1
|
Zhang S, Gao H, You G, Cao H, Wang Y, Gao L, Zheng SJ. A novel role of ETV6 as a pro-viral factor in host response by inhibiting TBK1 phosphorylation. Int J Biol Macromol 2024; 279:135525. [PMID: 39260650 DOI: 10.1016/j.ijbiomac.2024.135525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/23/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
E26-transforming specific (ETS) variant 6 (ETV6) is a transcription factor regulating the expression of interferon stimulating genes (ISGs) and involved in the embryonic development and hematopoietic regulation, but the role of ETV6 in host response to virus infection is not clear. In this study, we show that ETV6 was upregulated in DF-1 cells with poly(I:C) stimulation or IBDV, AIV and ARV infection via engagement of dsRNA by MDA5. Overexpression of ETV6 in DF-1 cells markedly inhibited IBDV-induced type I interferon (IFN-I) and ISGs expressions. In contrast, knockdown, or knockout of ETV6 remarkably inhibited IBDV replication via promoting IFN-I response. Furthermore, our data show that ETV6 negatively regulated host antiviral response to IBDV infection by interaction with TANK binding kinase 1 (TBK1) and subsequently inhibited its phosphorylation. These results uncovered a novel role of ETV6 as a pro-viral factor in host response by inhibiting TBK1 phosphorylation, furthering our understandings of RNA virus immunosuppression and providing a valuable clue to the development of antiviral reagents for the control of avian RNA virus infection.
Collapse
Affiliation(s)
- Shujun Zhang
- National Key Laboratory of Veterinary Public Health Security, China; Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hui Gao
- National Key Laboratory of Veterinary Public Health Security, China; Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Guangju You
- Laboratory of Animal Virology, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Hong Cao
- National Key Laboratory of Veterinary Public Health Security, China; Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- National Key Laboratory of Veterinary Public Health Security, China; Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Li Gao
- National Key Laboratory of Veterinary Public Health Security, China; Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Shijun J Zheng
- National Key Laboratory of Veterinary Public Health Security, China; Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Zhang S, Li J, Gao H, Wang Y, Cao H, Li X, Gao L, Zheng SJ. TMT-based quantitative proteomic analysis of IBDV-infected CEF cells reveals a favorable role of chicken IRF10 in IBDV replication via suppressing type-I interferon expression. Poult Sci 2024; 103:104421. [PMID: 39442197 PMCID: PMC11532768 DOI: 10.1016/j.psj.2024.104421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/12/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious disease caused by infectious bursal disease virus (IBDV), causing huge economic losses to the poultry industry worldwide. Currently, the emerging variant strains of IBDV and new recombinants in the field are circulating in many countries and poses severe threats to the development of poultry industry. Elucidation of the pathogenesis of IBDV infection will be of great help to the development of vaccines for control of IBDV infection. In this study, liquid chromatography tandem-mass spectrometry (LC-MS/MS) combined with tandem mass tag (TMT) labeling was performed to determine the expressions of nucleus proteins in IBDV-infected chicken embryonic fibroblast (CEF) cells 24 h post-infection (hpi). Our data show that a total of 236 nucleus proteins were differentially expressed in IBDV-infected cells vs mock-infected controls, and that among those proteins, 171 were significantly upregulated while 65 downregulated. Bioinformatics analysis reveals that the differentially expressed proteins (DEPs) were mainly involved in immune response, DNA replication, mismatch repair, and RIG-I-like receptor (RLR) signaling. Consistently, the expression of ten selected upregulated genes (IRF10, IRF7, IRF1, STAT1, ATF3, GTF3A, CSRP3, RARB, BASP1, and NF-κB1) markedly increased as examined by quantitative real-time PCR (qRT-PCR). Furthermore, the expression of IRF10 was upregulated both in the cytoplasm and nucleus of DF-1 cells as examined by Western Blot. Moreover, knockdown of IRF10 remarkably inhibited IBDV replication via promoting IFN-I response, and overexpression of IRF10 significantly suppressed type I interferon and ISGs expression in both mock and IBDV-infected cells, suggesting that IRF10 serve as a negative regulator for host antiviral response. These results provide clues to further investigation into host-IBDV interactions and the underlying mechanisms of IBDV infection.
