1
|
Fernández I, Bontems F, Brun D, Coquin Y, Goverde CA, Correia BE, Gessain A, Buseyne F, Rey FA, Backovic M. Structures of the Foamy virus fusion protein reveal an unexpected link with the F protein of paramyxo- and pneumoviruses. SCIENCE ADVANCES 2024; 10:eado7035. [PMID: 39392890 PMCID: PMC11468914 DOI: 10.1126/sciadv.ado7035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/06/2024] [Indexed: 10/13/2024]
Abstract
Foamy viruses (FVs) constitute a subfamily of retroviruses. Their envelope (Env) glycoprotein drives the merger of viral and cellular membranes during entry into cells. The only available structures of retroviral Envs are those from human and simian immunodeficiency viruses from the subfamily of orthoretroviruses, which are only distantly related to the FVs. We report the cryo-electron microscopy structures of the FV Env ectodomain in the pre- and post-fusion states, which unexpectedly demonstrate structural similarity with the fusion protein (F) of paramyxo- and pneumoviruses, implying an evolutionary link between the viral fusogens. We describe the structural features that are unique to the FV Env and propose a mechanistic model for its conformational change, highlighting how the interplay of its structural elements could drive membrane fusion and viral entry. The structural knowledge on the FV Env now provides a framework for functional investigations, which can benefit the design of FV Env variants with improved features for use as gene therapy vectors.
Collapse
Affiliation(s)
- Ignacio Fernández
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, 75015 Paris, France
| | - François Bontems
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, 75015 Paris, France
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris Saclay, 91190 Gif-sur-Yvette, France
| | - Delphine Brun
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, 75015 Paris, France
| | - Youna Coquin
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, 75015 Paris, France
| | - Casper A. Goverde
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bruno E. Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Antoine Gessain
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, 75015 Paris, France
| | - Florence Buseyne
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, 75015 Paris, France
| | - Felix A. Rey
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, 75015 Paris, France
| | - Marija Backovic
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, 75015 Paris, France
| |
Collapse
|
2
|
Leys YE, Cameron J, Frater V, Thomas K, Butterfield TR, Campbell Mitchell M, Maddan C, Moore J, Pierre R, Cloherty GA, Anzinger JJ. Seroprevalence of Human T-Cell Lymphotropic Virus-1 in a Jamaican Antenatal Population and Assessment of Pooled Testing as a Cost Reduction Strategy for Implementation of Routine Antenatal Screening. Am J Trop Med Hyg 2023; 109:1344-1350. [PMID: 37871588 PMCID: PMC10793066 DOI: 10.4269/ajtmh.23-0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/10/2023] [Indexed: 10/25/2023] Open
Abstract
Mother to child transmission (MTCT) of human T-cell lymphotropic virus (HTLV)-1 is associated with increased risk of adult T-cell leukemia and can be unrecognized without routine antenatal screening. We assessed the seroprevalence of HTLV-1/2 among pregnant women attending The University Hospital of the West Indies Antenatal Clinic, 2019, and validated a cost-effective strategy to screen antenatal clinic attendees for HTLV-1/2. Residual antenatal samples from 370 women were tested for HTLV-1/2 by chemiluminescence microparticle immunoassay (CMIA). Six samples were confirmed HTLV-1 positive by Western blot (none for HTLV-2) for a prevalence of 1.62%. Four mother-child pairs were able to be recruited for HTLV testing of children, with two children testing HTLV-1/2 positive. Medical records of HTLV-1-infected women revealed that all women breastfed, indicating an unrecognized risk for HTLV MTCT. To assess whether pooling of samples as a cost-reduction strategy could be introduced, we pooled all antenatal samples received between November and December 2021 into 12 pools of eight samples/pool. Two pools were CMIA positive, and de-pooling of samples identified two CMIA-positive samples (one per pool), both confirmed as HTLV-1 by Western blot. These results indicate that HTLV-1 remains prevalent in pregnant Jamaican women and that sample pooling can be a cost-effective strategy to limit MTCT in Jamaica.
