1
|
Willard KA, Barry AP, Oduor CI, Ong'echa JM, Bailey JA, Moormann AM, Luftig MA. Viral and host factors drive a type 1 Epstein-Barr virus spontaneous lytic phenotype. mBio 2023; 14:e0220423. [PMID: 37971257 PMCID: PMC10746244 DOI: 10.1128/mbio.02204-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/21/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Epstein-Barr virus (EBV) infects over 95% of adults worldwide. Given its connection to various cancers and autoimmune disorders, it is important to understand the mechanisms by which infection with EBV can lead to these diseases. In this study, we describe an unusual spontaneous lytic phenotype in EBV strains isolated from Kenyan endemic Burkitt lymphoma patients. Because lytic replication of EBV has been linked to the pathogenesis of various diseases, these data could illuminate viral and host factors involved in this process.
Collapse
Affiliation(s)
- Katherine A. Willard
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ashley P. Barry
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Cliff I. Oduor
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Jeffrey A. Bailey
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Ann M. Moormann
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
2
|
Xu L, Zhang M, Tu D, Lu Z, Lu T, Ma D, Zhou Y, Zhang S, Ma Y, Yan D, Wang X, Sang W. Chidamide Induces Epstein-Barr Virus (EBV) Lytic Infection and Acts Synergistically with Tenofovir to Eliminate EBV-Positive Burkitt Lymphoma. J Pharmacol Exp Ther 2023; 387:288-298. [PMID: 37875309 DOI: 10.1124/jpet.123.001583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Epstein-Barr virus (EBV) is a type of human γ-herpesvirus, and its reactivation plays an important role in the development of EBV-driven Burkitt lymphoma (BL). Despite intensive chemotherapy, the prognosis of relapsed/refractory BL patients remains unfavorable, and a definitive method to completely eliminate latent EBV infection is lacking. Previous studies have demonstrated that histone deacetylase (HDAC) inhibitors can induce the transition of EBV from latency to the lytic phase. The lytic activation of EBV can be inhibited by tenofovir, a potent inhibitor of DNA replication. Herein, we explored the antitumor effect and EBV clearance potential of a novel HDAC inhibitor called chidamide, combined with tenofovir, in the treatment of EBV-positive BL. In the study, chidamide exhibited inhibitory activity against HDAC. Moreover, chidamide inhibited BL cell proliferation, arrested cell cycle progression, and induced BL cell apoptosis primarily by regulating the MAPK pathways. Additionally, chidamide promoted the transcription of lytic genes, including BZLF1, BMRF1, and BMLF1 Compared with chidamide alone, the addition of tenofovir further induced growth arrest and apoptosis in EBV-positive BL cells and inhibited the transcriptions of EBV lytic genes induced by chidamide alone. Furthermore, our in vivo data demonstrated that the combination of chidamide and tenofovir had superior tumor-suppressive effects in a mouse model of BL cell tumors. The aforementioned findings confirm the synergistic effect of chidamide combined with tenofovir in inducing growth inhibition and apoptosis in EBV-positive BL cells and provide an effective strategy for eliminating EBV and EBV-associated malignancies. SIGNIFICANCE STATEMENT: High levels of Epstein-Barr virus (EBV)-DNA have consistently been associated with unfavorable progression-free survival and overall survival in EBV-associated lymphomas. Therefore, identifying novel strategies to effectively eradicate tumor cells and eliminate EBV is crucial for lymphoma patients. This study confirmed, for the first time, the synergistic effect of chidamide combined with tenofovir in the treatment of Burkitt lymphoma and the eradication of EBV virus.
Collapse
Affiliation(s)
- Linyan Xu
- 1Blood Diseases Institute (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Key Laboratory of Bone Marrow Stem Cell (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.), Xuzhou Medical University, Xuzhou, China; and Departments of Hematology (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Pathology (D.M.), the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Meng Zhang
- 1Blood Diseases Institute (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Key Laboratory of Bone Marrow Stem Cell (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.), Xuzhou Medical University, Xuzhou, China; and Departments of Hematology (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Pathology (D.M.), the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dongyun Tu
- 1Blood Diseases Institute (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Key Laboratory of Bone Marrow Stem Cell (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.), Xuzhou Medical University, Xuzhou, China; and Departments of Hematology (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Pathology (D.M.), the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ziyi Lu
- 1Blood Diseases Institute (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Key Laboratory of Bone Marrow Stem Cell (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.), Xuzhou Medical University, Xuzhou, China; and Departments of Hematology (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Pathology (D.M.), the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tianyi Lu
- 1Blood Diseases Institute (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Key Laboratory of Bone Marrow Stem Cell (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.), Xuzhou Medical University, Xuzhou, China; and Departments of Hematology (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Pathology (D.M.), the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dongshen Ma
- 1Blood Diseases Institute (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Key Laboratory of Bone Marrow Stem Cell (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.), Xuzhou Medical University, Xuzhou, China; and Departments of Hematology (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Pathology (D.M.), the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yi Zhou
- 1Blood Diseases Institute (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Key Laboratory of Bone Marrow Stem Cell (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.), Xuzhou Medical University, Xuzhou, China; and Departments of Hematology (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Pathology (D.M.), the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shuo Zhang
- 1Blood Diseases Institute (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Key Laboratory of Bone Marrow Stem Cell (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.), Xuzhou Medical University, Xuzhou, China; and Departments of Hematology (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Pathology (D.M.), the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuhan Ma
- 1Blood Diseases Institute (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Key Laboratory of Bone Marrow Stem Cell (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.), Xuzhou Medical University, Xuzhou, China; and Departments of Hematology (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Pathology (D.M.), the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dongmei Yan
- 1Blood Diseases Institute (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Key Laboratory of Bone Marrow Stem Cell (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.), Xuzhou Medical University, Xuzhou, China; and Departments of Hematology (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Pathology (D.M.), the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiangmin Wang
- 1Blood Diseases Institute (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Key Laboratory of Bone Marrow Stem Cell (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.), Xuzhou Medical University, Xuzhou, China; and Departments of Hematology (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Pathology (D.M.), the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wei Sang
- 1Blood Diseases Institute (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Key Laboratory of Bone Marrow Stem Cell (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.), Xuzhou Medical University, Xuzhou, China; and Departments of Hematology (L.X., M.Z., D.T., Z.L., T.L., Y.Z., S.Z., Y.M., D.Y., X.W., W.S.) and Pathology (D.M.), the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
3
|
Zhou H, Jing S, Liu Y, Wang X, Duan X, Xiong W, Li R, Peng Y, Ai Y, Fu D, Wang H, Zhu Y, Zeng Z, He Y, Ye Q. Identifying the key genes of Epstein-Barr virus-regulated tumour immune microenvironment of gastric carcinomas. Cell Prolif 2022; 56:e13373. [PMID: 36519208 PMCID: PMC9977676 DOI: 10.1111/cpr.13373] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
The Epstein-Barr virus (EBV) is involved in the carcinogenesis of gastric cancer (GC) upon infection of normal cell and induces a highly variable composition of the tumour microenvironment (TME). However, systematic bioinformatics analysis of key genes associated with EBV regulation of immune infiltration is still lacking. In the present study, the TCGA and GEO databases were recruited to analyse the association between EBV infection and the profile of immune infiltration in GC. The weighted gene co-expression analysis (WGCNA) was applied to shed light on the key gene modules associated with EBV-associated immune infiltration in GC. 204 GC tissues were used to analysed the expression of key hub genes by using the immunohistochemical method. Real-time PCR was used to evaluate the association between the expression of EBV latent/lytic genes and key immune infiltration genes. Our results suggested that EBV infection changed the TME of GC mainly regulates the TIICs. The top three hub genes of blue (GBP1, IRF1, and LAP3) and brown (BIN2, ITGAL, and LILRB1) modules as representative genes were associated with EBV infection and GC immune infiltration. Furthermore, EBV-encoded LMP1 expression is account for the overexpression of GBP1 and IRF1. EBV infection significantly changes the TME of GC, and the activation of key immune genes was more dependent on the invasiveness of the whole EBV virion instead of single EBV latent/lytic gene expression.
Collapse
Affiliation(s)
- Heng Zhou
- Center of Regenerative Medicine & Department of StomatologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Shuili Jing
- Center of Regenerative Medicine & Department of StomatologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yu Liu
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and TechnologyWuhanHubeiChina
| | - Xuming Wang
- Department of PathologyGuilin Medical UniversityGuilinGuangxiChina
| | - Xingxiang Duan
- Center of Regenerative Medicine & Department of StomatologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Wei Xiong
- Center of Regenerative Medicine & Department of StomatologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ruohan Li
- Center of Regenerative Medicine & Department of StomatologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Youjian Peng
- Center of Regenerative Medicine & Department of StomatologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yilong Ai
- Foshan Hospital of Stomatology, School of Medicine, Foshan UniversityFoshanGuangdongChina
| | - Dehao Fu
- Department of Orthopaedics, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hui Wang
- Demonstration Center for Experimental Basic Medicine Education, Wuhan UniversityWuhanChina
| | - Yaoqi Zhu
- Institute of Regenerative and Translational MedicineTianyou Hospital of Wuhan University of Science and TechnologyWuhanHubeiChina,Department of oral and maxillofacial surgeryHospital of Taikang Tongji (Wuhan)WuhanChina
| | - Zhi Zeng
- Department of PathologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yan He
- Institute of Regenerative and Translational MedicineTianyou Hospital of Wuhan University of Science and TechnologyWuhanHubeiChina,Department of oral and maxillofacial surgery, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Qingsong Ye
- Center of Regenerative Medicine & Department of StomatologyRenmin Hospital of Wuhan UniversityWuhanChina,Department of oral and maxillofacial surgery, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
4
|
Wen KW, Wang L, Menke JR, Damania B. Cancers associated with human gammaherpesviruses. FEBS J 2022; 289:7631-7669. [PMID: 34536980 PMCID: PMC9019786 DOI: 10.1111/febs.16206] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/10/2021] [Accepted: 09/16/2021] [Indexed: 01/14/2023]
Abstract
Epstein-Barr virus (EBV; human herpesvirus 4; HHV-4) and Kaposi sarcoma-associated herpesvirus (KSHV; human herpesvirus 8; HHV-8) are human gammaherpesviruses that have oncogenic properties. EBV is a lymphocryptovirus, whereas HHV-8/KSHV is a rhadinovirus. As lymphotropic viruses, EBV and KSHV are associated with several lymphoproliferative diseases or plasmacytic/plasmablastic neoplasms. Interestingly, these viruses can also infect epithelial cells causing carcinomas and, in the case of KSHV, endothelial cells, causing sarcoma. EBV is associated with Burkitt lymphoma, classic Hodgkin lymphoma, nasopharyngeal carcinoma, plasmablastic lymphoma, lymphomatoid granulomatosis, leiomyosarcoma, and subsets of diffuse large B-cell lymphoma, post-transplant lymphoproliferative disorder, and gastric carcinoma. KSHV is implicated in Kaposi sarcoma, primary effusion lymphoma, multicentric Castleman disease, and KSHV-positive diffuse large B-cell lymphoma. Pathogenesis by these two herpesviruses is intrinsically linked to viral proteins expressed during the lytic and latent lifecycles. This comprehensive review intends to provide an overview of the EBV and KSHV viral cycles, viral proteins that contribute to oncogenesis, and the current understanding of the pathogenesis and clinicopathology of their related neoplastic entities.
Collapse
Affiliation(s)
- Kwun Wah Wen
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158
| | - Linlin Wang
- Department of Laboratory Medicine, University of California, San Francisco, CA 94158
| | - Joshua R. Menke
- Department of Pathology, Stanford University, Palo Alto, CA 94304
| | - Blossom Damania
- Department of Microbiology & Immunology & Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
5
|
Singh DR, Nelson SE, Pawelski AS, Cantres-Velez JA, Kansra AS, Pauly NP, Bristol JA, Hayes M, Ohashi M, Casco A, Lee D, Fogarty SA, Lambert PF, Johannsen EC, Kenney SC. Type 1 and Type 2 Epstein-Barr viruses induce proliferation, and inhibit differentiation, in infected telomerase-immortalized normal oral keratinocytes. PLoS Pathog 2022; 18:e1010868. [PMID: 36190982 PMCID: PMC9529132 DOI: 10.1371/journal.ppat.1010868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/08/2022] [Indexed: 11/06/2022] Open
Abstract
Differentiated epithelial cells are an important source of infectious EBV virions in human saliva, and latent Epstein-Barr virus (EBV) infection is strongly associated with the epithelial cell tumor, nasopharyngeal carcinoma (NPC). However, it has been difficult to model how EBV contributes to NPC, since EBV has not been shown to enhance proliferation of epithelial cells in monolayer culture in vitro and is not stably maintained in epithelial cells without antibiotic selection. In addition, although there are two major types of EBV (type 1 (T1) and type 2 (T2)), it is currently unknown whether T1 and T2 EBV behave differently in epithelial cells. Here we inserted a G418 resistance gene into the T2 EBV strain, AG876, allowing us to compare the phenotypes of T1 Akata virus versus T2 AG876 virus in a telomerase-immortalized normal oral keratinocyte cell line (NOKs) using a variety of different methods, including RNA-seq analysis, proliferation assays, immunoblot analyses, and air-liquid interface culture. We show that both T1 Akata virus infection and T2 AG876 virus infection of NOKs induce cellular proliferation, and inhibit spontaneous differentiation, in comparison to the uninfected cells when cells are grown without supplemental growth factors in monolayer culture. T1 EBV and T2 EBV also have a similar ability to induce epithelial-to-mesenchymal (EMT) transition and activate canonical and non-canonical NF-κB signaling in infected NOKs. In contrast to our recent results in EBV-infected lymphoblastoid cells (in which T2 EBV infection is much more lytic than T1 EBV infection), we find that NOKs infected with T1 and T2 EBV respond similarly to lytic inducing agents such as TPA treatment or differentiation. These results suggest that T1 and T2 EBV have similar phenotypes in infected epithelial cells, with both EBV types enhancing cellular proliferation and inhibiting differentiation when growth factors are limiting.