Collapse
Affiliation(s)
- Shujun Zhang
- National Key Laboratory of Veterinary Public Health Security; Animal Epidemiology of the Ministry of Agriculture; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiaxin Li
- China Institute of Veterinary Drug Control
| | - Hui Gao
- National Key Laboratory of Veterinary Public Health Security; Animal Epidemiology of the Ministry of Agriculture; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- National Key Laboratory of Veterinary Public Health Security; Animal Epidemiology of the Ministry of Agriculture; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hong Cao
- National Key Laboratory of Veterinary Public Health Security; Animal Epidemiology of the Ministry of Agriculture; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoqi Li
- National Key Laboratory of Veterinary Public Health Security; Animal Epidemiology of the Ministry of Agriculture; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Li Gao
- National Key Laboratory of Veterinary Public Health Security; Animal Epidemiology of the Ministry of Agriculture; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J Zheng
- National Key Laboratory of Veterinary Public Health Security; Animal Epidemiology of the Ministry of Agriculture; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Zhang Q, Sun G, Yue F, Liu Z, Li P, Zhu Y, Zhu Y, Niu R, Sun Z, Wang X, Zhang G. Peptide-directed interference of PD-1/PD-L1 binding increases B lymphocyte function after infectious bursal disease viral infection. Poult Sci 2024; 103:104389. [PMID: 39427422 PMCID: PMC11533547 DOI: 10.1016/j.psj.2024.104389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/22/2024] Open
Abstract
Programmed cell death protein 1 (PD-1)/PD-1 ligand 1 (PD-L1) binding contributes to immune evasion mechanisms responsible for B lymphocyte exhaustion and apoptosis. This facilitates immunosuppression in chronic viral infections, including infectious bursal disease virus (IBDV). Our previous study showed that PD-1 and PD-L1 expression increases in the peripheral blood mononuclear cells of chickens infected with IBDV. However, due to their high production costs and immune-related adverse events, monoclonal antibodies targeting PD-1 or PD-L1 are unsuitable therapeutic agents. Thus, in the current study, we designed peptides with optimized binding sites for PD-1 and investigated their ability to disrupt PD-1/PD-L1 binding and restore B lymphocyte function in vitro. The peptide gCK-16 exhibited a high affinity for PD-1 (KD: 3.37 nM) and effectively inhibited the PD-1/PD-L1 interaction in vitro. Moreover, gCK-16 significantly enhanced B lymphocyte proliferation. Remarkably, gCK-16 treatment abrogated the IBDV-induced upregulation of PD-1/PD-L1, NF-κB activation, and B lymphocyte apoptosis. Additionally, IBDV infection attenuated PI3K/AKT pathway activation in B lymphocytes, while gCK-16 treatment increased immunoglobulin M (IgM) production in IBDV-infected B lymphocytes. Together, these results demonstrate that gCK-16 treatment can potentially enhance B lymphocyte function against IBDV infection, guiding the development of vaccine adjuvants to effectively prevent IBDV-induced avian immunosuppression.
Collapse
Affiliation(s)
- Qiuyu Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Guopeng Sun
- College of Biological Engineering, Xinxiang University, Xinxiang 453003, China
| | - Feng Yue
- College of Biological Engineering, Xinxiang University, Xinxiang 453003, China
| | - Zhike Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Peng Li
- College of Biological Engineering, Xinxiang University, Xinxiang 453003, China
| | - Yanping Zhu
- College of Biological Engineering, Xinxiang University, Xinxiang 453003, China
| | - Yangzhao Zhu
- College of Biological Engineering, Xinxiang University, Xinxiang 453003, China
| | - Ruiyan Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xuannian Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Longhu Laboratory, Zhengzhou 450046, China.
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Longhu Laboratory, Zhengzhou 450046, China
| |
Collapse
|
4
|
Zhao Y, Zhou L, Zheng H, Gao L, Cao H, Li X, Zheng SJ, Wang Y. Gga-miR-200a-3p suppresses avian reovirus-induced apoptosis and viral replication via targeting GRB2. Vet Microbiol 2024; 295:110149. [PMID: 38909417 DOI: 10.1016/j.vetmic.2024.110149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/25/2024]
Abstract
Avian reovirus (ARV) is a significant pathogen that causes various clinical diseases in chickens, including viral arthritis, chronic respiratory diseases, retarded growth, and malabsorption syndrome. These conditions result in substantial economic losses for the global poultry industry. MicroRNAs (miRNAs), a type of small noncoding RNAs that regulate gene expression post transcriptionally by silencing or degrading their RNA targets, play crucial roles in response to pathogenic infections. In this study, transfection of DF-1 cells with gga-miR-200a-3p, an upregulated miRNA observed in ARV-infected cells, significantly suppressed ARV-induced apoptosis by directly targeting GRB2 and impeded ARV replication. Conversely, knockdown of endogenous gga-miR-200a-3p in DF-1 cells using a specific miRNA inhibitor enhanced ARV-induced apoptosis and promoted GRB2 expression, thereby facilitating viral growth within cells. Consistently, inhibition of GRB2 activity through siRNA-mediated knockdown reduced viral titers. Therefore, gga-miR-200a-3p plays a vital antiviral role in the host response to ARV infection by suppressing apoptosis via direct targeting of GRB2 protein. This information enhances our understanding of the mechanisms by which host cells combat against ARV infection through self-encoded small RNA molecules and expands our knowledge regarding the involvement of microRNAs in the host response to pathogenic infections.