Collapse
Affiliation(s)
- Ynolde E. Leys
- Department of Microbiology, The University of the West Indies, Kingston, Jamaica, West Indies
| | - Jenene Cameron
- Department of Microbiology, The University of the West Indies, Kingston, Jamaica, West Indies
| | - Velesha Frater
- Department of Microbiology, The University of the West Indies, Kingston, Jamaica, West Indies
| | - Kaesha Thomas
- Department of Microbiology, The University of the West Indies, Kingston, Jamaica, West Indies
| | - Tiffany R. Butterfield
- Department of Microbiology, The University of the West Indies, Kingston, Jamaica, West Indies
| | - Michelle Campbell Mitchell
- Department of Obstetrics and Gynaecology, The University of the West Indies, Kingston, Jamaica, West Indies
| | - Cathy Maddan
- Department of Obstetrics and Gynaecology, The University of the West Indies, Kingston, Jamaica, West Indies
| | - Jacynth Moore
- Department of Child and Adolescent Health, The University of the West Indies, Kingston, Jamaica, West Indies
| | - Russell Pierre
- Department of Child and Adolescent Health, The University of the West Indies, Kingston, Jamaica, West Indies
| | - Gavin A. Cloherty
- Infectious Diseases Research, Abbott Laboratories, Abbott Park, Illinois
- Abbott Pandemic Defense Coalition, Abbott Park, Illinois
| | - Joshua J. Anzinger
- Department of Microbiology, The University of the West Indies, Kingston, Jamaica, West Indies
- Abbott Pandemic Defense Coalition, The University of the West Indies, Kingston, Jamaica, West Indies
- Global Virus Network, Baltimore, Maryland
| |
Collapse
|
3
|
Dynesen LT, Fernandez I, Coquin Y, Delaplace M, Montange T, Njouom R, Bilounga-Ndongo C, Rey FA, Gessain A, Backovic M, Buseyne F. Neutralization of zoonotic retroviruses by human antibodies: Genotype-specific epitopes within the receptor-binding domain from simian foamy virus. PLoS Pathog 2023; 19:e1011339. [PMID: 37093892 PMCID: PMC10159361 DOI: 10.1371/journal.ppat.1011339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/04/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
Infection with viruses of animal origin pose a significant threat to human populations. Simian foamy viruses (SFVs) are frequently transmitted to humans, in which they establish a life-long infection, with the persistence of replication-competent virus. However, zoonotic SFVs do not induce severe disease nor are they transmitted between humans. Thus, SFVs represent a model of zoonotic retroviruses that lead to a chronic infection successfully controlled by the human immune system. We previously showed that infected humans develop potent neutralizing antibodies (nAbs). Within the viral envelope (Env), the surface protein (SU) carries a variable region that defines two genotypes, overlaps with the receptor binding domain (RBD), and is the exclusive target of nAbs. However, its antigenic determinants are not understood. Here, we characterized nAbs present in plasma samples from SFV-infected individuals living in Central Africa. Neutralization assays were carried out in the presence of recombinant SU that compete with SU at the surface of viral vector particles. We defined the regions targeted by the nAbs using mutant SU proteins modified at the glycosylation sites, RBD functional subregions, and genotype-specific sequences that present properties of B-cell epitopes. We observed that nAbs target conformational epitopes. We identified three major epitopic regions: the loops at the apex of the RBD, which likely mediate interactions between Env protomers to form Env trimers, a loop located in the vicinity of the heparan binding site, and a region proximal to the highly conserved glycosylation site N8. We provide information on how nAbs specific for each of the two viral genotypes target different epitopes. Two common immune escape mechanisms, sequence variation and glycan shielding, were not observed. We propose a model according to which the neutralization mechanisms rely on the nAbs to block the Env conformational change and/or interfere with binding to susceptible cells. As the SFV RBD is structurally different from known retroviral RBDs, our data provide fundamental knowledge on the structural basis for the inhibition of viruses by nAbs. Trial registration: The study was registered at www.clinicaltrials.gov: https://clinicaltrials.gov/ct2/show/NCT03225794/.