Collapse
Affiliation(s)
- Deo R. Singh
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Scott E. Nelson
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Abigail S. Pawelski
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Juan A. Cantres-Velez
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Alisha S. Kansra
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Nicholas P. Pauly
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Jillian A. Bristol
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Mitchell Hayes
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Makoto Ohashi
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Alejandro Casco
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Denis Lee
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Stuart A. Fogarty
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Paul F. Lambert
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Eric C. Johannsen
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
6
|
Ali A, Ohashi M, Casco A, Djavadian R, Eichelberg M, Kenney SC, Johannsen E. Rta is the principal activator of Epstein-Barr virus epithelial lytic transcription. PLoS Pathog 2022; 18:e1010886. [PMID: 36174106 PMCID: PMC9553042 DOI: 10.1371/journal.ppat.1010886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/11/2022] [Accepted: 09/14/2022] [Indexed: 01/27/2023] Open
Abstract
The transition from latent Epstein-Barr virus (EBV) infection to lytic viral replication is mediated by the viral transcription factors Rta and Zta. Although both are required for virion production, dissecting the specific roles played by Rta and Zta is challenging because they induce each other's expression. To circumvent this, we constructed an EBV mutant deleted for the genes encoding Rta and Zta (BRLF1 and BZLF1, respectively) in the Akata strain BACmid. This mutant, termed EBVΔRZ, was used to infect several epithelial cell lines, including telomerase-immortalized normal oral keratinocytes, a highly physiologic model of EBV epithelial cell infection. Using RNA-seq, we determined the gene expression induced by each viral transactivator. Surprisingly, Zta alone only induced expression of the lytic origin transcripts BHLF1 and LF3. In contrast, Rta activated the majority of EBV early gene transcripts. As expected, Zta and Rta were both required for expression of late gene transcripts. Zta also cooperated with Rta to enhance a subset of early gene transcripts (Rtasynergy transcripts) that Zta was unable to activate when expressed alone. Interestingly, Rta and Zta each cooperatively enhanced the other's binding to EBV early gene promoters, but this effect was not restricted to promoters where synergy was observed. We demonstrate that Zta did not affect Rtasynergy transcript stability, but increased Rtasynergy gene transcription despite having no effect on their transcription when expressed alone. Our results suggest that, at least in epithelial cells, Rta is the dominant transactivator and that Zta functions primarily to support DNA replication and co-activate a subset of early promoters with Rta. This closely parallels the arrangement in KSHV where ORF50 (Rta homolog) is the principal activator of lytic transcription and K8 (Zta homolog) is required for DNA replication at oriLyt.
Collapse
Affiliation(s)
- Ahmed Ali
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
- National Center for Research, Khartoum, Sudan
| | - Makoto Ohashi
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
| | - Alejandro Casco
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
| | - Reza Djavadian
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
| | - Mark Eichelberg
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Eric Johannsen
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
7
|
Damania B, Kenney SC, Raab-Traub N. Epstein-Barr virus: Biology and clinical disease. Cell 2022; 185:3652-3670. [PMID: 36113467 PMCID: PMC9529843 DOI: 10.1016/j.cell.2022.08.026] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 01/26/2023]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous, oncogenic virus that is associated with a number of different human malignancies as well as autoimmune disorders. The expression of EBV viral proteins and non-coding RNAs contribute to EBV-mediated disease pathologies. The virus establishes life-long latency in the human host and is adept at evading host innate and adaptive immune responses. In this review, we discuss the life cycle of EBV, the various functions of EBV-encoded proteins and RNAs, the ability of the virus to activate and evade immune responses, as well as the neoplastic and autoimmune diseases that are associated with EBV infection in the human population.
Collapse
Affiliation(s)
- Blossom Damania
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Shannon C Kenney
- Department of Oncology, McArdle Laboratory for Cancer Research, and Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Nancy Raab-Traub
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Chakravorty S, Afzali B, Kazemian M. EBV-associated diseases: Current therapeutics and emerging technologies. Front Immunol 2022; 13:1059133. [PMID: 36389670 PMCID: PMC9647127 DOI: 10.3389/fimmu.2022.1059133] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
EBV is a prevalent virus, infecting >90% of the world's population. This is an oncogenic virus that causes ~200,000 cancer-related deaths annually. It is, in addition, a significant contributor to the burden of autoimmune diseases. Thus, EBV represents a significant public health burden. Upon infection, EBV remains dormant in host cells for long periods of time. However, the presence or episodic reactivation of the virus increases the risk of transforming healthy cells to malignant cells that routinely escape host immune surveillance or of producing pathogenic autoantibodies. Cancers caused by EBV display distinct molecular behaviors compared to those of the same tissue type that are not caused by EBV, presenting opportunities for targeted treatments. Despite some encouraging results from exploration of vaccines, antiviral agents and immune- and cell-based treatments, the efficacy and safety of most therapeutics remain unclear. Here, we provide an up-to-date review focusing on underlying immune and environmental mechanisms, current therapeutics and vaccines, animal models and emerging technologies to study EBV-associated diseases that may help provide insights for the development of novel effective treatments.
Collapse
Affiliation(s)
- Srishti Chakravorty
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Majid Kazemian
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States.,Department of Computer Science, Purdue University, West Lafayette IN, United States
| |
Collapse
|
9
|
Molecular Basis of Epstein-Barr Virus Latency Establishment and Lytic Reactivation. Viruses 2021; 13:v13122344. [PMID: 34960613 PMCID: PMC8706188 DOI: 10.3390/v13122344] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022] Open
Abstract
Epstein–Barr virus (EBV) is a causative agent of infectious mononucleosis and several types of cancer. Like other herpesviruses, it establishes an asymptomatic, life-long latent infection, with occasional reactivation and shedding of progeny viruses. During latency, EBV expresses a small number of viral genes, and exists as an episome in the host–cell nucleus. Expression patterns of latency genes are dependent on the cell type, time after infection, and milieu of the cell (e.g., germinal center or peripheral blood). Upon lytic induction, expression of the viral immediate-early genes, BZLF1 and BRLF1, are induced, followed by early gene expression, viral DNA replication, late gene expression, and maturation and egress of progeny virions. Furthermore, EBV reactivation involves more than just progeny production. The EBV life cycle is regulated by signal transduction, transcription factors, promoter sequences, epigenetics, and the 3D structure of the genome. In this article, the molecular basis of EBV latency establishment and reactivation is summarized.
Collapse
|
10
|
The Epstein-Barr Virus Oncogene EBNA1 Suppresses Natural Killer Cell Responses and Apoptosis Early after Infection of Peripheral B Cells. mBio 2021; 12:e0224321. [PMID: 34781735 PMCID: PMC8593684 DOI: 10.1128/mbio.02243-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The innate immune system serves as frontline defense against pathogens, such as bacteria and viruses. Natural killer (NK) cells are a part of innate immunity and can both secrete cytokines and directly target cells for lysis. NK cells express several cell surface receptors, including NKG2D, which bind multiple ligands. People with deficiencies in NK cells are often susceptible to uncontrolled infection by herpesviruses, such as Epstein-Barr virus (EBV). Infection with EBV stimulates both innate and adaptive immunity, yet the virus establishes lifelong latent infection in memory B cells. We show that the EBV oncogene EBNA1, previously known to be necessary for maintaining EBV genomes in latently infected cells, also plays an important role in suppressing NK cell responses and cell death in newly infected cells. EBNA1 does so by downregulating the NKG2D ligands ULBP1 and ULBP5 and modulating expression of c-Myc. B cells infected with a derivative of EBV that lacks EBNA1 are more susceptible to NK cell-mediated killing and show increased levels of apoptosis. Thus, EBNA1 performs a previously unappreciated role in reducing immune response and programmed cell death after EBV infection, helping infected cells avoid immune surveillance and apoptosis and thus persist for the lifetime of the host. IMPORTANCE Epstein-Barr virus (EBV) is a ubiquitous human pathogen, infecting up to 95% of the world's adult population. Initial infection with EBV can cause infectious mononucleosis. EBV is also linked to several human malignancies, including lymphomas and carcinomas. Although infection by EBV alerts the immune system and causes an immune response, the virus persists for life in memory B cells. We show that the EBV protein EBNA1 can downregulate several components of the innate immune system linked to natural killer (NK) cells. This downregulation of NK cell activity translates to lower killing of EBV-infected cells and is likely one way that EBV escapes immune surveillance after infection. Additionally, we show that EBNA1 reduces apoptosis in newly infected B cells, allowing more of these cells to survive. Taken together, our findings uncover new functions of EBNA1 and provide insights into viral strategies to survive the initial immune response postinfection.
Collapse
|
11
|
Van Sciver N, Ohashi M, Nawandar DM, Pauly NP, Lee D, Makielski KR, Bristol JA, Tsao SW, Lambert PF, Johannsen EC, Kenney SC. ΔNp63α promotes Epstein-Barr virus latency in undifferentiated epithelial cells. PLoS Pathog 2021; 17:e1010045. [PMID: 34748616 PMCID: PMC8601603 DOI: 10.1371/journal.ppat.1010045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/18/2021] [Accepted: 10/18/2021] [Indexed: 01/27/2023] Open
Abstract
Epstein-Barr virus (EBV) is a human herpesvirus that causes infectious mononucleosis and contributes to both B-cell and epithelial-cell malignancies. EBV-infected epithelial cell tumors, including nasopharyngeal carcinoma (NPC), are largely composed of latently infected cells, but the mechanism(s) maintaining viral latency are poorly understood. Expression of the EBV BZLF1 (Z) and BRLF1 (R) encoded immediate-early (IE) proteins induces lytic infection, and these IE proteins activate each other's promoters. ΔNp63α (a p53 family member) is required for proliferation and survival of basal epithelial cells and is over-expressed in NPC tumors. Here we show that ΔNp63α promotes EBV latency by inhibiting activation of the BZLF1 IE promoter (Zp). Furthermore, we find that another p63 gene splice variant, TAp63α, which is expressed in some Burkitt and diffuse large B cell lymphomas, also represses EBV lytic reactivation. We demonstrate that ΔNp63α inhibits the Z promoter indirectly by preventing the ability of other transcription factors, including the viral IE R protein and the cellular KLF4 protein, to activate Zp. Mechanistically, we show that ΔNp63α promotes viral latency in undifferentiated epithelial cells both by enhancing expression of a known Zp repressor protein, c-myc, and by decreasing cellular p38 kinase activity. Furthermore, we find that the ability of cis-platinum chemotherapy to degrade ΔNp63α contributes to the lytic-inducing effect of this agent in EBV-infected epithelial cells. Together these findings demonstrate that the loss of ΔNp63α expression, in conjunction with enhanced expression of differentiation-dependent transcription factors such as BLIMP1 and KLF4, induces lytic EBV reactivation during normal epithelial cell differentiation. Conversely, expression of ΔNp63α in undifferentiated nasopharyngeal carcinoma cells and TAp63α in Burkitt lymphoma promotes EBV latency in these malignancies.