Collapse
Affiliation(s)
- Yimeng Zhao
- National Key Laboratory of Veterinary Public Health Security, China; Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Linyi Zhou
- National Key Laboratory of Veterinary Public Health Security, China; Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hao Zheng
- National Key Laboratory of Veterinary Public Health Security, China; Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Li Gao
- National Key Laboratory of Veterinary Public Health Security, China; Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hong Cao
- National Key Laboratory of Veterinary Public Health Security, China; Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoqi Li
- National Key Laboratory of Veterinary Public Health Security, China; Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J Zheng
- National Key Laboratory of Veterinary Public Health Security, China; Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- National Key Laboratory of Veterinary Public Health Security, China; Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Yu Y, Tang X, Duan C, Suo J, Crouch C, Zhang S, Liu X, Liu J, Bruton B, Tarpey I, Suo X. Microneme-located VP2 in Eimeria acervulina elicits effective protective immunity against infectious bursal disease virus. Infect Immun 2024; 92:e0045623. [PMID: 38179959 PMCID: PMC10863409 DOI: 10.1128/iai.00456-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Using transgenic Eimeria spp. to deliver exogenous antigens is a viable option for developing multivalent live vaccines. Previous research revealed that the location of antigen expression in recombinant Eimeria dictates the magnitude and type of immune responses. In this study, we constructed genetically modified Eimeria acervulina that expressed VP2 protein, a protective antigen from infectious bursal disease virus (IBDV), on the surface or in the microneme of sporozoites. After vaccination, VP2-specific antibody was readily detected in specific pathogen-free chickens receiving transgenic E. acervulina parasites expressing VP2 in microneme, but animals vaccinated with which expressing VP2 on surface failed to produce detectable antibody after two times immunizations. Moreover, the bursal lesion of microneme-located VP2 transgenic E. acervulina immunized chickens was less severe compared with un-immunized animals after IBDV challenge infection. Therefore, genetically modified E. acervulina that express IBDV-derived VP2 in micronemes are effective in inducing specific antibody responses against VP2, while parasites that have VP2 expression on cell surface are not suitable. Thus, the use of Eimeria parasites as vaccine vectors needs to consider the proper targeting of exogenous immunogens. Our results have implications for the design of other vector vaccines.
Collapse
Affiliation(s)
- Ying Yu
- National Key Laboratory of Veterinary Public Health and Safety, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xinming Tang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of MARA, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Bejing, China
| | - Chunhui Duan
- National Key Laboratory of Veterinary Public Health and Safety, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingxia Suo
- National Key Laboratory of Veterinary Public Health and Safety, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Colin Crouch
- MSD Animal Health, Walton Manor, Milton Keynes, United Kingdom
| | - Sixin Zhang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health and Safety, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jie Liu
- National Key Laboratory of Veterinary Public Health and Safety, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Beth Bruton
- MSD Animal Health, Walton Manor, Milton Keynes, United Kingdom
| | - Ian Tarpey
- MSD Animal Health, Walton Manor, Milton Keynes, United Kingdom
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health and Safety, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Zhang T, Wang S, Liu Y, Qi X, Gao Y. Advances on adaptive immune responses affected by infectious bursal disease virus in chicken. Front Immunol 2024; 14:1330576. [PMID: 38268928 PMCID: PMC10806451 DOI: 10.3389/fimmu.2023.1330576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly infectious, and immunosuppressive disease caused by the infectious bursal disease virus (IBDV), which interferes with the immune system, causes hypoimmunity and seriously threatens the healthy development of the poultry industry. Adaptive immune response, an important defense line of host resistance to pathogen infection, is the host-specific immune response mainly mediated by T and B lymphocytes. As an important immunosuppressive pathogen in poultry, IBDV infection is closely related to the injury of the adaptive immune system. In this review, we focus on recent advances in adaptive immune response influenced by IBDV infection, especially the damage on immune organs, as well as the effect on humoral immune response and cellular immune response, hoping to provide a theoretical basis for further exploration of the molecular mechanism of immunosuppression induced by IBDV infection and the establishment of novel prevention and control measures for IBD.
Collapse
Affiliation(s)
- Tao Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Suyan Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongzhen Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
- National Poultry Laboratory Animal Resource Center, Harbin, China
| |
Collapse
|
7
|
Integrated Transcriptome Analysis Reveals mRNA-miRNA Pathway Crosstalk in Roman Laying Hens' Immune Organs Induced by AFB1. Toxins (Basel) 2022; 14:toxins14110808. [PMID: 36422982 PMCID: PMC9693605 DOI: 10.3390/toxins14110808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a widely distributed contaminant in moldy corn, rice, soybean, and oil crops. Many studies have revealed its adverse effects, such as carcinogenicity, immunotoxicity, and hepatotoxicity, on the health of humans and animals. To investigate the immunotoxic effects on chicken immune organs induced by AFB1, we integrated RNA and small-RNA sequencing data of the spleen and the bursa of Fabricius to elucidate the response of the differentially expressed transcriptional profiles and related pathways. AFB1 consumption negatively influenced egg quality, but no obvious organ damage was observed compared to that of the control group. We identified 3918 upregulated and 2415 downregulated genes in the spleen and 231 upregulated and 65 downregulated genes in the bursa of Fabricius. We confirmed that several core genes related to immune and metabolic pathways were activated by AFB1. Furthermore, 42 and 19 differentially expressed miRNAs were found in the spleen and the bursa of Fabricius, respectively. Differentially expressed genes and target genes of differentially expressed miRNAs were mainly associated with cancer progression and immune response. The predicted mRNA-miRNA pathway network illustrated the potential regulatory mechanisms. The present study identified the transcriptional profiles and revealed potential mRNA-miRNA pathway crosstalk. This genetic regulatory network will facilitate the understanding of the immunotoxicity mechanisms of chicken immune organs induced by high concentrations of AFB1.