Collapse
Affiliation(s)
- Lasse Toftdal Dynesen
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d'épidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | - Ignacio Fernandez
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, Paris, France
| | - Youna Coquin
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d'épidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | - Manon Delaplace
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d'épidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | - Thomas Montange
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d'épidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | | | | | - Félix A Rey
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, Paris, France
| | - Antoine Gessain
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d'épidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | - Marija Backovic
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, Paris, France
| | - Florence Buseyne
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d'épidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| |
Collapse
|
4
|
AbuEed L, Makundi I, Miyake A, Kawasaki J, Minoura C, Koshida Y, Nishigaki K. Feline Foamy Virus Transmission in Tsushima Leopard Cats (Prionailurus bengalensis euptilurus) on Tsushima Island, Japan. Viruses 2023; 15:v15040835. [PMID: 37112816 PMCID: PMC10146696 DOI: 10.3390/v15040835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Tsushima leopard cats (TLC; Prionailurus bengalensis euptilurus) only inhabit Tsushima Island, Nagasaki, Japan and are critically endangered and threatened by infectious diseases. The feline foamy virus (FFV) is widely endemic in domestic cats. Therefore, its transmission from domestic cats to TLCs may threaten the TLC population. Thus, this study aimed to assess the possibility that domestic cats could transmit FFV to TLCs. Eighty-nine TLC samples were screened, and FFV was identified in seven (7.86%). To assess the FFV infection status of domestic cats, 199 domestic cats were screened; 14.07% were infected. The phylogenetic analysis revealed that the FFV partial sequence from domestic cats and TLC sequences clustered in one clade, suggesting that the two populations share the same strain. The statistical data minimally supported the association between increased infection rate and sex (p = 0.28), indicating that FFV transmission is not sex dependent. In domestic cats, a significant difference was observed in FFV detection in feline immunodeficiency virus (p = 0.002) and gammaherpesvirus1 infection statuses (p = 0.0001) but not in feline leukemia virus infection status (p = 0.21). Monitoring FFV infection in domestic cats and TLC populations is highly recommended as part of TLC surveillance and management strategies.
Collapse
|
5
|
Fernández I, Dynesen LT, Coquin Y, Pederzoli R, Brun D, Haouz A, Gessain A, Rey FA, Buseyne F, Backovic M. The crystal structure of a simian Foamy Virus receptor binding domain provides clues about entry into host cells. Nat Commun 2023; 14:1262. [PMID: 36878926 PMCID: PMC9988990 DOI: 10.1038/s41467-023-36923-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
The surface envelope glycoprotein (Env) of all retroviruses mediates virus binding to cells and fusion of the viral and cellular membranes. A structure-function relationship for the HIV Env that belongs to the Orthoretrovirus subfamily has been well established. Structural information is however largely missing for the Env of Foamy viruses (FVs), the second retroviral subfamily. In this work we present the X-ray structure of the receptor binding domain (RBD) of a simian FV Env at 2.57 Å resolution, revealing two subdomains and an unprecedented fold. We have generated a model for the organization of the RBDs within the trimeric Env, which indicates that the upper subdomains form a cage-like structure at the apex of the Env, and identified residues K342, R343, R359 and R369 in the lower subdomain as key players for the interaction of the RBD and viral particles with heparan sulfate.
