1
|
Chen J, Cheng Z, Chen J, Qian L, Wang H, Liu Y. Advances in human norovirus research: Vaccines, genotype distribution and antiviral strategies. Virus Res 2024; 350:199486. [PMID: 39428038 DOI: 10.1016/j.virusres.2024.199486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Norovirus, belonging to the Caliciviridae family, is a non-enveloped, positive-sense single-stranded RNA virus. It is widely acknowledged as a significant etiological agent responsible for non-bacterial acute gastroenteritis and considered a major cause thereof. Norovirus is primarily tranmitted via fecal-oral route, but can also be transmitted via airborne routes. Clinical manifestations often include symptoms associated with acute gastroenteritis, like nausea, vomiting, watery diarrhea, stomach cramps, and others. Due to the specific pathogenic mechanism of the virus, and genomic diversity, there are currently no preventive vaccines or effective antiviral drugs available for treating norovirus-induced acute gastroenteritis infections. The management of such infections mainly relies on oral rehydration therapy while prevention necessitates adherence to personal hygiene measures. The present paper discusses the nature, transmission route, clinical manifestations, immune response mechanism, and vaccine research of Norovirus. The objective of this review manuscript is to systematically gather, analyze, and summarize recent research and investigations on norovirus in order to enhance our understanding of its characteristics and pathogenesis. This not only facilitates subsequent researchers in acquiring a more expedited and comprehensive grasp of the existing knowledge about norovirus but also provides clearer directions and goals for future studies.
Collapse
Affiliation(s)
- JunLi Chen
- Department of Laboratory Medicine, Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003,PR China
| | - ZhengChao Cheng
- Department of Laboratory Medicine, Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003,PR China
| | - Jing Chen
- Department of Laboratory Medicine, Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003,PR China
| | - Lingling Qian
- Central laboratory of Changshu Medicine Examination Institute, Changshu, Jiangsu 215500, PR China.
| | - Haoran Wang
- Department of Laboratory Medicine, Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003,PR China.
| | - YuWei Liu
- Department of Laboratory Medicine, Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003,PR China.
| |
Collapse
|
2
|
Hansman GS, Kher G, Svirina AD, Tame JRH, Hartley-Tassell L, Irie H, Haselhorst T, von Itzstein M, Rudd PA, Pancera M. Development of a broad-spectrum therapeutic Fc-nanobody for human noroviruses. J Virol 2024; 98:e0070724. [PMID: 38953655 PMCID: PMC11264634 DOI: 10.1128/jvi.00707-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
Human norovirus was discovered more than five decades ago and is a widespread cause of outbreaks of acute gastroenteritis. There are no approved vaccines or antivirals currently available. However, norovirus inhibitors, including capsid-specific monoclonal antibodies (Mabs) and nanobodies, have recently shown promising results. Several Mabs and nanobodies were found to inhibit norovirus replication using a human intestinal enteroid (HIE) culture system and/or could block norovirus attachment to histo-blood group antigen (HBGA) co-factors. In our pursuit to develop a single broad-spectrum norovirus therapeutic, we continued our analysis and development of a cross-reactive and HBGA interfering nanobody (NB26). To improve NB26 binding capacity and therapeutic potential, we conjugated NB26 onto a human IgG Fc domain (Fc-NB26). We confirmed that Fc-NB26 cross-reacts with genetically diverse GII genotype capsid protruding (P) domains (GII.8, GII.14, GII.17, GII.24, GII.26, and GII.NA1) using a direct enzyme-linked immunosorbent assay. Furthermore, X-ray crystallography structures of these P domains and structures of other GII genotypes reveal that the NB26 binding site is largely conserved, validating its broad reactivity. We showed that Fc-NB26 has ~100-fold higher affinity toward the norovirus P domain compared to native NB26. We also found that both NB26 and Fc-NB26 neutralize human norovirus replication in the HIE culture system. Furthermore, the mode of inhibition confirmed that like NB26, Fc-NB26 caused norovirus particle disassembly and aggregation. Overall, these new findings demonstrate that structural modifications to nanobodies can improve their therapeutic potential.IMPORTANCEDeveloping vaccines and antivirals against norovirus remains a challenge, mainly due to the constant genetic and antigenic evolution. Moreover, re-infection with genetically related and/or antigenic variants is not uncommon. We further developed our leading norovirus nanobody (NB26) that indirectly interfered with norovirus binding to HBGAs, by converting NB26 into a dimeric Fc-linked Nanobody (Fc-NB26). We found that Fc-NB26 had improved binding affinity and neutralization capacity compared with native NB26. Using X-ray crystallography, we showed this nanobody engaged highly conserved capsid residues among genetically diverse noroviruses. Development of such broadly reactive potent therapeutic nanobodies delivered as a slow-releasing prophylactic could be of exceptional value for norovirus outbreaks, especially for the prevention or treatment of severe acute gastroenteritis in high-risk groups such as the young, elderly, and immunocompromised.