Collapse
Affiliation(s)
- Nicholas Van Sciver
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Makoto Ohashi
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Dhananjay M. Nawandar
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Currently at Ring Therapeutics, Cambridge, Massachusetts, United States of America
| | - Nicholas P. Pauly
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Denis Lee
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Kathleen R. Makielski
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Jillian A. Bristol
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Sai Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Paul F. Lambert
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Eric C. Johannsen
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
12
|
Lee SH, Choi SJ, Choi W, Cho S, Cho M, Kim DS, Kang BW, Kim JG, Lee YM, Cho H, Kang H. Cisplatin Resistance in Epstein-Barr-Virus-Associated Gastric Carcinoma Acquired through ATM Methylation. Cancers (Basel) 2021; 13:cancers13174252. [PMID: 34503060 PMCID: PMC8428228 DOI: 10.3390/cancers13174252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Gastric cancer (GC) is the fifth-leading type of cancer and the third –leading cause of death from cancer. Epstein-Barr virus-associated gastric carcinoma (EBVaGC) is recently accountable for 10% of all the GC worldwide. Platinum drugs such as cisplatin and oxaliplatin are the first-line choice in GC chemotherapy. The widespread use of cisplatin leads to make tumor cells develop single or multiple drug resistance via various mechanisms. DNA hypermethylation on tumor suppressor genes is one of causes leading to drug resistances. 5-Azacytidine (5-AZA) is a chemical analogue of cytidine and inhibits DNA methyltransferase, resulting in DNA hypomethylation. Our main objective was to identify synergistic effect of two important GC drugs whose mechanisms may be in complementary cooperation. We found that cisplatin enhances its anticancer activity with 5-AZA through DNA demethylation in EBVaGC. Identifying this synergistic effect of two important GC drugs can be useful to treat EBVaGC which shows resistance to platinum-based chemotherapy. Abstract Epstein–Barr-virus-associated gastric carcinoma (EBVaGC), first reported in 1992, currently accounts for 10% of all gastric carcinoma worldwide. EBVaGC has unique DNA hypermethylation phenotypes that allow for higher proportions of DNA methylation than any other gastric cancer. CpG islands in the gene promoter region are one of the major regions in which DNA methylation controls gene transcription. Despite cisplatin-based chemotherapy being one of the standard treatment regimens for advanced gastric cancer, including EBVaGC, cisplatin alone or in combination with 5-fluorouracil has been limited by its less potent anticancer activity and the occurrence of cisplatin resistance. Accordingly, the current study evaluated the anticancer activities of a combination of cisplatin and 5-Azacytidine (5-AZA) against EBVaGC. Our findings showed that cisplatin upregulated the DNMT3A gene, whereas shRNA-targeted removal of DNMT3A mRNA contributed to cisplatin-mediated EBV lytic reactivation. Moreover, the removal of DNMT3A mRNA upregulated the ATM gene through DNA demethylation on the ATM promoter. Furthermore, CRISPR/Cas9-targeted removal of the ATM gene resulted in significantly reduced cell susceptibility and EBV lytic reactivation by a combination of cisplatin and DNMT3A inhibitor 5-AZA. Finally, 5-AZA exhibited a synergistic effect with cisplatin in anti-EBV and anti-EBVaGC activities by increasing drug susceptibility and EBV lytic reactivation. The aforementioned results suggest that cisplatin combined with DNA methylation inhibitors could be a novel therapeutic approach for EBVaGC.
Collapse
Affiliation(s)
- Sun Hee Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Cancer Research Institute, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.H.L.); (S.J.C.); (S.C.); (M.C.)
| | - Su Jin Choi
- Vessel-Organ Interaction Research Center, VOICE (MRC), Cancer Research Institute, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.H.L.); (S.J.C.); (S.C.); (M.C.)
| | - Wonhyeok Choi
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul 01369, Korea;
| | - Subin Cho
- Vessel-Organ Interaction Research Center, VOICE (MRC), Cancer Research Institute, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.H.L.); (S.J.C.); (S.C.); (M.C.)
| | - Miyeon Cho
- Vessel-Organ Interaction Research Center, VOICE (MRC), Cancer Research Institute, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.H.L.); (S.J.C.); (S.C.); (M.C.)
| | - Dong Sun Kim
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Byung Woog Kang
- Department of Oncology/Hematology, Cancer Research Institute, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41405, Korea; (B.W.K.); (J.G.K.)
| | - Jong Gwang Kim
- Department of Oncology/Hematology, Cancer Research Institute, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41405, Korea; (B.W.K.); (J.G.K.)
| | - You Mie Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea;
| | - Hyosun Cho
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul 01369, Korea;
- Correspondence: (H.C.); (H.K.); Tel.: +82-02-901-8678 (H.C.); +82-053-950-8569 (H.K.); Fax: +82-02-901-8386 (H.C.); +82-053-950-8557 (H.K.)
| | - Hyojeung Kang
- Vessel-Organ Interaction Research Center, VOICE (MRC), Cancer Research Institute, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.H.L.); (S.J.C.); (S.C.); (M.C.)
- Correspondence: (H.C.); (H.K.); Tel.: +82-02-901-8678 (H.C.); +82-053-950-8569 (H.K.); Fax: +82-02-901-8386 (H.C.); +82-053-950-8557 (H.K.)
| |
Collapse
|
13
|
Van Sciver N, Ohashi M, Pauly NP, Bristol JA, Nelson SE, Johannsen EC, Kenney SC. Hippo signaling effectors YAP and TAZ induce Epstein-Barr Virus (EBV) lytic reactivation through TEADs in epithelial cells. PLoS Pathog 2021; 17:e1009783. [PMID: 34339458 PMCID: PMC8360610 DOI: 10.1371/journal.ppat.1009783] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/12/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022] Open
Abstract
The Epstein-Barr virus (EBV) human herpesvirus is associated with B-cell and epithelial-cell malignancies, and both the latent and lytic forms of viral infection contribute to the development of EBV-associated tumors. Here we show that the Hippo signaling effectors, YAP and TAZ, promote lytic EBV reactivation in epithelial cells. The transcriptional co-activators YAP/TAZ (which are inhibited by Hippo signaling) interact with DNA-binding proteins, particularly TEADs, to induce transcription. We demonstrate that depletion of either YAP or TAZ inhibits the ability of phorbol ester (TPA) treatment, cellular differentiation or the EBV BRLF1 immediate-early (IE) protein to induce lytic EBV reactivation in oral keratinocytes, and show that over-expression of constitutively active forms of YAP and TAZ reactivate lytic EBV infection in conjunction with TEAD family members. Mechanistically, we find that YAP and TAZ interact with, and activate, the EBV BZLF1 immediate-early promoter. Furthermore, we demonstrate that YAP, TAZ, and TEAD family members are expressed at much higher levels in epithelial cell lines in comparison to B-cell lines, and find that EBV infection of oral keratinocytes increases the level of activated (dephosphorylated) YAP and TAZ. Finally, we have discovered that lysophosphatidic acid (LPA), a known YAP/TAZ activator that plays an important role in inflammation, induces EBV lytic reactivation in epithelial cells through a YAP/TAZ dependent mechanism. Together these results establish that YAP/TAZ are powerful inducers of the lytic form of EBV infection and suggest that the ability of EBV to enter latency in B cells at least partially reflects the extremely low levels of YAP/TAZ and TEADs in this cell type.
Collapse
Affiliation(s)
- Nicholas Van Sciver
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Cellular and Molecular Pathology Graduate Training Program, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Makoto Ohashi
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Nicholas P. Pauly
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Jillian A. Bristol
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Scott E. Nelson
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Eric C. Johannsen
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
14
|
Abstract
Among all of the known biological carcinogens, Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are two of the classical oncogenic herpesviruses known to induce the oncogenic phenotype. Many studies have revealed important functions related to epigenetic alterations of the EBV and KSHV genomes that mediate oncogenesis, but the detailed mechanisms are not fully understood. It is also challenging to fully describe the critical cellular events that drive oncogenesis as well as a comprehensive map of the molecular contributors. This review introduces the roles of epigenetic modifications of these viral genomes, including DNA methylation, histone modification, chromatin remodeling, and noncoding RNA expression, and elucidates potential strategies utilized for inducing oncogenesis by these human gammaherpesviruses.
Collapse
Affiliation(s)
- Yonggang Pei
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Josiah Hiu-Yuen Wong
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Erle S Robertson
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
15
|
Epstein-Barr Virus Lytic Replication Induces ACE2 Expression and Enhances SARS-CoV-2 Pseudotyped Virus Entry in Epithelial Cells. J Virol 2021; 95:e0019221. [PMID: 33853968 DOI: 10.1128/jvi.00192-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding factors that affect the infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is central to combatting coronavirus disease 2019 (COVID-19). The virus surface spike protein of SARS-CoV-2 mediates viral entry into cells by binding to the ACE2 receptor on epithelial cells and promoting fusion. We found that Epstein-Barr virus (EBV) induces ACE2 expression when it enters the lytic replicative cycle in epithelial cells. By using vesicular stomatitis virus (VSV) particles pseudotyped with the SARS-CoV-2 spike protein, we showed that lytic EBV replication enhances ACE2-dependent SARS-CoV-2 pseudovirus entry. We found that the ACE2 promoter contains response elements for Zta, an EBV transcriptional activator that is essential for EBV entry into the lytic cycle of replication. Zta preferentially acts on methylated promoters, allowing it to reactivate epigenetically silenced EBV promoters from latency. By using promoter assays, we showed that Zta directly activates methylated ACE2 promoters. Infection of normal oral keratinocytes with EBV leads to lytic replication in some of the infected cells, induces ACE2 expression, and enhances SARS-CoV-2 pseudovirus entry. These data suggest that subclinical EBV replication and lytic gene expression in epithelial cells, which is ubiquitous in the human population, may enhance the efficiency and extent of SARS-CoV-2 infection of epithelial cells by transcriptionally activating ACE2 and increasing its cell surface expression. IMPORTANCE SARS-CoV-2, the coronavirus responsible for COVID-19, has caused a pandemic leading to millions of infections and deaths worldwide. Identifying the factors governing susceptibility to SARS-CoV-2 is important in order to develop strategies to prevent SARS-CoV-2 infection. We show that Epstein-Barr virus, which infects and persists in >90% of adult humans, increases susceptibility of epithelial cells to infection by SARS-CoV-2. EBV, when it reactivates from latency or infects epithelial cells, increases expression of ACE2, the cellular receptor for SARS-CoV-2, enhancing infection by SARS-CoV-2. Inhibiting EBV replication with antivirals may therefore decrease susceptibility to SARS-CoV-2 infection.
Collapse
|
16
|
Clinical Manifestations and Epigenetic Regulation of Oral Herpesvirus Infections. Viruses 2021; 13:v13040681. [PMID: 33920978 PMCID: PMC8071331 DOI: 10.3390/v13040681] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022] Open
Abstract
The oral cavity is often the first site where viruses interact with the human body. The oral epithelium is a major site of viral entry, replication and spread to other cell types, where chronic infection can be established. In addition, saliva has been shown as a primary route of person-to-person transmission for many viruses. From a clinical perspective, viral infection can lead to several oral manifestations, ranging from common intraoral lesions to tumors. Despite the clinical and biological relevance of initial oral infection, little is known about the mechanism of regulation of the viral life cycle in the oral cavity. Several viruses utilize host epigenetic machinery to promote their own life cycle. Importantly, viral hijacking of host chromatin-modifying enzymes can also lead to the dysregulation of host factors and in the case of oncogenic viruses may ultimately play a role in promoting tumorigenesis. Given the known roles of epigenetic regulation of viral infection, epigenetic-targeted antiviral therapy has been recently explored as a therapeutic option for chronic viral infection. In this review, we highlight three herpesviruses with known roles in oral infection, including herpes simplex virus type 1, Epstein–Barr virus and Kaposi’s sarcoma-associated herpesvirus. We focus on the respective oral clinical manifestations of these viruses and their epigenetic regulation, with a specific emphasis on the viral life cycle in the oral epithelium.
Collapse
|
17
|
Xia TL, Li X, Wang X, Zhu YJ, Zhang H, Cheng W, Chen ML, Ye Y, Li Y, Zhang A, Dai DL, Zhu QY, Yuan L, Zheng J, Huang H, Chen SQ, Xiao ZW, Wang HB, Roy G, Zhong Q, Lin D, Zeng YX, Wang J, Zhao B, Gewurz BE, Chen J, Zuo Z, Zeng MS. N(6)-methyladenosine-binding protein YTHDF1 suppresses EBV replication and promotes EBV RNA decay. EMBO Rep 2021; 22:e50128. [PMID: 33605073 PMCID: PMC8025027 DOI: 10.15252/embr.202050128] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 01/10/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
N6‐methyladenosine (m6A) modification of mRNA mediates diverse cellular and viral functions. Infection with Epstein–Barr virus (EBV) is causally associated with nasopharyngeal carcinoma (NPC), 10% of gastric carcinoma, and various B‐cell lymphomas, in which the viral latent and lytic phases both play vital roles. Here, we show that EBV transcripts exhibit differential m6A modification in human NPC biopsies, patient‐derived xenograft tissues, and cells at different EBV infection stages. m6A‐modified EBV transcripts are recognized and destabilized by the YTHDF1 protein, which leads to the m6A‐dependent suppression of EBV infection and replication. Mechanistically, YTHDF1 hastens viral RNA decapping and mediates RNA decay by recruiting RNA degradation complexes, including ZAP, DDX17, and DCP2, thereby post‐transcriptionally downregulating the expression of EBV genes. Taken together, our results reveal the critical roles of m6A modifications and their reader YTHDF1 in EBV replication. These findings contribute novel targets for the treatment of EBV‐associated cancers.
Collapse
Affiliation(s)
- Tian-Liang Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xingyang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xueping Wang
- Department of Laboratory Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yun-Jia Zhu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hua Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weisheng Cheng
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-sen University), Department of Medical Bioinformatics, Zhongshan School of Medicine, Ministry of Education, Guangzhou, China
| | - Mei-Ling Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Ye
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Li
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ao Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dan-Ling Dai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qian-Ying Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li Yuan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huilin Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Si-Qi Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-Wen Xiao
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, China.,Department of Otorhinolaryngology-Head and Neck Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong-Bo Wang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Gaurab Roy
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dongxin Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jinkai Wang
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-sen University), Department of Medical Bioinformatics, Zhongshan School of Medicine, Ministry of Education, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bo Zhao
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin E Gewurz
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of the City of Hope, Monrovia, CA, USA
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
18
|
Yajima M, Kakuta R, Saito Y, Kitaya S, Toyoda A, Ikuta K, Yasuda J, Ohta N, Kanda T. A global phylogenetic analysis of Japanese tonsil-derived Epstein-Barr virus strains using viral whole-genome cloning and long-read sequencing. J Gen Virol 2021; 102. [PMID: 33433312 DOI: 10.1099/jgv.0.001549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epstein-Barr virus (EBV) establishes lifelong latent infection in the majority of healthy individuals, while it is a causative agent for various diseases, including some malignancies. Recent high-throughput sequencing results indicate that there are substantial levels of viral genome heterogeneity among different EBV strains. However, the extent of EBV strain variation among asymptomatically infected individuals remains elusive. Here, we present a streamlined experimental strategy to clone and sequence EBV genomes derived from human tonsillar tissues, which are the reservoirs of asymptomatic EBV infection. Complete EBV genome sequences, including those of repetitive regions, were determined for seven tonsil-derived EBV strains. Phylogenetic analyses based on the whole viral genome sequences of worldwide non-tumour-derived EBV strains revealed that Asian EBV strains could be divided into several distinct subgroups. EBV strains derived from nasopharyngeal carcinoma-endemic areas constitute different subgroups from a subgroup of EBV strains from non-endemic areas, including Japan. The results could be consistent with biased regional distribution of EBV-associated diseases depending on the different EBV strains colonizing different regions in Asian countries.