Collapse
|
8
|
Cromileptes altivelis microRNA Transcriptome Analysis upon Nervous Necrosis Virus (NNV) Infection and the Effect of cal-miR-155 on Cells Apoptosis and Virus Replication. Viruses 2022; 14:v14102184. [PMID: 36298739 PMCID: PMC9609685 DOI: 10.3390/v14102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
MicroRNAs (miRNAs) could regulate various biological processes. Nervous necrosis virus (NNV) is one of the primary germs of the Humpback grouper (Cromileptes altivelis), a commercial fish of great importance for Asian aquaculture. However, there is limited available information on the host-virus interactions of C. altivelis. miRNAs have been shown to play key roles in the host response to infection by a variety of pathogens. To better understand the regulatory mechanism of miRNAs, we constructed miRNA transcriptomes and identified immune-related miRNAs of C. altivelis spleen in response to NNV infection. Reads from the three libraries were mapped onto the Danio rerio reference genome. As a result, a total of 942 mature miRNAs were determined, with 266 known miRNAs and 676 novel miRNAs. Among them, thirty-two differentially expressed miRNAs (DEmiRs) were identified compared to the PBS control. These DEmiRs were targeted on 895 genes, respectively, by using miRanda v3.3a. Then, 14 DEmiRs were validated by qRT-PCR and showed consistency with those obtained from high-throughput sequencing. In order to study the relationship between viral infection and host miRNA, a cell line from C. altivelis brain (CAB) was used to examine the expressions of five known DEmiRs (miR-132-3p, miR-194a, miR-155, miR-203b-5p, and miR-146) during NNV infection. The results showed that one miRNA, cal-miRNA-155, displayed significantly increased expression in response to the virus infection. Subsequently, it was proved that overexpression of cal-miR-155 enhanced cell apoptosis with or without NNV infection and inhibited virus replication in CAB cells. Oppositely, the cal-miRNA-155 inhibitor markedly suppressed apoptosis in CAB cells. The results of the apoptosis-related genes mRNA expression also showed the regulation of cal-miR-155 on the apoptosis process in CAB cells. These findings verify that miR-155 might exert a function as a pro-apoptotic factor in reply to NNV stimulation in CAB cells and help us further study the molecular mechanisms of the pathogenesis of NNV in C. altivelis.
Collapse
|
9
|
Gga-miR-30c-5p Suppresses Avian Reovirus (ARV) Replication by Inhibition of ARV-Induced Autophagy via Targeting ATG5. J Virol 2022; 96:e0075922. [PMID: 35867570 PMCID: PMC9327706 DOI: 10.1128/jvi.00759-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Avian reovirus (ARV) is an important poultry pathogen causing viral arthritis, chronic respiratory diseases, and retarded growth, leading to considerable economic losses to the poultry industry across the globe. Elucidation of the pathogenesis of ARV infection is crucial to guiding the development of novel vaccines or drugs for the effective control of these diseases.
Collapse
|
10
|
Haiyilati A, Zhou L, Li J, Li W, Gao L, Cao H, Wang Y, Li X, Zheng SJ. Gga-miR-30c-5p Enhances Apoptosis in Fowl Adenovirus Serotype 4-Infected Leghorn Male Hepatocellular Cells and Facilitates Viral Replication through Myeloid Cell Leukemia-1. Viruses 2022; 14:v14050990. [PMID: 35632731 PMCID: PMC9146396 DOI: 10.3390/v14050990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Fowl adenovirus serotype 4 (FAdV-4) is the primary causative agent responsible for the hepatitis-hydropericardium syndrome (HHS) in chickens, leading to considerable economic losses to stakeholders. Although the pathogenesis of FAdV-4 infection has gained attention, the underlying molecular mechanism is still unknown. Here, we showed that the ectopic expression of gga-miR-30c-5p in leghorn male hepatocellular (LMH) cells enhanced apoptosis in FAdV-4-infected LMH cells by directly targeting the myeloid cell leukemia-1 (Mcl-1), facilitating viral replication. On the contrary, the inhibition of endogenous gga-miR-30c-5p markedly suppressed apoptosis and viral replication in LMH cells. Importantly, the overexpression of Mcl-1 inhibited gga-miR-30c-5p or FAdV-4-induced apoptosis in LMH cells, reducing FAdV-4 replication, while the knockdown of Mcl-1 by RNAi enhanced apoptosis in LMH cells. Furthermore, transfection of LMH cells with gga-miR-30c-5p mimics enhanced FAdV-4-induced apoptosis associated with increased cytochrome c release and caspase-3 activation. Thus, gga-miR-30c-5p enhances FAdV-4-induced apoptosis by directly targeting Mcl-1, a cellular anti-apoptotic protein, facilitating FAdV-4 replication in host cells. These findings could help to unravel the mechanism of how a host responds against FAdV-4 infection at an RNA level.
Collapse
Affiliation(s)
- Areayi Haiyilati
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; (A.H.); (L.Z.); (J.L.); (W.L.); (L.G.); (H.C.); (Y.W.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Linyi Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; (A.H.); (L.Z.); (J.L.); (W.L.); (L.G.); (H.C.); (Y.W.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiaxin Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; (A.H.); (L.Z.); (J.L.); (W.L.); (L.G.); (H.C.); (Y.W.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Wei Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; (A.H.); (L.Z.); (J.L.); (W.L.); (L.G.); (H.C.); (Y.W.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Li Gao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; (A.H.); (L.Z.); (J.L.); (W.L.); (L.G.); (H.C.); (Y.W.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hong Cao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; (A.H.); (L.Z.); (J.L.); (W.L.); (L.G.); (H.C.); (Y.W.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; (A.H.); (L.Z.); (J.L.); (W.L.); (L.G.); (H.C.); (Y.W.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoqi Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Correspondence: (X.L.); (S.J.Z.); Tel./Fax: +86-(10)-6273-4681 (S.J.Z.)