Collapse
Affiliation(s)
- Grant S. Hansman
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Gargi Kher
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | - Jeremy R. H. Tame
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Lauren Hartley-Tassell
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Hiro Irie
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
- School of Environment and Science, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Penny A. Rudd
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
3
|
Functional and structural characterization of Norovirus GII.6 in recognizing histo-blood group antigens. Virol Sin 2023; 38:56-65. [PMID: 36216242 PMCID: PMC10006186 DOI: 10.1016/j.virs.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/04/2022] [Indexed: 11/11/2022] Open
Abstract
Noroviruses (NoVs) are the primary cause of acute gastroenteritis worldwide. Histo-blood group antigens (HBGAs) are receptors or attachment factors that affect the prevalence and host susceptibility of NoVs. GII.6 NoV is one of the predominant genotypes in humans, which recognizes the type ABO secretor of HBGAs. However, the structural basis of GII.6 NoV's interaction with HBGAs receptors remains elusive. In this study, we investigated the binding features of the GII.6 strain to HBGAs using saliva- and glycan-ELISA assays and characterized the molecular basis of the GII.6 virus that recognizes H disaccharide. We showed that the GII.6 P domain recognized some A and O secretor's saliva samples, most B secretor's saliva samples, and H disaccharide antigen, but did not bind non-secretors' saliva. Further, we determined the crystal structures of GII.6 and its complex with H disaccharides at 1.7 Å, revealing that the P domain of GII.6 shares the conventional binding interface and mode of GII HBGAs. Single residue mutations at the GII.6-H binding sites could inhibit the binding of GII.6 to HBGAs, demonstrating that the interaction residues were crucial in maintaining NoV-glycan integrity. Finally, structural and sequence analyses showed that the major residues of the GII.6-H interaction were conserved among NoVs in the GII genogroup. Taken together, our study characterized the functional and structural features of GII.6 that allow it to interact with HBGAs, and shed light on NoV evolution, epidemiology, and anti-viral drug development.
Collapse
|
4
|
Structural Insight into Terminal Galactose Recognition by Two Non-HBGA Binding GI.3 Noroviruses. J Virol 2022; 96:e0042022. [PMID: 35658530 PMCID: PMC9278146 DOI: 10.1128/jvi.00420-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human noroviruses (huNoVs) cause epidemic acute gastroenteritis using histo-blood group antigens (HBGAs) as host receptors or attachment factors to initiate an infection. While most huNoVs have been shown to bind HBGAs, some known clinical isolates, such as GI.3 DSV and VA115, do not recognize any HBGAs and thus the molecular mechanism behind their infections remains elusive. In this study, we provided both phenotypic and structural evidence to show that huNoV DSV and VA115 recognize a group of glycans with terminal galactoses as ligands. First, through glycan array we found that both DSV and VA115 protruding (P) domain proteins bound two oligosaccharides that share common terminal galactoses. Then, by determination of the crystal structures of DSV/VA115 P proteins in complex with Galα1-3Galβ1-4Glc and/or NA2 N-Glycan, respectively, we showed that the terminal galactose is the main saccharide recognized by the two viral proteins. Our data demonstrated that GI huNoVs can interact with non-HBGA glycans through their conserved galactose binding site, shedding light on the mechanism of huNoV adaptation through recognizing new glycan receptors to facilitate their widespread nature in human population. These findings are also of significance in strategy development for huNoV control and prevention, as well as development of antiviral drugs. IMPORTANCE Human noroviruses (huNoVs) are the most important viral pathogens causing epidemic acute gastroenteritis worldwide. Previous studies indicated that histo-blood group antigens (HBGAs) are critical host-susceptibility factors affecting huNoV host susceptibility, host range, and probably prevalence. However, certain huNoVs, such as GI.3 DSV and VA115, do not recognize any HBGAs. This implies that other unknown host factors might exist and the molecular mechanism underlying their host receptor recognition or attachment remains elusive. In this study, we found that purified capsid protruding domain proteins from two GI.3 huNoVs specifically bind two glycans that contain a common terminal galactose. We solved the crystal structures of the complexes at atomic resolution and validated the vital amino acids involved in glycan recognition. Our findings elucidate the mechanism of GI.3 huNoV-non-HBGA glycan interaction, which explains why GI.3 virus strains could not bind human HBGAs, paving a way to the prevention and treatment of huNoV-associated diseases.