Collapse
Affiliation(s)
- Misako Yajima
- Division of Microbiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Risako Kakuta
- Present address: Department of Otolaryngology, Head and Neck Surgery, Tohoku University School of Medicine, Sendai, Miyagi, Japan.,Division of Otolaryngology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yutaro Saito
- Present address: Department of Otolaryngology, Head and Neck Surgery, Tohoku University School of Medicine, Sendai, Miyagi, Japan.,Division of Otolaryngology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Shiori Kitaya
- Present address: Department of Otolaryngology, Head and Neck Surgery, Tohoku University School of Medicine, Sendai, Miyagi, Japan.,Division of Otolaryngology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kazufumi Ikuta
- Division of Microbiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jun Yasuda
- Present address: Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan.,Division of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Nobuo Ohta
- Division of Otolaryngology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Teru Kanda
- Division of Microbiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| |
Collapse
|
19
|
Fiches GN, Zhou D, Kong W, Biswas A, Ahmed EH, Baiocchi RA, Zhu J, Santoso N. Profiling of immune related genes silenced in EBV-positive gastric carcinoma identified novel restriction factors of human gammaherpesviruses. PLoS Pathog 2020; 16:e1008778. [PMID: 32841292 PMCID: PMC7473590 DOI: 10.1371/journal.ppat.1008778] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 09/04/2020] [Accepted: 07/05/2020] [Indexed: 12/24/2022] Open
Abstract
EBV-associated gastric cancer (EBVaGC) is characterized by high frequency of DNA methylation. In this study, we investigated how epigenetic alteration of host genome contributes to pathogenesis of EBVaGC through the analysis of transcriptomic and epigenomic datasets from NIH TCGA (The Cancer Genome Atlas) consortium. We identified that immune related genes (IRGs) is a group of host genes preferentially silenced in EBV-positive gastric cancers through DNA hypermethylation. Further functional characterizations of selected IRGs reveal their novel antiviral activity against not only EBV but also KSHV. In particular, we showed that metallothionein-1 (MT1) and homeobox A (HOXA) gene clusters are down-regulated via EBV-driven DNA hypermethylation. Several MT1 isoforms suppress EBV lytic replication and release of progeny virions as well as KSHV lytic reactivation, suggesting functional redundancy of these genes. In addition, single HOXA10 isoform exerts antiviral activity against both EBV and KSHV. We also confirmed the antiviral effect of other dysregulated IRGs, such as IRAK2 and MAL, in scenario of EBV and KSHV lytic reactivation. Collectively, our results demonstrated that epigenetic silencing of IRGs is a viral strategy to escape immune surveillance and promote viral propagation, which is overall beneficial to viral oncogenesis of human gamma-herpesviruses (EBV and KSHV), considering that these IRGs possess antiviral activities against these oncoviruses.
Collapse
Affiliation(s)
- Guillaume N. Fiches
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Dawei Zhou
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Weili Kong
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California, United States of America
| | - Ayan Biswas
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Elshafa H. Ahmed
- Division of Hematology, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Robert A. Baiocchi
- Division of Hematology, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Jian Zhu
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Netty Santoso
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
20
|
Hau PM, Lung HL, Wu M, Tsang CM, Wong KL, Mak NK, Lo KW. Targeting Epstein-Barr Virus in Nasopharyngeal Carcinoma. Front Oncol 2020; 10:600. [PMID: 32528868 PMCID: PMC7247807 DOI: 10.3389/fonc.2020.00600] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is consistently associated with Epstein-Barr virus (EBV) infection in regions in which it is endemic, including Southern China and Southeast Asia. The high mortality rates of NPC patients with advanced and recurrent disease highlight the urgent need for effective treatments. While recent genomic studies have revealed few druggable targets, the unique interaction between the EBV infection and host cells in NPC strongly implies that targeting EBV may be an efficient approach to cure this virus-associated cancer. Key features of EBV-associated NPC are the persistence of an episomal EBV genome and the requirement for multiple viral latent gene products to enable malignant transformation. Many translational studies have been conducted to exploit these unique features to develop pharmaceutical agents and therapeutic strategies that target EBV latent proteins and induce lytic reactivation in NPC. In particular, inhibitors of the EBV latent protein EBNA1 have been intensively explored, because of this protein's essential roles in maintaining EBV latency and viral genome replication in NPC cells. In addition, recent advances in chemical bioengineering are driving the development of therapeutic agents targeting the critical functional regions of EBNA1. Promising therapeutic effects of the resulting EBNA1-specific inhibitors have been shown in EBV-positive NPC tumors. The efficacy of multiple classes of EBV lytic inducers for NPC cytolytic therapy has also been long investigated. However, the lytic-induction efficiency of these compounds varies among different EBV-positive NPC models in a cell-context-dependent manner. In each tumor, NPC cells can evolve and acquire somatic changes to maintain EBV latency during cancer progression. Unfortunately, the poor understanding of the cellular mechanisms regulating EBV latency-to-lytic switching in NPC cells limits the clinical application of EBV cytolytic treatment. In this review, we discuss the potential approaches for improvement of the above-mentioned EBV-targeting strategies.
Collapse
Affiliation(s)
- Pok Man Hau
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hong Lok Lung
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Man Wu
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Man Tsang
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Nai Ki Mak
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
21
|
Münz C. Latency and lytic replication in Epstein-Barr virus-associated oncogenesis. Nat Rev Microbiol 2019; 17:691-700. [PMID: 31477887 DOI: 10.1038/s41579-019-0249-7] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2019] [Indexed: 12/19/2022]
Abstract
Epstein-Barr virus (EBV) was the first tumour virus identified in humans. The virus is primarily associated with lymphomas and epithelial cell cancers. These tumours express latent EBV antigens and the oncogenic potential of individual latent EBV proteins has been extensively explored. Nevertheless, it was presumed that the pro-proliferative and anti-apoptotic functions of these oncogenes allow the virus to persist in humans; however, recent evidence suggests that cellular transformation is not required for virus maintenance. Vice versa, lytic EBV replication was assumed to destroy latently infected cells and thereby inhibit tumorigenesis, but at least the initiation of the lytic cycle has now been shown to support EBV-driven malignancies. In addition to these changes in the roles of latent and lytic EBV proteins during tumorigenesis, the function of non-coding RNAs has become clearer, suggesting that they might mainly mediate immune escape rather than cellular transformation. In this Review, these recent findings will be discussed with respect to the role of EBV-encoded oncogenes in viral persistence and the contributions of lytic replication as well as non-coding RNAs in virus-driven tumour formation. Accordingly, early lytic EBV antigens and attenuated viruses without oncogenes and microRNAs could be harnessed for immunotherapies and vaccination.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
22
|
Eichelberg MR, Welch R, Guidry JT, Ali A, Ohashi M, Makielski KR, McChesney K, Van Sciver N, Lambert PF, Keleș S, Kenney SC, Scott RS, Johannsen E. Epstein-Barr Virus Infection Promotes Epithelial Cell Growth by Attenuating Differentiation-Dependent Exit from the Cell Cycle. mBio 2019; 10:e01332-19. [PMID: 31431547 PMCID: PMC6703421 DOI: 10.1128/mbio.01332-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) is a human herpesvirus that is associated with lymphomas as well as nasopharyngeal and gastric carcinomas. Although carcinomas account for almost 90% of EBV-associated cancers, progress in examining EBV's role in their pathogenesis has been limited by difficulty in establishing latent infection in nontransformed epithelial cells. Recently, EBV infection of human telomerase reverse transcriptase (hTERT)-immortalized normal oral keratinocytes (NOKs) has emerged as a model that recapitulates aspects of EBV infection in vivo, such as differentiation-associated viral replication. Using uninfected NOKs and NOKs infected with the Akata strain of EBV (NOKs-Akata), we examined changes in gene expression due to EBV infection and differentiation. Latent EBV infection produced very few significant gene expression changes in undifferentiated NOKs but significantly reduced the extent of differentiation-induced gene expression changes. Gene set enrichment analysis revealed that differentiation-induced downregulation of the cell cycle and metabolism pathways was markedly attenuated in NOKs-Akata relative to that in uninfected NOKs. We also observed that pathways induced by differentiation were less upregulated in NOKs-Akata. We observed decreased differentiation markers and increased suprabasal MCM7 expression in NOKs-Akata versus NOKs when both were grown in raft cultures, consistent with our transcriptome sequencing (RNA-seq) results. These effects were also observed in NOKs infected with a replication-defective EBV mutant (AkataΔRZ), implicating mechanisms other than lytic-gene-induced host shutoff. Our results help to define the mechanisms by which EBV infection alters keratinocyte differentiation and provide a basis for understanding the role of EBV in epithelial cancers.IMPORTANCE Latent infection by Epstein-Barr virus (EBV) is an early event in the development of EBV-associated carcinomas. In oral epithelial tissues, EBV establishes a lytic infection of differentiated epithelial cells to facilitate the spread of the virus to new hosts. Because of limitations in existing model systems, the effects of latent EBV infection on undifferentiated and differentiating epithelial cells are poorly understood. Here, we characterize latent infection of an hTERT-immortalized oral epithelial cell line (NOKs). We find that although EBV expresses a latency pattern similar to that seen in EBV-associated carcinomas, infection of undifferentiated NOKs results in differential expression of a small number of host genes. In differentiating NOKs, however, EBV has a more substantial effect, reducing the extent of differentiation and delaying the exit from the cell cycle. This effect may synergize with preexisting cellular abnormalities to prevent exit from the cell cycle, representing a critical step in the development of cancer.
Collapse
Affiliation(s)
- Mark R Eichelberg
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, USA
| | - Rene Welch
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, USA
| | - J Tod Guidry
- Department of Microbiology and Immunology, LSUHSC-S, Shreveport, Louisiana, USA
| | - Ahmed Ali
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, USA
| | - Makoto Ohashi
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, USA
| | - Kathleen R Makielski
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
| | - Kyle McChesney
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, USA
| | - Nicholas Van Sciver
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, USA
| | - Paul F Lambert
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
| | - Sündüz Keleș
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, USA
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, USA
| | - Shannon C Kenney
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, USA
| | - Rona S Scott
- Department of Microbiology and Immunology, LSUHSC-S, Shreveport, Louisiana, USA
| | - Eric Johannsen
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
23
|
Natural Variations in BRLF1 Promoter Contribute to the Elevated Reactivation Level of Epstein-Barr Virus in Endemic Areas of Nasopharyngeal Carcinoma. EBioMedicine 2018; 37:101-109. [PMID: 30420297 PMCID: PMC6286269 DOI: 10.1016/j.ebiom.2018.10.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
Background Epstein-Barr virus (EBV) infection is a crucial risk factor for nasopharyngeal carcinoma (NPC), but the mechanism for its elevated activation level in NPC endemic areas remains unclear. This study aims to identify the EBV natural variations contributed to the different reactivation potential between NPC endemic and non-endemic areas. Methods 1030 subjects were recruited in China, including 303 healthy individuals from two NPC non-endemic areas, 483 healthy people from three endemic areas and 244 NPC patients. Among which, saliva DNA samples from 244 participants were sequenced for the EBV immediate early (IE) genes of BRLF1 and BZLF1, their promoters were included; the rest 786 subjects were used for the validation of significant variations among three different populations. Haplotype and population structure analysis were conducted. Dual-luciferase assay was used to detect the promoter activity. Results A total of 246 distinct variations were detected, 29 showed significant difference in the frequencies between healthy people from NPC endemic area and non-endemic area. Population structure analysis clustered EBV strains into 9 subgroups mostly in accordance with the geographical origin of samples. Interestingly, two EBV genotypes, Rp-V1 and Rp-V2, were identified according to the linkage relationship of the variations in BRLF1 promoter (Rp). Rp-V1 has higher frequency in NPC endemic areas than in non-endemic areas (52.38% vs 18.15%, P = 2.07 × 10−14), and was associated with higher oral EBV DNA levels (adjusted OR = 1.64, 95% CI = 1.21–2.24, P = .002), suggesting a more powerful activation ability of Rp-V1 than that of the prototype Rp-of the EBV strain; On the contrary, Rp-V2 has higher frequency in NPC non-endemic areas than in endemic areas (18.48% vs 0.38%, P = 1.17 × 10−7), might represent a reduced activation potential of EBV. Further dual-luciferase assay showed Rp-V1 has higher promoter activity while compared with Rp-V2 (P < .0001). Notably, Rp-V1 impaired the transcription repression effect of YY1 while Rp-V2 strengthened the transcription repression effect of EBF1 on Rp. In addition, significant differences of Rta 393–407 CTL epitope which may influence the recognition of Rta by CD8+ T cells were detected between healthy people from NPC endemic area and non-endemic area. Conclusions This study identified natural variations in cis-acting elements (YY1 and EBF1) of EBV Rp altering Rp transcription activities, which may contribute to the elevated EBV activation level in NPC endemic areas than non-endemic areas.