Collapse
Affiliation(s)
- Ignacio Fernández
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, 75015, Paris, France
| | - Lasse Toftdal Dynesen
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d'Épidémiologie et Physiopathologie des Virus Oncogènes, 75015, Paris, France
| | - Youna Coquin
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d'Épidémiologie et Physiopathologie des Virus Oncogènes, 75015, Paris, France
| | - Riccardo Pederzoli
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, 75015, Paris, France
| | - Delphine Brun
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, 75015, Paris, France
| | - Ahmed Haouz
- Institut Pasteur, Université Paris Cité, Plateforme de cristallographie-C2RT, CNRS UMR 3528, 75015, Paris, France
| | - Antoine Gessain
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d'Épidémiologie et Physiopathologie des Virus Oncogènes, 75015, Paris, France
| | - Félix A Rey
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, 75015, Paris, France
| | - Florence Buseyne
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d'Épidémiologie et Physiopathologie des Virus Oncogènes, 75015, Paris, France
| | - Marija Backovic
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, 75015, Paris, France.
| |
Collapse
|
6
|
Couteaudier M, Montange T, Njouom R, Bilounga-Ndongo C, Gessain A, Buseyne F. Plasma antibodies from humans infected with zoonotic simian foamy virus do not inhibit cell-to-cell transmission of the virus despite binding to the surface of infected cells. PLoS Pathog 2022; 18:e1010470. [PMID: 35605011 PMCID: PMC9166401 DOI: 10.1371/journal.ppat.1010470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/03/2022] [Accepted: 03/25/2022] [Indexed: 01/23/2023] Open
Abstract
Zoonotic simian foamy viruses (SFV) establish lifelong infection in their human hosts. Despite repeated transmission of SFV from nonhuman primates to humans, neither transmission between human hosts nor severe clinical manifestations have been reported. We aim to study the immune responses elicited by chronic infection with this retrovirus and previously reported that SFV-infected individuals generate potent neutralizing antibodies that block cell infection by viral particles. Here, we assessed whether human plasma antibodies block SFV cell-to-cell transmission and present the first description of cell-to-cell spreading of zoonotic gorilla SFV. We set-up a microtitration assay to quantify the ability of plasma samples from 20 Central African individuals infected with gorilla SFV and 9 uninfected controls to block cell-associated transmission of zoonotic gorilla SFV strains. We used flow-based cell cytometry and fluorescence microscopy to study envelope protein (Env) localization and the capacity of plasma antibodies to bind to infected cells. We visualized the cell-to-cell spread of SFV by real-time live imaging of a GFP-expressing prototype foamy virus (CI-PFV) strain. None of the samples neutralized cell-associated SFV infection, despite the inhibition of cell-free virus. We detected gorilla SFV Env in the perinuclear region, cytoplasmic vesicles and at the cell surface. We found that plasma antibodies bind to Env located at the surface of cells infected with primary gorilla SFV strains. Extracellular labeling of SFV proteins by human plasma samples showed patchy staining at the base of the cell and dense continuous staining at the cell apex, as well as staining in the intercellular connections that formed when previously connected cells separated from each other. In conclusion, SFV-specific antibodies from infected humans do not block cell-to-cell transmission, at least in vitro, despite their capacity to bind to the surface of infected cells. Trial registration: Clinical trial registration: www.clinicaltrials.gov, https://clinicaltrials.gov/ct2/show/NCT03225794/. Foamy viruses are the oldest known retroviruses and have been mostly described to be nonpathogenic in their natural animal hosts. Simian foamy viruses (SFVs) can be transmitted to humans, in whom they establish persistent infection, as have the simian viruses that led to the emergence of two major human pathogens, human immunodeficiency virus type 1 (HIV-1) and human T lymphotropic virus type 1 (HTLV-1). Such cross-species transmission of SFV is ongoing in many parts of the world where humans have contact with nonhuman primates. We previously showed high titers of neutralizing antibodies in the plasma of most SFV-infected individuals. These antiviral antibodies can inhibit cell-free virus entry. However, SFV efficiently spread from one cell to another. Here, we demonstrate that plasma antibodies do not block such cell-to-cell transmission, despite their capacity to bind to the surface of infected cells. In addition, we document for the first time the cell-to-cell spread of primary zoonotic gorilla SFV.