Collapse
|
5
|
Estienney M, Tarris G, Abou-Hamad N, Rouleau A, Boireau W, Chassagnon R, Ayouni S, Daval-Frerot P, Martin L, Bouyer F, Le Pendu J, de Rougemont A, Belliot G. Epidemiological Impact of GII.17 Human Noroviruses Associated With Attachment to Enterocytes. Front Microbiol 2022; 13:858245. [PMID: 35572680 PMCID: PMC9094630 DOI: 10.3389/fmicb.2022.858245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/23/2022] [Indexed: 01/19/2023] Open
Abstract
For the last 30 years, molecular surveys have shown that human norovirus (HuNoV), predominantly the GII.4 genotype, is one of the main causative agents of gastroenteritis. However, epidemiological surveys have revealed the worldwide emergence of GII.17 HuNoVs. Genetic analysis confirmed that GII.17 strains are distributed into three variants (i.e., Kawasaki 308, Kawasaki 323, and CS-E1). Here, virus-like particles (VLPs) were baculovirus-expressed from these variants to study putative interactions with HBGA. Qualitative analysis of the HBGA binding profile of each variant showed that the most recent and predominant GII.17 variant, Kawasaki 308, possesses a larger binding spectrum. The retrospective study of GII.17 strains documented before the emergence of the dominant Kawasaki 308 variant showed that the emergence of a new GII.17 variant could be related to an increased binding capacity toward HBGA. The use of duodenal histological sections confirmed that recognition of enterocytes involved HBGA for the three GII.17 variants. Finally, we observed that the relative affinity of recent GII.17 VLPs for HBGA remains lower than that of the GII.4-2012 variant. These observations suggest a model whereby a combination of virological factors, such as polymerase fidelity and increased affinity for HBGA, and immunological factors was responsible for the incomplete and non-persistent replacement of GII.4 by new GII.17 variants.
Collapse
Affiliation(s)
- Marie Estienney
- National Reference Centre for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon, Dijon, France.,UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne, Franche-Comté/AgroSup Dijon, Dijon, France
| | - Georges Tarris
- Department of Pathology, University Hospital of Dijon, Dijon, France.,Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| | - Nicole Abou-Hamad
- National Reference Centre for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon, Dijon, France.,UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne, Franche-Comté/AgroSup Dijon, Dijon, France.,Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université Bourgogne Franche-Comté, Dijon, France
| | - Alain Rouleau
- FEMTO-ST Institute, CNRS UMR-6174, Université de Bourgogne Franche-Comté, Besançon, France
| | - Wilfrid Boireau
- FEMTO-ST Institute, CNRS UMR-6174, Université de Bourgogne Franche-Comté, Besançon, France
| | - Rémi Chassagnon
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université Bourgogne Franche-Comté, Dijon, France
| | - Siwar Ayouni
- National Reference Centre for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon, Dijon, France
| | - Philippe Daval-Frerot
- National Reference Centre for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon, Dijon, France
| | - Laurent Martin
- Department of Pathology, University Hospital of Dijon, Dijon, France.,Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| | - Frédéric Bouyer
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université Bourgogne Franche-Comté, Dijon, France
| | | | - Alexis de Rougemont
- National Reference Centre for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon, Dijon, France.,UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne, Franche-Comté/AgroSup Dijon, Dijon, France
| | - Gael Belliot
- National Reference Centre for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon, Dijon, France.,UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne, Franche-Comté/AgroSup Dijon, Dijon, France
| |
Collapse