Collapse
|
24
|
Epstein-Barr virus: a master epigenetic manipulator. Curr Opin Virol 2017; 26:74-80. [PMID: 28780440 DOI: 10.1016/j.coviro.2017.07.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 12/29/2022]
Abstract
Like all herpesviruses, the ability of Epstein-Barr virus (EBV) to establish life-long persistent infections is related to a biphasic viral lifecycle that involves latency and reactivation/lytic replication. Memory B cells serve as the EBV latency compartment where silencing of viral gene expression allows maintenance of the viral genome, avoidance of immune surveillance, and life-long carriage. Upon viral reactivation, viral gene expression is induced for replication, progeny virion production, and viral spread. EBV uses the host epigenetic machinery to regulate its distinct viral gene expression states. However, epigenetic manipulation by EBV affects the host epigenome by reprogramming cells in ways that leave long-lasting, oncogenic phenotypes. Such virally-induced epigenetic alterations are evident in EBV-associated cancers.
Collapse
|
25
|
Nandakumar A, Uwatoko F, Yamamoto M, Tomita K, Majima HJ, Akiba S, Koriyama C. Radiation-induced Epstein-Barr virus reactivation in gastric cancer cells with latent EBV infection. Tumour Biol 2017; 39:1010428317717718. [PMID: 28675108 DOI: 10.1177/1010428317717718] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Epstein-Barr virus, a ubiquitous human herpes virus with oncogenic activity, can be found in 6%-16% of gastric carcinomas worldwide. In Epstein-Barr virus-associated gastric carcinoma, only a few latent genes of the virus are expressed. Ionizing irradiation was shown to induce lytic Epstein-Barr virus infection in lymphoblastoid cell lines with latent Epstein-Barr virus infection. In this study, we examined the effect of ionizing radiation on the Epstein-Barr virus reactivation in a gastric epithelial cancer cell line (SNU-719, an Epstein-Barr virus-associated gastric carcinoma cell line). Irradiation with X-ray (dose = 5 and 10 Gy; dose rate = 0.5398 Gy/min) killed approximately 25% and 50% of cultured SNU-719 cells, respectively, in 48 h. Ionizing radiation increased the messenger RNA expression of immediate early Epstein-Barr virus lytic genes (BZLF1 and BRLF1), determined by real-time reverse transcription polymerase chain reaction, in a dose-dependent manner at 48 h and, to a slightly lesser extent, at 72 h after irradiation. Similar findings were observed for other Epstein-Barr virus lytic genes (BMRF1, BLLF1, and BcLF1). After radiation, the expression of transforming growth factor beta 1 messenger RNA increased and reached a peak in 12-24 h, and the high-level expression of the Epstein-Barr virus immediate early genes can convert latent Epstein-Barr virus infection into the lytic form and result in the release of infectious Epstein-Barr virus. To conclude, Ionizing radiation activates lytic Epstein-Barr virus gene expression in the SNU-719 cell line mainly through nuclear factor kappaB activation. We made a brief review of literature to explore underlying mechanism involved in transforming growth factor beta-induced Epstein-Barr virus reactivation. A possible involvement of nuclear factor kappaB was hypothesized.
Collapse
Affiliation(s)
- Athira Nandakumar
- 1 Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Futoshi Uwatoko
- 1 Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Megumi Yamamoto
- 2 Department of Basic Medical Sciences, National Institute for Minamata Disease, Minamata, Japan
| | - Kazuo Tomita
- 3 Department of Dental Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hideyuki J Majima
- 3 Department of Dental Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Suminori Akiba
- 1 Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Chihaya Koriyama
- 1 Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
26
|
Epstein-Barr Virus Rta-Mediated Accumulation of DNA Methylation Interferes with CTCF Binding in both Host and Viral Genomes. J Virol 2017; 91:JVI.00736-17. [PMID: 28490592 DOI: 10.1128/jvi.00736-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 12/18/2022] Open
Abstract
Rta, an Epstein-Barr virus (EBV) immediate-early protein, reactivates viral lytic replication that is closely associated with tumorigenesis. In previous studies, we demonstrated that in epithelial cells Rta efficiently induced cellular senescence, which is an irreversible G1 arrest likely to provide a favorable environment for productive replications of EBV and Kaposi's sarcoma-associated herpesvirus (KSHV). To restrict progression of the cell cycle, Rta simultaneously upregulates CDK inhibitors and downregulates MYC, CCND1, and JUN, among others. Rta has long been known as a potent transcriptional activator, thus its role in gene repression is unexpected. In silico analysis revealed that the promoter regions of MYC, CCND1, and JUN are common in (i) the presence of CpG islands, (ii) strong chromatin immunoprecipitation (ChIP) signals of CCCTC-binding factor (CTCF), and (iii) having at least one Rta binding site. By combining ChIP assays and DNA methylation analysis, here we provide evidence showing that Rta binding accumulated CpG methylation and decreased CTCF occupancy in the regulatory regions of MYC, CCND1, and JUN, which were associated with downregulated gene expression. Stable residence of CTCF in the viral latency and reactivation control regions is a hallmark of viral latency. Here, we observed that Rta-mediated decreased binding of CTCF in the viral genome is concurrent with virus reactivation. Via interfering with CTCF binding, in the host genome Rta can function as a transcriptional repressor for gene silencing, while in the viral genome Rta acts as an activator for lytic gene loci by removing a topological constraint established by CTCF.IMPORTANCE CTCF is a multifunctional protein that variously participates in gene expression and higher-order chromatin structure of the cellular and viral genomes. In certain loci of the genome, CTCF occupancy and DNA methylation are mutually exclusive. Here, we demonstrate that the Epstein-Barr virus (EBV) immediate-early protein, Rta, known to be a transcriptional activator, can also function as a transcriptional repressor. Via enriching CpG methylation and decreasing CTCF reloading, Rta binding efficiently shut down the expression of MYC, CCND1, and JUN, thus impeding cell cycle progression. Rta-mediated disruption of CTCF binding was also detected in the latency/reactivation control regions of the EBV genome, and this in turn led to viral lytic cycle progression. As emerging evidence indicates that a methylated EBV genome is a preferable substrate for EBV Zta, the other immediate-early protein, our results suggest a mechanistic link in understanding the molecular processes of viral latent-lytic switch.
Collapse
|
27
|
Kraus RJ, Yu X, Cordes BLA, Sathiamoorthi S, Iempridee T, Nawandar DM, Ma S, Romero-Masters JC, McChesney KG, Lin Z, Makielski KR, Lee DL, Lambert PF, Johannsen EC, Kenney SC, Mertz JE. Hypoxia-inducible factor-1α plays roles in Epstein-Barr virus's natural life cycle and tumorigenesis by inducing lytic infection through direct binding to the immediate-early BZLF1 gene promoter. PLoS Pathog 2017; 13:e1006404. [PMID: 28617871 PMCID: PMC5487075 DOI: 10.1371/journal.ppat.1006404] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/27/2017] [Accepted: 05/08/2017] [Indexed: 12/17/2022] Open
Abstract
When confronted with poor oxygenation, cells adapt by activating survival signaling pathways, including the oxygen-sensitive transcriptional regulators called hypoxia-inducible factor alphas (HIF-αs). We report here that HIF-1α also regulates the life cycle of Epstein-Barr virus (EBV). Incubation of EBV-positive gastric carcinoma AGS-Akata and SNU-719 and Burkitt lymphoma Sal and KemIII cell lines with a prolyl hydroxylase inhibitor, L-mimosine or deferoxamine, or the NEDDylation inhibitor MLN4924 promoted rapid and sustained accumulation of both HIF-1α and lytic EBV antigens. ShRNA knockdown of HIF-1α significantly reduced deferoxamine-mediated lytic reactivation. HIF-1α directly bound the promoter of the EBV primary latent-lytic switch BZLF1 gene, Zp, activating transcription via a consensus hypoxia-response element (HRE) located at nt -83 through -76 relative to the transcription initiation site. HIF-1α did not activate transcription from the other EBV immediate-early gene, BRLF1. Importantly, expression of HIF-1α induced EBV lytic-gene expression in cells harboring wild-type EBV, but not in cells infected with variants containing base-pair substitution mutations within this HRE. Human oral keratinocyte (NOK) and gingival epithelial (hGET) cells induced to differentiate by incubation with either methyl cellulose or growth in organotypic culture accumulated both HIF-1α and Blimp-1α, another cellular factor implicated in lytic reactivation. HIF-1α activity also accumulated along with Blimp-1α during B-cell differentiation into plasma cells. Furthermore, most BZLF1-expressing cells observed in lymphomas induced by EBV in NSG mice with a humanized immune system were located distal to blood vessels in hypoxic regions of the tumors. Thus, we conclude that HIF-1α plays central roles in both EBV’s natural life cycle and EBV-associated tumorigenesis. We propose that drugs that induce HIF-1α protein accumulation are good candidates for development of a lytic-induction therapy for treating some EBV-associated malignancies. Most adults throughout the world are infected with Epstein-Barr virus (EBV), a human herpesvirus frequently associated in a latent state with some cancers of epithelial and B-cell origin such as nasopharyngeal carcinoma and Burkitt lymphoma, respectively. To develop an oncolytic therapy for treating patients with EBV-associated cancers, we need a method to efficiently induce synthesis of lytic EBV proteins. The EBV protein encoded by its immediate-early BZLF1 gene usually mediates the switch into lytic viral infection. We show here that HIF-1α, a cellular transcription factor that accumulates in cells when deprived of normal levels of oxygen, can induce lytic EBV infection. HIF-1α mediates this switch by directly binding to a specific sequence located within the BZLF1 gene promoter, activating its expression. Importantly, we also show that deferoxamine, an FDA-approved drug that inhibits degradation of HIF-1α, can induce synthesis of lytic EBV proteins in some EBV-positive epithelial and lymphocytic cell lines. These findings indicate that HIF-1α-stabilizing drugs, administered in combination with nucleoside analogues such as ganciclovir, may be helpful as part of a lytic-induction therapy for treating some patients with EBV-positive malignancies.
Collapse
Affiliation(s)
- Richard J. Kraus
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Xianming Yu
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Blue-leaf A. Cordes
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Saraniya Sathiamoorthi
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Tawin Iempridee
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Dhananjay M. Nawandar
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Shidong Ma
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - James C. Romero-Masters
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Kyle G. McChesney
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Zhen Lin
- Department of Pathology, Tulane University Health Sciences Center and Tulane Cancer Center, New Orleans, Louisiana, United States of America
| | - Kathleen R. Makielski
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Denis L. Lee
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Eric C. Johannsen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Janet E. Mertz
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
28
|
Differentiation-Dependent LMP1 Expression Is Required for Efficient Lytic Epstein-Barr Virus Reactivation in Epithelial Cells. J Virol 2017; 91:JVI.02438-16. [PMID: 28179525 DOI: 10.1128/jvi.02438-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/30/2017] [Indexed: 02/03/2023] Open
Abstract
Epstein-Barr virus (EBV)-associated diseases of epithelial cells, including tumors that have latent infection, such as nasopharyngeal carcinoma (NPC), and oral hairy leukoplakia (OHL) lesions that have lytic infection, frequently express the viral latent membrane protein 1 (LMP1). In lytically infected cells, LMP1 expression is activated by the BRLF1 (R) immediate early (IE) protein. However, the mechanisms by which LMP1 expression is normally regulated in epithelial cells remain poorly understood, and its potential roles in regulating lytic reactivation in epithelial cells are as yet unexplored. We previously showed that the differentiation-dependent cellular transcription factors KLF4 and BLIMP1 induce lytic EBV reactivation in epithelial cells by synergistically activating the two EBV immediate early promoters (Zp and Rp). Here we show that epithelial cell differentiation also induces LMP1 expression. We demonstrate that KLF4 and BLIMP1 cooperatively induce the expression of LMP1, even in the absence of the EBV IE proteins BZLF1 (Z) and R, via activation of the two LMP1 promoters. Furthermore, we found that differentiation of NOKs-Akata cells by either methylcellulose suspension or organotypic culture induces LMP1 expression prior to Z and R expression. We show that LMP1 enhances the lytic infection-inducing effects of epithelial cell differentiation, as well as 12-O-tetradecanoylphorbol-13-acetate (TPA) and sodium butyrate treatment, in EBV-infected epithelial cells by increasing expression of the Z and R proteins. Our results suggest that differentiation of epithelial cells activates a feed-forward loop in which KLF4 and BLIMP1 first activate LMP1 expression and then cooperate with LMP1 to activate Z and R expression.IMPORTANCE The EBV protein LMP1 is expressed in EBV-associated epithelial cell diseases, regardless of whether these diseases are due to lytic infection (such as oral hairy leukoplakia) or latent infection (such as nasopharyngeal carcinoma). However, surprisingly little is known about how LMP1 expression is regulated in epithelial cells, and there are conflicting reports about whether it plays any role in regulating viral lytic reactivation. In this study, we show that epithelial cell differentiation induces LMP1 expression by increasing expression of two cellular transcription factors (KLF4 and BLIMP1) which cooperatively activate the two LMP1 promoters. We also demonstrate that LMP1 promotes efficient lytic reactivation in EBV-infected epithelial cells by enhancing expression of the Z and R proteins. Thus, in EBV-infected epithelial cells, LMP1 expression is promoted by differentiation and positively regulates lytic viral reactivation.