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; (A.H.); (L.Z.); (J.L.); (W.L.); (L.G.); (H.C.); (Y.W.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Correspondence: (X.L.); (S.J.Z.); Tel./Fax: +86-(10)-6273-4681 (S.J.Z.)
| |
Collapse
|
11
|
Abstract
Recognition of viral RNAs by melanoma differentiation associated gene-5 (MDA5) initiates chicken antiviral response by producing type I interferons. Our previous studies showed that chicken microRNA-155-5p (gga-miR-155-5p) enhanced IFN-β expression and suppressed the replication of infectious burse disease virus (IBDV), a double-stranded RNA (dsRNA) virus causing infectious burse disease in chickens. However, the mechanism underlying IBDV-induced gga-miR-155-5p expression in host cells remains elusive. Here, we show that IBDV infection or poly(I:C) treatment of DF-1 cells markedly increased the expression of GATA-binding protein 3 (GATA3), a master regulator for TH2 cell differentiation, and that GATA3 promoted gga-miR-155-5p expression in IBDV-infected or poly(I:C)-treated cells by directly binding to its promoter. Surprisingly, ectopic expression of GATA3 significantly reduced IBDV replication in DF-1 cells, and this reduction could be completely abolished by treatment with gga-miR-155-5p inhibitors, whereas knockdown of GATA3 by RNA interference enhanced IBDV growth, and this enhancement could be blocked with gga-miR-155-5p mimics, indicating that GATA3 suppressed IBDV replication by gga-miR-155-5p. Furthermore, our data show that MDA5 is required for GATA3 expression in host cells with poly(I:C) treatment, so are the adaptor protein TBK1 and transcription factor IRF7, suggesting that induction of GATA3 expression in IBDV-infected cells relies on MDA5-TBK1-IRF7 signaling pathway. These results uncover a novel role for GATA3 as an antivirus transcription factor in innate immune response by promoting miR-155 expression, further our understandings of host response against pathogenic infection, and provide valuable clues to the development of antiviral reagents for public health. IMPORTANCE Gga-miR-155-5p acts as an important antivirus factor against IBDV infection, which causes a severe immunosuppressive disease in chicken. Elucidation of the mechanism regulating gga-miR-155-5p expression in IBDV-infected cells is essential to our understandings of the host response against pathogenic infection. This study shows that transcription factor GATA3 initiated gga-miR-155-5p expression in IBDV-infected cells by directly binding to its promoter, suppressing viral replication. Furthermore, induction of GATA3 expression was attributable to the recognition of dsRNA by MDA5, which initiates signal transduction via TBK1 and IRF7. Thus, it is clear that IBDV induces GATA3 expression via MDA5-TBK1-IRF7 signaling pathway, thereby suppressing IBDV replication by GATA3-mediated gga-miR-155-5p expression. This information remarkably expands our knowledge of the roles for GATA3 as an antivirus transcription factor in host innate immune response particularly at an RNA level and may prove valuable in the development of antiviral drugs for public health.
Collapse
|
12
|
Wu Y, Wen J, Han J, Tian Y, Man C. Stress-induced immunosuppression increases levels of certain circulating miRNAs and affects the immune response to an infectious bursal disease virus vaccine in chickens. Res Vet Sci 2021; 142:141-148. [PMID: 34954461 DOI: 10.1016/j.rvsc.2021.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/04/2021] [Accepted: 12/16/2021] [Indexed: 01/07/2023]
Abstract
Stress-induced immunosuppression can affect the immune effect of vaccine. However, the mechanism of stress-induced immunosuppression affecting immune response to infectious bursal disease virus (IBDV) vaccine in chicken is still unclear. In this study, thirteen IBDV related circulating miRNAs were selected to study their expressions, possible functions and mechanisms in dexamethasone (Dex)-induced immunosuppressed chicken vaccinated with IBDV attenuated vaccine. The experiment aimed to explore the relationship between the expressions of IBDV related circulating miRNAs and stress-induced immunosuppression. The quantitative real-time PCR (qRT-PCR) results showed that Dex-induced immunosuppression could induce the differential expressions of the candidate serum circulating miRNAs, especially on the 2nd, 5th, 7th and 28th day after dexamethasone treatment. Dex-induced immunosuppression could affect the immune response to the IBDV vaccine, which was possibly achieved by partially regulating the differential expressions of the IBDV related circulating miRNAs. Bioinformatics analysis showed that the candidate miRNAs could regulate the immune function mainly through targeting genes (such as CREB1 and MAPK1) in TGF-β and MAPK signaling pathways. This study can provide a preliminary reference for further studying the function and mechanism of circulating miRNAs in immune regulation.