|
6
|
Yu JM. What is the Potential Cause for the Predominance of GII.2[P16] Norovirus in Acute Gastroenteritis Outbreaks in China? China CDC Wkly 2022; 4:27-30. [PMID: 35586517 PMCID: PMC8796726 DOI: 10.46234/ccdcw2022.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/29/2021] [Indexed: 11/29/2022] Open
Abstract
GII.2[P16] noroviruses (NoV) reemerged and rapidly became the main epidemic strain in acute gastroenteritis (AGE) outbreaks in Asian countries since 2016. The current GII.2 [P16] NoV showed the same antigenicity to the ones before 2016, but several unique amino acid substitutions existed in the RNA dependent RNA polymerase (RdRp) and other non-structural proteins, and the viral load of the current GII.2[P16] NoV was higher than those of other genotypes, it was estimated that the viral replication ability may have improved. However, other genotypes, such as GII.1 and GII.3, also had recombination with the novel RdRp, were not prevalent in AGE-outbreaks; thus, it was inferred that the capsid proteins also played an important role in the enhanced replication process. The viral infection could also be affected by other factors, such as the population genetic background, the climate and environment, and people’s lifestyles. Continued surveillance on genetic diversity and evolutionary pattern for the GII.2[P16] NoV is necessary.
Collapse
Affiliation(s)
- Jie-mei Yu
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
- Jie-mei Yu,
| |
Collapse
|
7
|
Li W, Yan H, Liu B, Tian Y, Chen Y, Jia L, Gao Z, Wang Q. Epidemiological characteristics and genetic diversity of norovirus infections among outpatient children with diarrhea under 5 years of age in Beijing, China, 2011-2018. Gut Pathog 2021; 13:77. [PMID: 34952625 PMCID: PMC8709959 DOI: 10.1186/s13099-021-00473-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
Background Human noroviruses are the leading cause of sporadic cases and outbreaks of viral acute gastroenteritis in all age groups worldwide. Methods Epidemiological data and fecal specimens were collected between January 2011 and December 2018 from 4911 children < 5 years of age with diarrhea in three districts of Beijing. From 2011 to 2013, One-Step Reverse Transcription Polymerase Chain Reaction (RT-PCR) was used to detect noroviruses, and from January 2014 to December 2018, norovirus GI and GII were screened using duplex quantitative real-time RT-PCR (qRT-PCR). One-Step RT-PCR and RT-seminested PCR were performed to amplify the RNA-dependent polymerase and capsid genes of noroviruses in positive sample. Amplified products were sequenced directly; norovirus was typed using the online Norovirus Genotyping Tool v2.0 and phylogenetic analyses were conducted using MEGA-X. Results From 2011 to 2018, noroviruses were detected in 16.5% of specimens from children with diarrhea. The highest prevalence was observed in children aged 12 to 23 months (22.4%, 319/1421), followed by children aged 6 to 11 months (17.6%, 253/1441). The highest prevalence of norovirus infections occurred in autumn followed by winter, spring, and summer. From 2011 to 2018, the most prevalent dual types (genotype and polymerase type) were GII.4 Sydney[P31] (51.6%, 239/463), followed by GII.3[P12] (24.0%, 111/463), GII.4 2006b[P4 2006b] (7.3%, 34/463), GII.2[P16] (5.0%, 23/463), GII.17[P17] (2.6%, 12/463) and GII.6[P7] (2.6%, 12/463). GII.4 2006b[P4 2006b] predominated in 2011 and 2012. GII.4 Sydney[P31] predominated from 2013 to 2018. In total, 15 genotypes, 15 P-types and 19 dual types were detected in this study, reflecting the genetic diversity. Conclusions There were significant epidemiological characteristics and genetic diversity among outpatient children with norovirus infections < 5 years of age in Beijing from 2011 to 2018. These characteristics differ from those of norovirus outbreaks in Beijing. The complete genome sequences of each genotype are needed to better understand norovirus evolutionary mechanisms.