Collapse
|
29
|
Cornaby C, Jafek JL, Birrell C, Mayhew V, Syndergaard L, Mella J, Cheney W, Poole BD. EBI2 expression in B lymphocytes is controlled by the Epstein-Barr virus transcription factor, BRRF1 (Na), during viral infection. J Gen Virol 2017; 98:435-446. [PMID: 27902324 DOI: 10.1099/jgv.0.000660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epstein-Barr virus-induced gene 2 (EBI2) is an important chemotactic receptor that is involved in proper B-cell T-cell interactions. Epstein-Barr virus (EBV) has been shown to upregulate this gene upon infection of cell lines, but the timing and mechanism of this upregulation, as well as its importance to EBV infection, remain unknown. This work investigated EBV's manipulation of EBI2 expression of primary naive B cells. EBV infection induces EBI2 expression resulting in elevated levels of EBI2 after 24 h until 7 days post-infection, followed by a dramatic decline (P=0.027). Increased EBI2 expression was not found in non-specifically stimulated B cells or when irradiated virus was used. The EBV lytic gene BRRF1 exhibited a similar expression pattern to EBI2 (R2=0.4622). BRRF1-deficient EBV could not induce EBI2. However, B cells transduced with BRRF1 showed elevated expression of EBI2 (P=0.042), a result that was not seen with transduction of a different EBV lytic transfection factor, BRLF1. Based on these results, we conclude that EBI2 expression is directly influenced by EBV infection and that BRRF1 is necessary and sufficient for EBI2 upregulation during infection.
Collapse
Affiliation(s)
- Caleb Cornaby
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Jillian L Jafek
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Cameron Birrell
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Vera Mayhew
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Lauren Syndergaard
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Jeffrey Mella
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Wesley Cheney
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Brian D Poole
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| |
Collapse
|
30
|
The Long and Complicated Relationship between Epstein-Barr Virus and Epithelial Cells. J Virol 2016; 91:JVI.01677-16. [PMID: 27795426 DOI: 10.1128/jvi.01677-16] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The roles of epithelial cells in infection and persistence of the Epstein-Barr virus (EBV) have long been difficult to resolve. However, recent developments have reinforced the conclusion that these cells are a major site of virus replication and raised the possibility that, like papillomaviruses, EBV has evolved to take advantage of epithelial differentiation to ensure survival, persistence, and spread.
Collapse
|
31
|
Ciccocioppo R, Racca F, Scudeller L, Piralla A, Formagnana P, Pozzi L, Betti E, Vanoli A, Riboni R, Kruzliak P, Baldanti F, Corazza GR. Differential cellular localization of Epstein-Barr virus and human cytomegalovirus in the colonic mucosa of patients with active or quiescent inflammatory bowel disease. Immunol Res 2016; 64:191-203. [PMID: 26659090 DOI: 10.1007/s12026-015-8737-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The role of human cytomegalovirus (HCMV) and Epstein-Barr virus (EBV) in the exacerbation of inflammatory bowel disease (IBD) is still uncertain. We prospectively investigated the presence of EBV and HCMV infection in both epithelial and immune cells of colonic mucosa of IBD patients, both refractory and responders to standard therapies, in comparison with patients suffering from irritable bowel syndrome who were considered as controls, by using quantitative real-time polymerase chain reaction, immunohistochemistry and in situ hybridization, in an attempt to assess viral localization, DNA load, life cycle phase and possible correlation with disease activity indexes. We obtained clear evidence of the presence of high DNA loads of both viruses in either enterocytes or immune cells of refractory IBD patients, whereas we observed low levels in the responder group and an absence of detectable copies in all cell populations of controls. Remarkably, the values of EBV and HCMV DNA in inflamed mucosa were invariably higher than in non-inflamed areas in both IBD groups, and the EBV DNA loads in the cell populations of diseased mucosa of refractory IBD patients positively correlated with the severity of mucosal damage and clinical indexes of activity. Moreover, EBV infection resulted the most prevalent either alone or in combination with HCMV, while immunohistochemistry and in situ hybridization did not allow us to distinguish between the different phases of viral life cycle. Finally, as regards treatment, these novel findings could pave the way for the use of new antiviral molecules in the treatment of this condition.
Collapse
Affiliation(s)
- Rachele Ciccocioppo
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation, University of Pavia, Piazzale Golgi, 19, 27100, Pavia, Italy.
| | - Francesca Racca
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation, University of Pavia, Piazzale Golgi, 19, 27100, Pavia, Italy
| | - Luigia Scudeller
- Biometry and Clinical Epidemiology Unit, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Antonio Piralla
- SS Virologia Molecolare - SC Virologia e Microbiologia, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Pietro Formagnana
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation, University of Pavia, Piazzale Golgi, 19, 27100, Pavia, Italy
| | - Lodovica Pozzi
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation, University of Pavia, Piazzale Golgi, 19, 27100, Pavia, Italy
| | - Elena Betti
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation, University of Pavia, Piazzale Golgi, 19, 27100, Pavia, Italy
| | - Alessandro Vanoli
- Department of Human Pathology, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Roberta Riboni
- Department of Human Pathology, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Peter Kruzliak
- 2nd Department of Internal Medicine, St. Anne's University Hospital and Masaryk University, Pekarska 53, 656 91, Brno, Czech Republic. .,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odborarov 10, 832 32, Bratislava, Slovak Republic.
| | - Fausto Baldanti
- SS Virologia Molecolare - SC Virologia e Microbiologia, IRCCS Policlinico San Matteo Foundation, Pavia, Italy.,Department of Clinical Sciences, Surgery, Diagnostics and Pediatrics, University of Pavia, Pavia, Italy
| | - Gino Roberto Corazza
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation, University of Pavia, Piazzale Golgi, 19, 27100, Pavia, Italy
| |
Collapse
|
32
|
Li H, Liu S, Hu J, Luo X, Li N, M Bode A, Cao Y. Epstein-Barr virus lytic reactivation regulation and its pathogenic role in carcinogenesis. Int J Biol Sci 2016; 12:1309-1318. [PMID: 27877083 PMCID: PMC5118777 DOI: 10.7150/ijbs.16564] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/20/2016] [Indexed: 12/27/2022] Open
Abstract
Epstein-Barr virus (EBV) has been associated with several types of human cancers. In the host, EBV can establish two alternative modes of life cycle, known as latent or lytic and the switch from latency to the lytic cycle is known as EBV reactivation. Although EBV in cancer cells is found mostly in latency, a small number of lytically-infected cells promote carcinogenesis through the release of growth factors and oncogenic cytokines. This review focuses on the mechanisms by which EBV reactivation is controlled by cellular and viral factors, and discusses how EBV lytic infection contributes to human malignancies.
Collapse
Affiliation(s)
- Hongde Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Sufang Liu
- Division of Hematology, Institute of Molecular Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jianmin Hu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Namei Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| |
Collapse
|
33
|
Affiliation(s)
- Ya-Fang Chiu
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin 53705;
- Morgridge Institute for Research, Madison, Wisconsin 53715
- Research Center for Emerging Viral Infections and Department of Microbiology and Immunology, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Medical Laboratory, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Bill Sugden
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin 53705;
| |
Collapse
|
34
|
Makielski KR, Lee D, Lorenz LD, Nawandar DM, Chiu YF, Kenney SC, Lambert PF. Human papillomavirus promotes Epstein-Barr virus maintenance and lytic reactivation in immortalized oral keratinocytes. Virology 2016; 495:52-62. [PMID: 27179345 DOI: 10.1016/j.virol.2016.05.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 11/18/2022]
Abstract
Epstein-Barr virus and human papillomaviruses are human tumor viruses that infect and replicate in upper aerodigestive tract epithelia and cause head and neck cancers. The productive phases of both viruses are tied to stratified epithelia highlighting the possibility that these viruses may affect each other's life cycles. Our lab has established an in vitro model system to test the effects of EBV and HPV co-infection in stratified squamous oral epithelial cells. Our results indicate that HPV increases maintenance of the EBV genome in the co-infected cells and promotes lytic reactivation of EBV in upper layers of stratified epithelium. Expression of the HPV oncogenes E6 and E7 were found to be necessary and sufficient to account for HPV-mediated lytic reactivation of EBV. Our findings indicate that HPV increases the capacity of epithelial cells to support the EBV life cycle, which could in turn increase EBV-mediated pathogenesis in the oral cavity.
Collapse
Affiliation(s)
- Kathleen R Makielski
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, United States
| | - Denis Lee
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, United States
| | - Laurel D Lorenz
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, United States
| | - Dhananjay M Nawandar
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, United States
| | - Ya-Fang Chiu
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, United States; Morgridge Institute for Research, University of Wisconsin-Madison, 330 N. Orchard Street, Madison, WI 53715, United States
| | - Shannon C Kenney
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, United States
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, United States.
| |
Collapse
|
35
|
Germi R, Guigue N, Lupo J, Semenova T, Grossi L, Vermeulen O, Epaulard O, de Fraipont F, Morand P. Methylation of Epstein-Barr virus Rta promoter in EBV primary infection, reactivation and lymphoproliferation. J Med Virol 2016; 88:1814-20. [PMID: 26990870 DOI: 10.1002/jmv.24524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2016] [Indexed: 11/09/2022]
Abstract
During Epstein-Barr virus (EBV) latency, the EBV genome is largely silenced by methylation. This silencing is overturned during the switch to the lytic cycle. A key event is the production of the viral protein Zta which binds to three Zta-response elements (ZRE) from the Rta promoter (Rp), two of which (ZRE2 and ZRE3) include three CpG motifs methylated in the latent genome. The bisulphite pyrosequencing reaction was used to quantify the methylation of ZRE2, ZRE3a, and ZRE3b in EBV-positive cell lines and in ex vivo samples of EBV-related diseases, in order to assess whether the level of methylation in these ZREs could provide additional information to viral DNA load and serology in the characterization of EBV-associated diseases. In PBMC from two patients with infectious mononucleosis, over time Rp became increasingly methylated whereas EBV load decreased. In tonsil from patients with chronic tonsillitis, the methylation was less than in EBV-associated tumors, regardless of the viral load. This was even more striking when only the ZRE3a and ZRE3b were considered since some samples presented unbalanced profiles on ZRE2. EBV reactivation in cell culture showed that the reduction in the overall level of methylation was closely related to the production of unmethylated virions. Thus, an assessment of the level of methylation may help to better characterize EBV replication in PBMC and in biopsies with high EBV load, during infectious mononucleosis and EBV-associated cancers. J. Med. Virol. 88:1814-1820, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Raphaële Germi
- Univ. Grenoble Alpes UMI 3265 UJF-CNRS EMBL, UVHCI, Grenoble, France.,Department of Virology, Grenoble Alpes University Hospital, Grenoble, France
| | - Nicolas Guigue
- Univ. Grenoble Alpes UMI 3265 UJF-CNRS EMBL, UVHCI, Grenoble, France.,Department of Virology, Grenoble Alpes University Hospital, Grenoble, France
| | - Julien Lupo
- Univ. Grenoble Alpes UMI 3265 UJF-CNRS EMBL, UVHCI, Grenoble, France.,Department of Virology, Grenoble Alpes University Hospital, Grenoble, France
| | - Touyana Semenova
- Univ. Grenoble Alpes UMI 3265 UJF-CNRS EMBL, UVHCI, Grenoble, France.,Department of Virology, Grenoble Alpes University Hospital, Grenoble, France
| | - Laurence Grossi
- Univ. Grenoble Alpes UMI 3265 UJF-CNRS EMBL, UVHCI, Grenoble, France
| | - Odile Vermeulen
- Department of Cancer Clinical Chemistry, Grenoble Alpes University Hospital, Grenoble, France
| | - Olivier Epaulard
- Univ. Grenoble Alpes UMI 3265 UJF-CNRS EMBL, UVHCI, Grenoble, France.,Department of Infectious Diseases, Grenoble Alpes University Hospital, Grenoble, France
| | - Florence de Fraipont
- Department of Cancer Clinical Chemistry, Grenoble Alpes University Hospital, Grenoble, France
| | - Patrice Morand
- Univ. Grenoble Alpes UMI 3265 UJF-CNRS EMBL, UVHCI, Grenoble, France.,Department of Virology, Grenoble Alpes University Hospital, Grenoble, France
| |
Collapse
|
36
|
Comprehensive profiling of EBV gene expression in nasopharyngeal carcinoma through paired-end transcriptome sequencing. Front Med 2016; 10:61-75. [DOI: 10.1007/s11684-016-0436-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 01/15/2016] [Indexed: 12/11/2022]
|
37
|
5-hydroxymethylation of the EBV genome regulates the latent to lytic switch. Proc Natl Acad Sci U S A 2015; 112:E7257-65. [PMID: 26663912 DOI: 10.1073/pnas.1513432112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Latent Epstein-Barr virus (EBV) infection and cellular hypermethylation are hallmarks of undifferentiated nasopharyngeal carcinoma (NPC). However, EBV infection of normal oral epithelial cells is confined to differentiated cells and is lytic. Here we demonstrate that the EBV genome can become 5-hydroxymethylated and that this DNA modification affects EBV lytic reactivation. We show that global 5-hydroxymethylcytosine (5hmC)-modified DNA accumulates during normal epithelial-cell differentiation, whereas EBV+ NPCs have little if any 5hmC-modified DNA. Furthermore, we find that increasing cellular ten-eleven translocation (TET) activity [which converts methylated cytosine (5mC) to 5hmC] decreases methylation, and increases 5hmC modification, of lytic EBV promoters in EBV-infected cell lines containing highly methylated viral genomes. Conversely, inhibition of endogenous TET activity increases lytic EBV promoter methylation in an EBV-infected telomerase-immortalized normal oral keratinocyte (NOKs) cell line where lytic viral promoters are largely unmethylated. We demonstrate that these cytosine modifications differentially affect the ability of the two EBV immediate-early proteins, BZLF1 (Z) and BRLF1 (R), to induce the lytic form of viral infection. Although methylation of lytic EBV promoters increases Z-mediated and inhibits R-mediated lytic reactivation, 5hmC modification of lytic EBV promoters has the opposite effect. We also identify a specific CpG-containing Z-binding site on the BRLF1 promoter that must be methylated for Z-mediated viral reactivation and show that TET-mediated 5hmC modification of this site in NOKs prevents Z-mediated viral reactivation. Decreased 5-hydroxymethylation of cellular and viral genes may contribute to NPC formation.