Collapse
Affiliation(s)
- Yiru Wu
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Jie Wen
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Jianwei Han
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Yufei Tian
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Chaolai Man
- College of Life Science and Technology, Harbin Normal University, Harbin, China.
| |
Collapse
|
13
|
Gga-miR-29a-3p suppresses avian reovirus-induced apoptosis and viral replication via targeting Caspase-3. Vet Microbiol 2021; 264:109294. [PMID: 34847454 DOI: 10.1016/j.vetmic.2021.109294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 12/25/2022]
Abstract
Avian reovirus (ARV) is an important pathogen causing multiple types of clinical diseases in chickens, including viral arthritis, chronic respiratory diseases, retarded growth, and malabsorption syndrome, leading to considerable economic losses to the poultry industry across the globe. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression post transcriptionally by silencing or degrading their targets, thus playing important roles in the host response to pathogenic infection. However, the role of miRNAs in host response to ARV infection is still not clear. Here, we show that infection of DF-1 cells (a chicken fibroblast cell line) with ARV markedly altered the expressions of 583 chicken miRNAs(gga-miR), and that transfection of DF-1 cells with gga-miR-29a-3p, an upregulated miRNA in ARV-infected cells, significantly suppressed ARV-induced apoptosis via directly targeting Caspase-3, retarding ARV growth in cells. In contrast, knockdown of endogenous gga-miR-29a-3p in DF-1 cells by specific miRNA inhibitor enhanced ARV-induced apoptosis and increased the content and activity of caspase-3, facilitating viral growth in cells. Consistently, inhibition of Caspase-3 activity by inhibitors decreased viral titers in cell cultures. Thus, gga-miR-29a-3p plays an important antiviral role in host response to ARV infection by suppression of apoptosis via targeting Caspase-3. This information will further our understandings of how host cells combat against ARV infection by self-encoded small RNA and increase our knowledge of the role of microRNAs in host response to pathogenic infection.
Collapse
|
14
|
Transcriptome Analysis Reveals the Potential Role of Long Noncoding RNAs in Regulating Fowl Adenovirus Serotype 4-Induced Apoptosis in Leghorn Male Hepatocellular Cells. Viruses 2021; 13:v13081623. [PMID: 34452487 PMCID: PMC8402884 DOI: 10.3390/v13081623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
Hepatitis-hydropericardium syndrome (HHS) is caused by fowl adenovirus serotype 4 (FAdV-4) and has resulted in considerable economic losses to the poultry industry globally. FAdV-4 elicits apoptosis in host cells. Long noncoding RNAs (lncRNAs) have emerged as important regulatory RNAs with profound effects on various biological processes, including apoptosis. However, it remains unknown whether lncRNAs participate in FAdV-4-induced apoptosis. In this study, RNA sequencing was applied to determine the transcription of cellular lncRNA in leghorn male hepatocellular (LMH) cells infected with FAdV-4. Cellular RNA transcription analysis demonstrated that FAdV-4 infection elicited 1798 significantly differentially expressed (DE) lncRNAs in infected LMH cells at 24 h post-infection (hpi) compared to mock control infection. In addition, 2873 DE mRNAs were also found. Target prediction and analyses revealed that 775 DE lncRNAs whose 671 target mRNAs were among the DE mRNAs were involved in several signaling pathways, including the AMPK signaling pathway, p53 signaling pathway and insulin signaling pathway. From these 775 DE lncRNAs, we identified 71 DE lncRNAs related to apoptosis based on their target gene functions. Subsequently, lncRNA 54128 was selected from the 71 identified DE lncRNAs, and its role in FAdV-4-induced apoptosis was verified. LncRNA 54128 interference significantly suppressed the rate of apoptosis, which was accompanied by reduced BMP4 transcription levels. To the best of our knowledge, this is the first study to analyze host lncRNA transcription during FAdV-4 infection. Our findings provide a better understanding of host responses to FAdV-4 infection and provide new directions for understanding the potential association between lncRNAs and FAdV-4 pathogenesis.
Collapse
|
15
|
Zhang X, Chen F, He M, Wu P, Zhou K, Zhang T, Chu M, Zhang G. miR-7 regulates the apoptosis of chicken primary myoblasts through the KLF4 gene. Br Poult Sci 2021; 63:39-45. [PMID: 34287083 DOI: 10.1080/00071668.2021.1958299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
1. MicroRNAs (miRNAs) play a vital role in the proliferation, differentiation, and apoptosis of myoblasts. However, the effect of miR-7 on the apoptosis of chicken primary myoblasts (CPMs) and its mechanism is still unclear.2. In this study, the expression of apoptosis marker genes (RAF1, Caspase3, Caspase9, Cytc, Fas) in CPMs was significantly increased after transfection of miR-7 mimic. The expression of the apoptosis marker genes in CPMs was significantly reduced after transfection with miR-7 inhibitor. Flow cytometry showed that the late apoptosis rate of the mimic group was significantly higher than the negative control (NC). The viable cells of the mimic group were significantly lower than the NC. In contrast, inhibition of miR-7 had the opposite effect.3. The dual-luciferase assay showed that the KLF4 was a target gene of miR-7. The rescue experiment showed that the KLF4 gene could attenuate the effect of miR-7 on the expression of apoptosis marker genes in CPMs.4. Determination of the function the KLF4 gene showed that the expression of the apoptosis marker genes in CPMs decreased significantly compared with the NC after its overexpression. Inhibition of KLF4 gene had the opposite effect. Flow cytometry showed that overexpression of the KLF4 gene inhibited early apoptosis of myoblasts (P ≤ 0.01), while interference with the KLF4 gene could promote early apoptosis of myoblasts (P ≤ 0.001).5. The results demonstrated, for the first time, that miR-7 promotes apoptosis in chicken primary myoblasts by regulating the expression of the KLF4 gene.