Collapse
Affiliation(s)
- Weihong Li
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control and Beijing Research Center for Preventive Medicine, Beijing, China
| | - Hanqiu Yan
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control and Beijing Research Center for Preventive Medicine, Beijing, China
| | - Baiwei Liu
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control and Beijing Research Center for Preventive Medicine, Beijing, China
| | - Yi Tian
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control and Beijing Research Center for Preventive Medicine, Beijing, China
| | - Yanwei Chen
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control and Beijing Research Center for Preventive Medicine, Beijing, China
| | - Lei Jia
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control and Beijing Research Center for Preventive Medicine, Beijing, China
| | - Zhiyong Gao
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control and Beijing Research Center for Preventive Medicine, Beijing, China.
| | - Quanyi Wang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control and Beijing Research Center for Preventive Medicine, Beijing, China.
| |
Collapse
|
8
|
Yi Y, Wang X, Wang S, Xiong P, Liu Q, Zhang C, Yin F, Huang Z. Identification of a blockade epitope of human norovirus GII.17. Emerg Microbes Infect 2021; 10:954-963. [PMID: 33929932 PMCID: PMC8143627 DOI: 10.1080/22221751.2021.1925162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human noroviruses are the dominant causative agent of acute viral gastroenteritis worldwide. During the winter of 2014-2015, genotype GII.17 cluster IIIb strains emerged as the leading cause of norovirus infection in Asia and later spread to other parts of the world. It is speculated that mutation at blockade epitopes may have resulted in virus escape from herd immunity, leading to the emergence of GII.17 cluster IIIb variants. Here, we identify a GII.17 cluster IIIb-specific blockade epitope by monoclonal antibody (mAb)-based epitope mapping. Four mAbs (designated as M1 to M4) were generated from mice immunized with virus-like particle (VLP) of a GII.17 cluster IIIb strain. Among them, M1 and M3 reacted specifically with the cluster IIIb VLP but not with the VLPs from clusters II or IIIa. Moreover, M1 and M3 dose-dependently blocked cluster IIIb VLP binding with its ligand, histo-blood group antigens (HBGAs). Epitope mapping revealed that M1 and M3 recognized the same highly exposed epitope consisting of residues 293-296 and 299 in the capsid protein VP1. Sequence alignment showed that the M1/M3 epitope sequence is highly variable among different GII.17 clusters whereas it is identical for cluster IIIIb strains. These data define a dominant blockade epitope of GII.17 norovirus and provide evidence that blockade epitope evolution contributes to the emergence of GII.17 cluster IIIb strains.
Collapse
Affiliation(s)
- Yufang Yi
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, People's Republic of China.,Hainan Medical University - The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, People's Republic of China
| | - Xiaoli Wang
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Shuxia Wang
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Pei Xiong
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Qingwei Liu
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Chao Zhang
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Feifei Yin
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, People's Republic of China.,Hainan Medical University - The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, People's Republic of China
| | - Zhong Huang
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Zuo Y, Xue L, Gao J, Liao Y, Liang Y, Jiang Y, Cai W, Qin Z, Yang J, Zhang J, Wang J, Chen M, Ding Y, Wu Q. Evolutionary Mechanism of Immunological Cross-Reactivity Between Different GII.17 Variants. Front Microbiol 2021; 12:653719. [PMID: 33889144 PMCID: PMC8055840 DOI: 10.3389/fmicb.2021.653719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/09/2021] [Indexed: 11/25/2022] Open
Abstract
Human norovirus is regarded as the leading cause of epidemic acute gastroenteritis with GII.4 being the predominant genotype during the past decades. In the winter of 2014/2015, the GII.17 Kawasaki 2014 emerged as the predominant genotype, surpassing GII.4 in several East Asian countries. Hence, the influence of host immunity response on the continuous evolution of different GII.17 variants needs to be studied in depth. Here, we relate the inferences of evolutionary mechanisms of different GII.17 variants with the investigation of cross-reactivity and cross-protection of their respective antisera using the expression of norovirus P particles in Escherichia coli. The cross-reactivity assay showed that the antisera of previous strains (GII.17 A and GII.17 B) reacted with recent variants (GII.17 C and GII.17 D) at high OD values from 0.8 to 1.16, while recent variant antisera cross-reacting with previous strains were weak with OD values between 0.26 and 0.56. The cross-protection assay indicated that the antisera of previous strains had no inhibitory effect on recent variants. Finally, mutations at amino acids 353–363, 373–384, 394–404, and 444–454 had the greatest impact on cross-reactivity. These data indicate that the recent pandemic variants GII.17 C and GII.17 D avoided the herd immunity effect of previous GII.17 A and GII.17 B strains through antigenic variation.