Collapse
|
38
|
Nawandar DM, Wang A, Makielski K, Lee D, Ma S, Barlow E, Reusch J, Jiang R, Wille CK, Greenspan D, Greenspan JS, Mertz JE, Hutt-Fletcher L, Johannsen EC, Lambert PF, Kenney SC. Differentiation-Dependent KLF4 Expression Promotes Lytic Epstein-Barr Virus Infection in Epithelial Cells. PLoS Pathog 2015; 11:e1005195. [PMID: 26431332 PMCID: PMC4592227 DOI: 10.1371/journal.ppat.1005195] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/08/2015] [Indexed: 12/15/2022] Open
Abstract
Epstein-Barr virus (EBV) is a human herpesvirus associated with B-cell and epithelial cell malignancies. EBV lytically infects normal differentiated oral epithelial cells, where it causes a tongue lesion known as oral hairy leukoplakia (OHL) in immunosuppressed patients. However, the cellular mechanism(s) that enable EBV to establish exclusively lytic infection in normal differentiated oral epithelial cells are not currently understood. Here we show that a cellular transcription factor known to promote epithelial cell differentiation, KLF4, induces differentiation-dependent lytic EBV infection by binding to and activating the two EBV immediate-early gene (BZLF1 and BRLF1) promoters. We demonstrate that latently EBV-infected, telomerase-immortalized normal oral keratinocyte (NOKs) cells undergo lytic viral reactivation confined to the more differentiated cell layers in organotypic raft culture. Furthermore, we show that endogenous KLF4 expression is required for efficient lytic viral reactivation in response to phorbol ester and sodium butyrate treatment in several different EBV-infected epithelial cell lines, and that the combination of KLF4 and another differentiation-dependent cellular transcription factor, BLIMP1, is highly synergistic for inducing lytic EBV infection. We confirm that both KLF4 and BLIMP1 are expressed in differentiated, but not undifferentiated, epithelial cells in normal tongue tissue, and show that KLF4 and BLIMP1 are both expressed in a patient-derived OHL lesion. In contrast, KLF4 protein is not detectably expressed in B cells, where EBV normally enters latent infection, although KLF4 over-expression is sufficient to induce lytic EBV reactivation in Burkitt lymphoma cells. Thus, KLF4, together with BLIMP1, plays a critical role in mediating lytic EBV reactivation in epithelial cells. Lytic EBV infection of differentiated oral epithelial cells results in the release of infectious viral particles and is required for efficient transmission of EBV from host to host. Lytic infection also causes a tongue lesion known as oral hairy leukoplakia (OHL). However, surprisingly little is known in regard to how EBV gene expression is regulated in epithelial cells. Using a stably EBV- infected, telomerase-immortalized normal oral keratinocyte cell line, we show here that undifferentiated basal epithelial cells support latent EBV infection, while differentiation of epithelial cells promotes lytic reactivation. Furthermore, we demonstrate that the KLF4 cellular transcription factor, which is required for normal epithelial cell differentiation and is expressed in differentiated, but not undifferentiated, normal epithelial cells, induces lytic EBV reactivation by activating transcription from the two EBV immediate-early gene promoters. We also show that the combination of KLF4 and another differentiation-dependent cellular transcription factor, BLIMP1, synergistically activates lytic gene expression in epithelial cells. We confirm that KLF4 and BLIMP1 expression in normal tongue epithelium is confined to differentiated cells, and that KLF4 and BLIMP1 are expressed in a patient-derived OHL tongue lesion. These results suggest that differentiation-dependent expression of KLF4 and BLIMP1 in epithelial cells promotes lytic EBV infection.
Collapse
Affiliation(s)
- Dhananjay M. Nawandar
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Cellular and Molecular Biology Graduate Program, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Anqi Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Cellular and Molecular Biology Graduate Program, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Kathleen Makielski
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Denis Lee
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Shidong Ma
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Elizabeth Barlow
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Jessica Reusch
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Cellular and Molecular Biology Graduate Program, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Ru Jiang
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Coral K. Wille
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Medical Microbiology and Immunology Graduate Program, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Deborah Greenspan
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, San Francisco, California, United States of America
| | - John S. Greenspan
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Janet E. Mertz
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Lindsey Hutt-Fletcher
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Eric C. Johannsen
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
39
|
Host Gene Expression Is Regulated by Two Types of Noncoding RNAs Transcribed from the Epstein-Barr Virus BamHI A Rightward Transcript Region. J Virol 2015; 89:11256-68. [PMID: 26311882 DOI: 10.1128/jvi.01492-15] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/21/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED In Epstein-Barr virus-infected epithelial cancers, the alternatively spliced BamHI A rightward transcripts (BARTs) are the most abundant viral polyadenylated RNA. The BART introns form the template for the production of 44 microRNAs (miRNAs), and the spliced and polyadenylated exons form nuclear non-protein-coding RNAs. Analysis of host cell transcription by RNA-seq during latency in AGS cells identified a large number of reproducibly changed genes. Genes that were downregulated were enriched for BART miRNA targets. Bioinformatics analysis predicted activation of the myc pathway and downregulation of XBP1 as likely mediators of the host transcriptional changes. Effects on XBP1 activity were not detected in these cells; however, myc activation was confirmed through use of a myc-responsive luciferase reporter. To identify potential regulatory properties of the spliced, polyadenylated BART RNAs, a full-length cDNA clone of one of the BART isoforms was obtained and expressed in the Epstein-Barr virus (EBV)-negative AGS cells. The BART cDNA transcript remained primarily nuclear yet induced considerable and consistent changes in cellular transcription, as profiled by RNA-seq. These transcriptional changes significantly overlapped the transcriptional changes induced during latent EBV infection of these same cells, where the BARTs are exclusively nuclear and do not encode proteins. These data suggest that the nuclear BART RNAs are functional long noncoding RNAs (lncRNAs). The abundant expression of multiple forms of noncoding RNAs that contribute to growth regulation without expression of immunogenic proteins would be an important mechanism for viral oncogenesis in the presence of a functional immune system. IMPORTANCE Infection with Epstein-Barr virus (EBV) is nearly ubiquitous in the human population; however, it does contribute to the formation of multiple types of cancer. In immunocompromised patients, EBV causes multiple types of lymphomas by expressing viral oncogenes that promote growth and survival of infected B lymphocytes. EBV-positive gastric carcinoma does not require immune suppression, and the viral oncoproteins that are frequent targets for an immunological response are not expressed. This study demonstrates using transcriptional analysis that the expression of various classes of viral non-protein-coding RNAs likely contribute to the considerable changes in the host transcriptional profile in the AGS gastric cancer cell line. This is the first report to show that the highly expressed polyadenylated BamHI A rightward transcripts (BART) viral transcript in gastric carcinoma is in fact a functional viral long noncoding RNA. These studies provide new insight into how EBV can promote transformation in the absence of viral protein expression.
Collapse
|
40
|
Niller HH, Tarnai Z, Decsi G, Zsedényi A, Bánáti F, Minarovits J. Role of epigenetics in EBV regulation and pathogenesis. Future Microbiol 2015; 9:747-56. [PMID: 25046522 DOI: 10.2217/fmb.14.41] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epigenetic modifications of the viral and host cell genomes regularly occur in EBV-associated lymphomas and carcinomas. The cell type-dependent usage of latent EBV promoters is determined by the cellular epigenetic machinery. Viral oncoproteins interact with the very same epigenetic regulators and alter the cellular epigenotype and gene-expression pattern: there are common gene sets hypermethylated in both EBV-positive and EBV-negative neoplasms of different histological types. A group of hypermethylated promoters may represent, however, a unique EBV-associated epigenetic signature in EBV-positive gastric carcinomas. By contrast, EBV-immortalized B-lymphoblastoid cell lines are characterized by genome-wide demethylation and loss and rearrangement of heterochromatic histone marks. Early steps of EBV infection may also contribute to reprogramming of the cellular epigenome.
Collapse
Affiliation(s)
- Hans Helmut Niller
- Department of Microbiology & Hygiene, University of Regensburg, Franz-Josef-Strauss Allee 11, D-93053 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Tsao SW, Tsang CM, To KF, Lo KW. The role of Epstein-Barr virus in epithelial malignancies. J Pathol 2015; 235:323-33. [PMID: 25251730 PMCID: PMC4280676 DOI: 10.1002/path.4448] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/11/2014] [Accepted: 09/16/2014] [Indexed: 12/14/2022]
Abstract
The close association of Epstein–Barr virus (EBV) infection with non-keratinizing nasopharyngeal carcinomas and a subset of gastric carcinomas suggests that EBV infection is a crucial event in these cancers. The difficulties encountered in infecting and transforming primary epithelial cells in experimental systems suggest that the role of EBV in epithelial malignancies is complex and multifactorial in nature. Genetic alterations in the premalignant epithelium may support the establishment of latent EBV infection, which is believed to be an initiation event. Oncogenic properties have been reported in multiple EBV latent genes. The BamH1 A rightwards transcripts (BARTs) and the BART-encoded microRNAs (miR-BARTs) are highly expressed in EBV-associated epithelial malignancies and may induce malignant transformation. However, enhanced proliferation may not be the crucial function of EBV infection in epithelial malignancies, at least in the early stages of cancer development. EBV-encoded gene products may confer anti-apoptotic properties and promote the survival of infected premalignant epithelial cells harbouring genetic alterations. Multiple EBV-encoded microRNAs have been reported to have immune evasion functions. Genetic alterations in host cells, as well as inflammatory stroma, could modulate the expression of EBV genes and alter the growth properties of infected premalignant epithelial cells, encouraging their selection during carcinogenesis.
Collapse
Affiliation(s)
- Sai-Wah Tsao
- Department of Anatomy and Centre for Cancer Research, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR
| | | | | | | |
Collapse
|
42
|
Son M, Lee M, Ryu E, Moon A, Jeong CS, Jung YW, Park GH, Sung GH, Cho H, Kang H. Genipin as a novel chemical activator of EBV lytic cycle. J Microbiol 2015; 53:155-65. [DOI: 10.1007/s12275-015-4672-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 12/22/2022]
|
43
|
Cellular differentiation regulator BLIMP1 induces Epstein-Barr virus lytic reactivation in epithelial and B cells by activating transcription from both the R and Z promoters. J Virol 2014; 89:1731-43. [PMID: 25410866 DOI: 10.1128/jvi.02781-14] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV) maintains a lifelong latent infection within a subset of its host's memory B cells, while lytic EBV replication takes place in plasma cells and differentiated epithelial cells. Therefore, cellular transcription factors, such as BLIMP1, that are key mediators of differentiation likely contribute to the EBV latent-to-lytic switch. Previous reports showed that ectopic BLIMP1 expression induces reactivation in some EBV-positive (EBV(+)) B-cell lines and transcription from Zp, with all Z(+) cells in oral hairy leukoplakia being BLIMP1(+). Here, we examined BLIMP1's role in inducing EBV lytic gene expression in numerous EBV(+) epithelial and B-cell lines and activating transcription from Rp. BLIMP1 addition was sufficient to induce reactivation in latently infected epithelial cells derived from gastric cancers, nasopharyngeal carcinomas, and normal oral keratinocytes (NOK) as well as some, but not all B-cell lines. BLIMP1 strongly induced transcription from Rp as well as Zp, with there being three or more synergistically acting BLIMP1-responsive elements (BRE) within Rp. BLIMP1's DNA-binding domain was required for reactivation, but BLIMP1 did not directly bind the nucleotide (nt) -660 Rp BRE. siRNA knockdown of BLIMP1 inhibited 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced lytic reactivation in NOK-Akata cells, cells that can be reactivated by R, but not Z. Thus, we conclude that BLIMP1 expression is both necessary and sufficient to induce EBV lytic replication in many (possibly all) EBV(+) epithelial-cell types, but in only a subset of EBV(+) B-cell types; it does so, at least in part, by strongly activating expression of both EBV immediately early genes, BZLF1 and BRLF1. IMPORTANCE This study is the first one to show that the cellular transcription factor BLIMP1, a key player in both epithelial and B-cell differentiation, induces reactivation of the oncogenic herpesvirus Epstein-Barr virus (EBV) out of latency into lytic replication in a variety of cancerous epithelial cell types as well as in some, but not all, B-cell types that contain this virus in a dormant state. The mechanism by which BLIMP1 does so involves strongly turning on expression of both of the immediate early genes of the virus, probably by directly acting upon the promoters as part of protein complexes or indirectly by altering the expression or activities of some cellular transcription factors and signaling pathways. The fact that EBV(+) cancers usually contain mostly undifferentiated cells may be due in part to these cells dying from lytic EBV infection when they differentiate and express wild-type BLIMP1.