Collapse
Affiliation(s)
- X Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - F Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - M He
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - P Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - K Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - T Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - M Chu
- Institute of Animal Science, Chinese Academy of Agricultral Sciences, Beijing, China
| | - G Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
16
|
Li J, Yang L, Mao L, Li W, Sun M, Liu C, Xue T, Zhang W, Liu M, Li B. Caprine parainfluenza virus type 3 N protein promotes viral replication via inducing apoptosis. Vet Microbiol 2021; 259:109129. [PMID: 34087675 DOI: 10.1016/j.vetmic.2021.109129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/16/2021] [Indexed: 11/28/2022]
Abstract
Caprine parainfluenza virus type 3 (CPIV3) is one of the most important viral respiratory pathogens of goat. Accumulating evidence demonstrates that apoptosis is a cellular mechanism for the host response to pathogens, and it participates in regulating viral replication. However, there is little study on CPIV3-induced host cells apoptosis. In this study, primary goat tracheal epithelial (GTE) cells were established as a cellular model that is permissive to CPIV3 infection. Then, we showed that CPIV3 infection induced apoptosis in GTE cells, as determined by morphological changes, flow cytometry and TUNEL assay. Moreover, Caspase activity and the expression of pro-apoptotic genes further suggested that CPIV3 induced apoptosis by activating both the intrinsic and extrinsic pathways. Mechanistically, the ability of CPIV3 to induce apoptosis was activated by N protein, and the viral protein increased CPIV3 replication through effecting apoptosis. Overall, our findings showed that GTE cells that will enable further analysis of CPIV3 infection and offers novel insights into the mechanisms of CPIV3-induced apoptosis in host cells.
Collapse
Affiliation(s)
- Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China; School of Pharmacy, Linyi University, Linyi, 276000, China; Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Leilei Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Li Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Wenliang Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China; Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Sun
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Chuanmin Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China; School of Pharmacy, Linyi University, Linyi, 276000, China; Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Tao Xue
- School of Pharmacy, Linyi University, Linyi, 276000, China
| | - Wenwen Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Maojun Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China; Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China; Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
17
|
Li D, Yang J, Yang Y, Liu J, Li H, Li R, Cao C, Shi L, Wu W, He K. A Timely Review of Cross-Kingdom Regulation of Plant-Derived MicroRNAs. Front Genet 2021; 12:613197. [PMID: 34012461 PMCID: PMC8126714 DOI: 10.3389/fgene.2021.613197] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/12/2021] [Indexed: 11/26/2022] Open
Abstract
MicroRNAs (miRNAs) belong to a class of non-coding RNAs that suppress gene expression by complementary oligonucleotide binding to the sites in target messenger RNAs. Numerous studies have demonstrated that miRNAs play crucial role in virtually all cellular processes of both plants and animals, such as cell growth, cell division, differentiation, proliferation and apoptosis. The study of rice MIR168a has demonstrated for the first time that exogenous plant MIR168a influences cholesterol transport in mice by inhibiting low-density lipoprotein receptor adapter protein 1 expression. Inspired by this finding, the cross-kingdom regulation of plant-derived miRNAs has drawn a lot of attention because of its capability to provide novel therapeutic agents in the treatment of miRNA deregulation-related diseases. Notably, unlike mRNA, some plant miRNAs are robust because of their 3′ end modification, high G, C content, and the protection by microvesicles, miRNAs protein cofactors or plant ingredients. The stability of these small molecules guarantees the reliability of plant miRNAs in clinical application. Although the function of endogenous miRNAs has been widely investigated, the cross-kingdom regulation of plant-derived miRNAs is still in its infancy. Herein, this review summarizes the current knowledge regarding the anti-virus, anti-tumor, anti-inflammatory, anti-apoptosis, immune modulation, and intestinal function regulation effects of plant-derived miRNAs in mammals. It is expected that exploring the versatile role of plant-derived miRNAs may lay the foundation for further study and application of these newly recognized, non-toxic, and inexpensive plant active ingredients.
Collapse
Affiliation(s)
- Dan Li
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Jianhui Yang
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Yong Yang
- School of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Jianxin Liu
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory of Dong Medicine, Huaihua, China
| | - Hui Li
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Rongfei Li
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Chunya Cao
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Liping Shi
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Weihua Wu
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory of Dong Medicine, Huaihua, China
| | - Kai He
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory of Dong Medicine, Huaihua, China
| |
Collapse
|
18
|
Epigenetic Regulation by Non-Coding RNAs in the Avian Immune System. Life (Basel) 2020; 10:life10080148. [PMID: 32806547 PMCID: PMC7459779 DOI: 10.3390/life10080148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
The identified non-coding RNAs (ncRNAs) include circular RNAs, long non-coding RNAs, microRNAs, ribosomal RNAs, small interfering RNAs, small nuclear RNAs, piwi-interacting RNAs, and transfer RNAs, etc. Among them, long non-coding RNAs, circular RNAs, and microRNAs are regulatory RNAs that have different functional mechanisms and were extensively participated in various biological processes. Numerous research studies have found that circular RNAs, long non-coding RNAs, and microRNAs played their important roles in avian immune system during the infection of parasites, virus, or bacterium. Here, we specifically review and expand this knowledge with current advances of circular RNAs, long non-coding RNAs, and microRNAs in the regulation of different avian diseases and discuss their functional mechanisms in response to avian diseases.