Collapse
Affiliation(s)
- Yueting Zuo
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Junshan Gao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yingyin Liao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yanhui Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yueting Jiang
- Department of Laboratory Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weicheng Cai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhiwei Qin
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jiale Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
10
|
Chen Q, Men Y, Wang D, Xu D, Liu S, Xiao S, Fang L. Porcine reproductive and respiratory syndrome virus infection induces endoplasmic reticulum stress, facilitates virus replication, and contributes to autophagy and apoptosis. Sci Rep 2020; 10:13131. [PMID: 32753633 PMCID: PMC7403369 DOI: 10.1038/s41598-020-69959-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/16/2020] [Indexed: 01/07/2023] Open
Abstract
During viral infection, the host cell synthesizes high amounts of viral proteins, which often causes stress to the endoplasmic reticulum (ER). To manage abnormal ER stress, mammalian cells trigger a response called the unfolded protein response (UPR). Previous studies have indicated that porcine reproductive and respiratory syndrome virus (PRRSV), an Arterivirus that has been devastating the swine industry worldwide, can induce ER stress and activate UPR, however, the activation pathways and the biological significance requires further investigation. In this study, we demonstrated that, among the three types of UPR pathways, PRRSV infection induced PERK and IRE1 pathways, but not the ATF6 pathway. Furthermore, the induction of UPR promoted PRRSV replication. We also found that PRRSV-induced UPR, particularly the PERK pathway, was involved in the induction of autophagy, a cellular degradation process that can alleviate cell stress. Besides, we also provided insights into the ER stress-mediated apoptosis in response to PRRSV infection. PRRSV infection induced the expression of the transcription factor CHOP, which activated caspase 3 and PARP led to ER stress-mediated apoptosis. Using 3-Methyladenine (3-MA) to inhibit autophagy, the increased ER stress and cell apoptosis were observed in the PRRSV infected cell. Taken together, our results revealed the associations of ER stress, autophagy, and apoptosis during PRRSV infection, helping us to further understand how PRRSV interacts with host cells.
Collapse
Affiliation(s)
- Quangang Chen
- School of Life Science, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yanjuan Men
- School of Life Science, Xuzhou Medical University, Xuzhou, 221004, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Deqin Xu
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Suyan Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
11
|
Le Pendu J, Ruvoën-Clouet N. Fondness for sugars of enteric viruses confronts them with human glycans genetic diversity. Hum Genet 2019; 139:903-910. [DOI: 10.1007/s00439-019-02090-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/18/2019] [Indexed: 02/08/2023]
|
12
|
GII.13/21 Noroviruses Recognize Glycans with a Terminal β-Galactose via an Unconventional Glycan Binding Site. J Virol 2019; 93:JVI.00723-19. [PMID: 31118252 PMCID: PMC6639292 DOI: 10.1128/jvi.00723-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 01/17/2023] Open
Abstract
Evidence from both phenotypic binding assay and structural study support the observed interactions of human noroviruses (huNoVs) with histo-blood group antigens (HBGAs) as receptors or attachment factors, affecting their host susceptibility. GII.13 and GII.21 genotypes form a unique genetic lineage that differs from the mainstream GII huNoVs in their unconventional glycan binding site. Unlike the previous findings that GII.13/21 genotypes recognize only Lea antigen, we found in this study that they can interact with a group of glycans with a common terminal β-Gal, including Lec, lactose, and mucin core 2. However, this wide glycan binding spectrum in a unique binding mode of the GII.13/21 huNoVs appears not to increase their prevalence, probably due to the existence of decoy glycan receptors in human gastrointestinal tract limiting their infection. Our findings shed light on the host interaction and epidemiology of huNoVs, which would impact the strategy of huNoV control and prevention. Human noroviruses (huNoVs) recognize histo-blood group antigens (HBGAs) as host susceptibility factors. GII.13 and GII.21 huNoVs form a unique genetic lineage that emerged from mainstream GII NoVs via development of a new, nonconventional glycan