF recombinant virus provided the evidence that the GFP fusion does not disturb the main function of MNF. Hence, cells were infected with MYXV-GFPMNF and immunoprecipitation of the GFPMNF fusion protein was performed to identify MNF's partners. For the first time, endogenous components of SCF (Cullin-1 and Skp1) were co-precipitated with an ANK myxoma virus protein, expressed in an infectious context, and without over-expression of any protein.
Collapse
Affiliation(s)
- Sophie Blanié
- INRA, UMR 1225 Interactions Hôtes - Agents Pathogènes F-31076 Toulouse, France
| | | | | | | |
Collapse
|
16
|
Structure function studies of vaccinia virus host range protein k1 reveal a novel functional surface for ankyrin repeat proteins. J Virol 2010; 84:3331-8. [PMID: 20089642 DOI: 10.1128/jvi.02332-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poxvirus host tropism at the cellular level is regulated by virus-encoded host range proteins acting downstream of virus entry. The functioning mechanisms of most host range proteins are unclear, but many contain multiple ankyrin (ANK) repeats, a motif that is known for ligand interaction through a concave surface. We report here the crystal structure of one of the ANK repeat-containing host range proteins, the vaccinia virus K1 protein. The structure, at a resolution of 2.3 A, showed that K1 consists entirely of ANK repeats, including seven complete ones and two incomplete ones, one each at the N and C terminus. Interestingly, Phe82 and Ser83, which were previously shown to be critical for K1's function, are solvent exposed and located on a convex surface, opposite the consensus ANK interaction surface. The importance of this convex surface was further supported by our additional mutagenesis studies. We found that K1's host range function was negatively affected by substitution of either Asn51 or Cys47 and completely abolished by substitution of both residues. Cys47 and Asn51 are also exposed on the convex surface, spatially adjacent to Phe82 and Ser83. Altogether, our data showed that K1 residues on a continuous convex ANK repeat surface are critical for the host range function, suggesting that K1 functions through ligand interaction and does so with a novel ANK interaction surface.
Collapse
|
17
|
Backes S, Sperling KM, Zwilling J, Gasteiger G, Ludwig H, Kremmer E, Schwantes A, Staib C, Sutter G. Viral host-range factor C7 or K1 is essential for modified vaccinia virus Ankara late gene expression in human and murine cells, irrespective of their capacity to inhibit protein kinase R-mediated phosphorylation of eukaryotic translation initiation factor 2alpha. J Gen Virol 2009; 91:470-82. [PMID: 19846675 DOI: 10.1099/vir.0.015347-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Vaccinia virus (VACV) infection induces phosphorylation of eukaryotic translation initiation factor 2alpha (eIF2alpha), which inhibits cellular and viral protein synthesis. In turn, VACV has evolved the capacity to antagonize this antiviral response by expressing the viral host-range proteins K3 and E3. This study revealed that the host-range genes K1L and C7L also prevent eIF2alpha phosphorylation in modified VACV Ankara (MVA) infection of several human and murine cell lines. Moreover, C7L-deleted MVA (MVA-DeltaC7L) lacked late gene expression, which could be rescued by the function of host-range factor K1 or C7. It was demonstrated that viral gene expression was blocked after viral DNA replication and that it was independent of apoptosis induction. Furthermore, it was found that eIF2alpha phosphorylation in MVA-DeltaC7L-infected cells is mediated by protein kinase R (PKR) as shown in murine embryonic fibroblasts lacking PKR function, and it was shown that this was not due to reduced E3L gene expression. The block of eIF2alpha phosphorylation by C7 could be complemented by K1 in cells infected with MVA-DeltaC7L encoding a reinserted K1L gene (MVA-DeltaC7L-K1L). Importantly, these data illustrated that eIF2alpha phosphorylation by PKR is not responsible for the block of late viral gene expression. This suggests that other mechanisms targeted by C7 and K1 are essential for completing the MVA gene expression cycle and probably also for VACV replication in a diverse set of cell types.
Collapse
Affiliation(s)
- Simone Backes
- Institute of Virology, Technical University of Munich, and Helmholtz Center Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|