Collapse
|
19
|
Li J, Zheng SJ. Role of MicroRNAs in Host Defense against Infectious Bursal Disease Virus (IBDV) Infection: A Hidden Front Line. Viruses 2020; 12:E543. [PMID: 32423052 PMCID: PMC7291112 DOI: 10.3390/v12050543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious and immunosuppressive avian disease caused by infectious bursal disease virus (IBDV). In recent years, remarkable progress has been made in the understanding of the pathogenesis of IBDV infection and the host response, including apoptosis, autophagy and the inhibition of innate immunity. Not only a number of host proteins interacting with or targeted by viral proteins participate in these processes, but microRNAs (miRNAs) are also involved in the host response to IBDV infection. If an IBDV-host interaction at the protein level is taken imaginatively as the front line of the battle between invaders (pathogens) and defenders (host cells), their fight at the RNA level resembles the hidden front line. miRNAs are a class of non-coding single-stranded endogenous RNA molecules with a length of approximately 22 nucleotides (nt) that play important roles in regulating gene expression at the post-transcriptional level. Insights into the roles of viral proteins and miRNAs in host response will add to the understanding of the pathogenesis of IBDV infection. The interaction of viral proteins with cellular targets during IBDV infection were previously well-reviewed. This review focuses mainly on the current knowledge of the host response to IBDV infection at the RNA level, in particular, of the nine well-characterized miRNAs that affect cell apoptosis, the innate immune response and viral replication.
Collapse
Affiliation(s)
- Jiaxin Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
20
|
Duan X, Zhao M, Li X, Gao L, Cao H, Wang Y, Zheng SJ. gga-miR-27b-3p enhances type I interferon expression and suppresses infectious bursal disease virus replication via targeting cellular suppressors of cytokine signaling 3 and 6 (SOCS3 and 6). Virus Res 2020; 281:197910. [PMID: 32126296 DOI: 10.1016/j.virusres.2020.197910] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 01/03/2023]
Abstract
MicroRNAs are small noncoding RNAs playing an important role in host response to pathogenic infection. Here we show that IBDV infection induced the demethylation of the pre-miR-27 promoter and upregulated gga-miR-27b-3p expression. We found that ectopic expression of miR-27b-3p in DF-1 cells enhanced the expression of chicken IFN-β, IRF3 and NF-κB, via directly targeting cellular suppressors of cytokine signaling 3 and 6 (SOCS3 and 6), inhibiting IBDV replication in host cells, while inhibition of endogenous miR-27b-3p by its inhibitors suppressed the expression of IFN-β, IRF3 and NF-κB, enhancing SOCS3 and 6 expressions and facilitating IBDV replication. Furthermore, transfection of DF-1 cells with miR-27b-3p markedly increased phosphorylation of STAT1 on Tyr701 in cells post chIFN-γ treatment. On the contrary, inhibition of endogenous miR-27b-3p reduced phosphorylation of STAT1 on Tyr701 in cells with chIFN-γ treatment. These findings indicate that gga-miR-27b-3p serves as an inducible antiviral mediator in host response to IBDV infection.
Collapse
Affiliation(s)
- Xueyan Duan
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Mingliang Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xiaoqi Li
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Li Gao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Hong Cao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yongqiang Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Shijun J Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
21
|
Zhao M, Duan X, Wang Y, Gao L, Cao H, Li X, Zheng SJ. A Novel Role for PX, a Structural Protein of Fowl Adenovirus Serotype 4 (FAdV4), as an Apoptosis-Inducer in Leghorn Male Hepatocellular Cell. Viruses 2020; 12:E228. [PMID: 32085479 PMCID: PMC7077197 DOI: 10.3390/v12020228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 02/06/2023] Open
Abstract
Hydropericardium-Hepatitis Syndrome (HHS) caused by Fowl Adenovirus Serotype 4 (FAdV4) infection is a severe threat to the poultry industry worldwide, especially in China since 2015. Recent studies show that FAdV4 induces liver injury through apoptosis. However, the underlying molecular mechanism is still unclear. We report here that FAdV4 infection caused apoptosis in Leghorn male hepatocellular (LMH) cells and that PX, a structural protein of FAdV4, acted as a major viral factor inducing apoptosis. Furthermore, the nuclear localization of PX is determined by the R/K regions of PX and required for PX-induced apoptosis. Moreover, alanines 11 and 129 of PX are crucial to PX-induced apoptosis. Inhibition of FAdV4-induced apoptosis by caspase inhibitors retarded viral replication, suggesting that PX serves as a virulence factor for FAdV4 infection, which may further our understandings of the pathogenesis of FAdV4 infection.
Collapse
Affiliation(s)
- Mingliang Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (X.D.); (Y.W.); (L.G.); (H.C.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xueyan Duan
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (X.D.); (Y.W.); (L.G.); (H.C.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (X.D.); (Y.W.); (L.G.); (H.C.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Li Gao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (X.D.); (Y.W.); (L.G.); (H.C.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hong Cao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (X.D.); (Y.W.); (L.G.); (H.C.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoqi Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (X.D.); (Y.W.); (L.G.); (H.C.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|