binding site (GBS) that binds Lea antigen. This previous finding raised the question of whether the new GII.13/21 GBS really has such a narrow glycan binding spectrum. In this study, we provide solid phenotypic and structural evidence indicating that this new GBS recognizes a group of glycans with a common terminal β-galactose (β-Gal). First, we found that P domain proteins of GII.13/21 huNoVs circulating at different times bound three glycans sharing a common terminal β-Gal, including Lec, lactose, and mucin core 2. Second, we solved the crystal structures of the GII.13 P dimers in complex with Lec and mucin core 2, which showed that β-Gal is the major binding saccharide. Third, nonfat milk and lactose blocked the GII.13/21 P domain-glycan binding, which may explain the low prevalence of GII.13/21 viruses. Our data provide new insight into the host interactions and epidemiology of huNoVs, which would help in the control and prevention of NoV-associated diseases. IMPORTANCE Evidence from both phenotypic binding assay and structural study support the observed interactions of human noroviruses (huNoVs) with histo-blood group antigens (HBGAs) as receptors or attachment factors, affecting their host susceptibility. GII.13 and GII.21 genotypes form a unique genetic lineage that differs from the mainstream GII huNoVs in their unconventional glycan binding site. Unlike the previous findings that GII.13/21 genotypes recognize only Lea antigen, we found in this study that they can interact with a group of glycans with a common terminal β-Gal, including Lec, lactose, and mucin core 2. However, this wide glycan binding spectrum in a unique binding mode of the GII.13/21 huNoVs appears not to increase their prevalence, probably due to the existence of decoy glycan receptors in human gastrointestinal tract limiting their infection. Our findings shed light on the host interaction and epidemiology of huNoVs, which would impact the strategy of huNoV control and prevention.
Collapse
|
13
|
Yang Y, Xia M, Wang L, Arumugam S, Wang Y, Ou X, Wang C, Jiang X, Tan M, Chen Y, Li X. Structural basis of host ligand specificity change of GII porcine noroviruses from their closely related GII human noroviruses. Emerg Microbes Infect 2019; 8:1642-1657. [PMID: 31711377 PMCID: PMC6853222 DOI: 10.1080/22221751.2019.1686335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/20/2019] [Indexed: 02/07/2023]
Abstract
Diverse noroviruses infect humans and animals via the recognition of host-specific glycan ligands. Genogroup II (GII) noroviruses consist of human noroviruses (huNoVs) that generally bind histo-blood group antigens (HBGAs) as host factors and three porcine norovirus (porNoV) genotypes (GII.11/18/19) that form a genetic lineage lacking HBGA-binding ability. Thus, these GII porNoVs provide an excellent model to study norovirus evolution with host ligand specificity changes. Here we solved the crystal structures of a native GII.11 porNoV P protein and a closely-related GII.3 huNoV P protein complexed with an HBGA, focusing on the HBGA-binding sites (HBSs) compared with the previously known ones to understand the structural basis of the host ligand specificity change. We found that the GII.3 huNoV binds HBGAs via a conventional GII HBS that uses an arginine instead of the conserved aromatic residue for the required Van der Waals interaction, while the GII.11 porNoV HBS loses its HBGA-binding function because of two mutations (Q355/V451). A mutant that reversed the two mutated residues back to the conventional A355/Y451 restored the HBGA-binding function of the GII.11 porNoV P protein, which validated our observations. Similar mutations are also found in GII.19 porNoVs and a GII.19 P protein mutant with double reverse mutations restored the HBS function. This is the first reconstruction of a functional HBS based on one with new host specificity back to its parental one. These data shed light on the molecular basis of structural adaptation of the GII porNoVs to the pig hosts through mutations at their HBSs.
Collapse
Affiliation(s)
- Yang Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Ming Xia
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Leyi Wang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Sahaana Arumugam
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Yajing Wang
- College of Life Science, Nankai University, Tianjin, People’s Republic of China
| | - Xianjin Ou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Chenlong Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yutao Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xuemei Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|