Collapse
|
44
|
Tsang CM, Deng W, Yip YL, Zeng MS, Lo KW, Tsao SW. Epstein-Barr virus infection and persistence in nasopharyngeal epithelial cells. CHINESE JOURNAL OF CANCER 2014; 33:549-55. [PMID: 25223910 PMCID: PMC4244318 DOI: 10.5732/cjc.014.10169] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epstein-Barr virus (EBV) infection is closely associated with undifferentiated nasopharyngeal carcinoma (NPC), strongly implicating a role for EBV in NPC pathogenesis; conversely, EBV infection is rarely detected in normal nasopharyngeal epithelial tissues. In general, EBV does not show a strong tropism for infecting human epithelial cells, and EBV infection in oropharyngeal epithelial cells is believed to be lytic in nature. To establish life-long infection in humans, EBV has evolved efficient strategies to infect B cells and hijack their cellular machinery for latent infection. Lytic EBV infection in oropharyngeal epithelial cells, though an infrequent event, is believed to be a major source of infectious EBV particles for salivary transmission. The biological events associated with nasopharyngeal epithelial cells are only beginning to be understood with the advancement of EBV infection methods and the availability of nasopharyngeal epithelial cell models for EBV infection studies. EBV infection in human epithelial cells is a highly inefficient process compared to that in B cells, which express the complement receptor type 2 (CR2) to mediate EBV infection. Although receptor(s) on the epithelial cell surface for EBV infection remain(s) to be identified, EBV infection in epithelial cells could be achieved via the interaction of glycoproteins on the viral envelope with surface integrins on epithelial cells, which might trigger membrane fusion to internalize EBV in cells. Normal nasopharyngeal epithelial cells are not permissive for latent EBV infection, and EBV infection in normal nasopharyngeal epithelial cells usually results in growth arrest. However, genetic alterations in premalignant nasopharyngeal epithelial cells, including p16 deletion and cyclin D1 overexpression, could override the growth inhibitory effect of EBV infection to support stable and latent EBV infection in nasopharyngeal epithelial cells. The EBV episome in NPC is clonal in nature, suggesting that NPC develops from a single EBV-infected nasopharyngeal epithelial cell, and the establishment of persistent and latent EBV infection in premalignant nasopharyngeal epithelium may represent an early and critical event for NPC development.
Collapse
Affiliation(s)
- Chi Man Tsang
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | | | | | | | | | | |
Collapse
|
45
|
Genome-wide DNA methylation as an epigenetic consequence of Epstein-Barr virus infection of immortalized keratinocytes. J Virol 2014; 88:11442-58. [PMID: 25056883 DOI: 10.1128/jvi.00972-14] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED The oral cavity is a persistent reservoir for Epstein-Barr virus (EBV) with lifelong infection of resident epithelial and B cells. Infection of these cell types results in distinct EBV gene expression patterns regulated by epigenetic modifications involving DNA methylation and chromatin structure. Regulation of EBV gene expression relies on viral manipulation of the host epigenetic machinery that may result in long-lasting host epigenetic reprogramming. To identify epigenetic events following EBV infection, a transient infection model was established to map epigenetic changes in telomerase-immortalized oral keratinocytes. EBV-infected oral keratinocytes exhibited a predominantly latent viral gene expression program with some lytic or abortive replication. Calcium and methylcellulose-induced differentiation was delayed in EBV-positive clones and in clones that lost EBV compared to uninfected controls, indicating a functional consequence of EBV epigenetic modifications. Analysis of global cellular DNA methylation identified over 13,000 differentially methylated CpG residues in cells exposed to EBV compared to uninfected controls, with CpG island hypermethylation observed at several cellular genes. Although the vast majority of the DNA methylation changes were silent, 65 cellular genes that acquired CpG methylation showed altered transcript levels. Genes with increased transcript levels frequently acquired DNA methylation within the gene body while those with decreased transcript levels acquired DNA methylation near the transcription start site. Treatment with the DNA methyltransferase inhibitor, decitabine, restored expression of some hypermethylated genes in EBV-infected and EBV-negative transiently infected clones. Overall, these observations suggested that EBV infection of keratinocytes leaves a lasting epigenetic imprint that can enhance the tumorigenic phenotype of infected cells. IMPORTANCE Here, we show that EBV infection of oral keratinocytes led to CpG island hypermethylation as an epigenetic scar of prior EBV infection that was retained after loss of the virus. Such EBV-induced epigenetic modification recapitulated the hypermethylated CpG island methylator phenotype (CIMP) observed in EBV-associated carcinomas. These epigenetic alterations not only impacted gene expression but also resulted in delayed calcium and methylcellulose-induced keratinocyte differentiation. Importantly, these epigenetic changes occurred in cells that were not as genetically unstable as carcinoma cells, indicating that EBV infection induced an epigenetic mutator phenotype. The impact of this work is that we have provided a mechanistic framework for how a tumor virus using the epigenetic machinery can act in a "hit-and-run" fashion, with retention of epigenetic alterations after loss of the virus. Unlike genetic alterations, these virally induced epigenetic changes can be reversed pharmacologically, providing therapeutic interventions to EBV-associated malignancies.
Collapse
|
46
|
Kenney SC, Mertz JE. Regulation of the latent-lytic switch in Epstein-Barr virus. Semin Cancer Biol 2014; 26:60-8. [PMID: 24457012 PMCID: PMC4048781 DOI: 10.1016/j.semcancer.2014.01.002] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/17/2013] [Accepted: 01/09/2014] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) infection contributes to the development of several different types of human malignancy, including Burkitt lymphoma, Hodgkin lymphoma, and nasopharyngeal carcinoma. As a herpesvirus, EBV can establish latent or lytic infection in cells. EBV-positive tumors are composed almost exclusively of cells with latent EBV infection. Strategies for inducing the lytic form of EBV infection in tumor cells are being investigated as a potential therapy for EBV-positive tumors. In this article, we review how cellular and viral proteins regulate the latent-lytic EBV switch in infected B cells and epithelial cells, and discuss how harnessing lytic viral reactivation might be used therapeutically.
Collapse
Affiliation(s)
- Shannon C Kenney
- McArdle Laboratory for Cancer Research, 1400 University Avenue, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1599, USA; Department of Oncology, 1400 University Avenue, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1599, USA; Department of Medicine, 1400 University Avenue, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1599, USA.
| | - Janet E Mertz
- McArdle Laboratory for Cancer Research, 1400 University Avenue, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1599, USA; Department of Oncology, 1400 University Avenue, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1599, USA
| |
Collapse
|
47
|
Lorenzetti MA, Gantuz M, Altcheh J, De Matteo E, Chabay PA, Preciado MV. Epstein-Barr virus BZLF1 gene polymorphisms: malignancy related or geographically distributed variants? Clin Microbiol Infect 2014; 20:O861-9. [PMID: 24666405 DOI: 10.1111/1469-0691.12631] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/21/2014] [Accepted: 03/21/2014] [Indexed: 11/29/2022]
Abstract
The ubiquitous Epstein-Barr virus (EBV) is related to the development of several lymphoid and epithelial malignancies and is also the aetiological agent for infectious mononucleosis (IM). BZLF1, an immediate early gene, plays a key role in modulating the switch from latency to lytic replication, hence enabling viral propagation. Polymorphic variations in the coded protein have been studied in other geographical regions in a search for viral factors that are inherent to malignancies and differ from those present in benign infections. In the present study, in samples of paediatric patients with benign IM and paediatric patients with malignant lymphomas, we detected previously described sequence variations as well as distinctive sequence polymorphisms from our region. By means of phylogenetic reconstruction, we characterized new phylogenetically distinct variants. Moreover, we described an association between specific variants and the studied pathologies in our region, particularly variant BZLF1-A2 with lymphomas and BZLF1-C with IM. Additionally, length polymorphisms within intron 1 were also assessed and compared between pathologies resulting in an association between 29-bp repeated units and lymphomas. In conclusion, this is the first report to characterize BZLF1 gene polymorphisms in paediatric patients from our geographical region and to suggest the association of these polymorphisms with malignant lymphomas.
Collapse
Affiliation(s)
- M A Lorenzetti
- Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children Hospital, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
48
|
Epstein-Barr virus utilizes Ikaros in regulating its latent-lytic switch in B cells. J Virol 2014; 88:4811-27. [PMID: 24522918 DOI: 10.1128/jvi.03706-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Ikaros is a zinc finger DNA-binding protein that regulates chromatin remodeling and the expression of genes involved in the cell cycle, apoptosis, and Notch signaling. It is a master regulator of lymphocyte differentiation and functions as a tumor suppressor in acute lymphoblastic leukemia. Nevertheless, no previous reports described effects of Ikaros on the life cycle of any human lymphotropic virus. Here, we demonstrate that full-length Ikaros (IK-1) functions as a major factor in the maintenance of viral latency in Epstein-Barr virus (EBV)-positive Burkitt's lymphoma Sal and MutuI cell lines. Either silencing of Ikaros expression by small hairpin RNA (shRNA) knockdown or ectopic expression of a non-DNA-binding isoform induced lytic gene expression. These effects synergized with other lytic inducers of EBV, including transforming growth factor β (TGF-β) and the hypoxia mimic desferrioxamine. Data from chromatin immunoprecipitation (ChIP)-quantitative PCR (qPCR) and ChIP-sequencing (ChIP-seq) analyses indicated that Ikaros did not bind to either of the EBV immediate early genes BZLF1 and BRLF1. Rather, Ikaros affected the expression of Oct-2 and Bcl-6, other transcription factors that directly inhibit EBV reactivation and plasma cell differentiation, respectively. IK-1 also complexed with the EBV immediate early R protein in coimmunoprecipitation assays and partially colocalized with R within cells. The presence of R alleviated IK-1-mediated transcriptional repression, with IK-1 then cooperating with Z and R to enhance lytic gene expression. Thus, we conclude that Ikaros plays distinct roles at different stages of EBV's life cycle: it contributes to maintaining latency via indirect mechanisms, and it may also synergize with Z and R to enhance lytic replication through direct association with R and/or R-induced alterations in Ikaros' functional activities via cellular signaling pathways. IMPORTANCE This is the first report showing that the cellular protein Ikaros, a known master regulator of hematopoiesis and critical tumor suppressor in acute lymphoblastic leukemia, also plays important roles in the life cycle of Epstein-Barr virus in B cells.
Collapse
|
49
|
Abstract
The human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) establish long-term latent infections associated with diverse human cancers. Viral oncogenesis depends on the ability of the latent viral genome to persist in host nuclei as episomes that express a restricted yet dynamic pattern of viral genes. Multiple epigenetic events control viral episome generation and maintenance. This Review highlights some of the recent findings on the role of chromatin assembly, histone and DNA modifications, and higher-order chromosome structures that enable gammaherpesviruses to establish stable latent infections that mediate viral pathogenesis.
Collapse
|
50
|
The B-cell-specific transcription factor and master regulator Pax5 promotes Epstein-Barr virus latency by negatively regulating the viral immediate early protein BZLF1. J Virol 2013; 87:8053-63. [PMID: 23678172 DOI: 10.1128/jvi.00546-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The latent-to-lytic switch of Epstein-Barr virus (EBV) is mediated by the immediate early protein BZLF1 (Z). However, the cellular factors regulating this process remain incompletely characterized. In this report, we show that the B-cell-specific transcription factor Pax5 helps to promote viral latency in B cells by blocking Z function. Although Z was previously shown to directly interact with Pax5 and inhibit its activity, the effect of Pax5 on Z function has not been investigated. Here, we demonstrate that Pax5 inhibits Z-mediated lytic viral gene expression and the release of infectious viral particles in latently infected epithelial cell lines. Conversely, we found that shRNA-mediated knockdown of endogenous Pax5 in a Burkitt lymphoma B-cell line leads to viral reactivation. Furthermore, we show that Pax5 reduces Z activation of early lytic viral promoters in reporter gene assays and inhibits Z binding to lytic viral promoters in vivo. We confirm that Pax5 and Z directly interact and show that this interaction requires the carboxy-terminal DNA-binding/dimerization domain of Z and the amino-terminal DNA-binding domain of Pax5. A Pax5 DNA-binding mutant (V26G/P80R) that interacts with Z retains the ability to inhibit Z function, whereas a Pax5 mutant (Δ106-110) that is deficient for interaction with Z does not inhibit Z-mediated lytic viral reactivation. Since the B-cell-specific transcription factor Oct-2 also directly interacts with Z and inhibits its function, these results suggest that EBV uses multiple redundant mechanisms to establish and maintain viral latency in B cells.
Collapse
|