Collapse
Affiliation(s)
- Mathilde Couteaudier
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | - Thomas Montange
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | | | | | - Antoine Gessain
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | - Florence Buseyne
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
- * E-mail:
| |
Collapse
|
7
|
Sumiyoshi A, Kitao K, Miyazawa T. Genetic and biological characterization of feline foamy virus isolated from a leopard cat (Prionailurus bengalensis) in Vietnam. J Vet Med Sci 2021; 84:157-165. [PMID: 34880191 PMCID: PMC8810315 DOI: 10.1292/jvms.21-0550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Foamy viruses have been isolated from various mammals and show long-term co-speciation with their hosts. However, the frequent inter-species transmission of feline foamy viruses (FFVs) from
domestic cats to wild cats across genera has been reported. Because infectious molecular clones of FFVs derived from wild cats have not been available, whether there are specific
characteristics enabling FFVs to adapt to the new host species is still unknown. Here, we obtained the complete genome sequences of two FFV isolates (strains NV138 and SV201) from leopard
cats (Prionailurus bengalensis) in Vietnam and constructed an infectious molecular clone, named pLC960, from strain NV138. The growth kinetics of the virus derived from
pLC960 were comparable to those of other FFVs derived from domestic cats. Phylogenetic analysis revealed that these two FFVs from leopard cats are clustered in the same clade as FFVs from
domestic cats in Vietnam. Comparisons of the amino acid sequences of Env and Bet proteins showed more than 97% identity among samples and no specific amino acid substitutions between FFVs
from domestic cats and ones from leopard cats. These results indicate the absence of genetic constraint of FFVs for interspecies transmission from domestic cats to leopard cats.
Collapse
Affiliation(s)
- Aoi Sumiyoshi
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University
| | - Koichi Kitao
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University
| | - Takayuki Miyazawa
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University
| |
Collapse
|
8
|
Seroprevalence of feline foamy virus in domestic cats in Poland. J Vet Res 2021; 65:407-413. [PMID: 35111993 PMCID: PMC8775732 DOI: 10.2478/jvetres-2021-0059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction
Feline foamy virus (FFVfca) is widespread and its prevalence in naturally infected domestic cats ranges between 30% and 80% worldwide. The infection is persistent, with a sustained antibody response in FFVfca-positive cats; however to date, no defined disease or clinical symptoms have been proved to be associated with it. The goal of the presented study was to determine the prevalence of FFVfca infection in domestic cats in Poland.
Material and Methods
A total of 223 serum samples collected from domestic cats were tested with a glutathione S-transferase capture ELISA test to detect antibodies specific to capsid (Gag), accessory (Bet) and envelope (Env) FFVfca antigens. A Western blot test was used to confirm the ELISA results.
Results
The cut-off value for the Gag antigen was established by calculation and evaluation with the immunoblotting assay. The cut-off values for Bet and Env were calculated from the reactivity of Gag-negative samples. The sera of 99 cats (44%) showed reactivity to Gag, those of 80 did so (35.9 %) to Bet, while only 56 samples (25%) were reactive to Env. Only 51 (22.9%) sera were positive for all antigens. The main diagnostic antigen was selected to be Gag. A statistically significant association was found between FFVfca status and the age of the cat.
Conclusions
This study proved the high seroprevalence of FFVfca in domestic cats in Poland for the first time and confirmed that adult cats are at higher FFVfca infection risk than preadult cats. Its results correspond to those reported from other countries.
Collapse
|
9
|
Genome Analysis and Replication Studies of the African Green Monkey Simian Foamy Virus Serotype 3 Strain FV2014. Viruses 2020; 12:v12040403. [PMID: 32268512 PMCID: PMC7232438 DOI: 10.3390/v12040403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/27/2020] [Accepted: 04/01/2020] [Indexed: 01/23/2023] Open
Abstract
African green monkey (AGM) spumaretroviruses have been less well-studied than other simian foamy viruses (SFVs). We report the biological and genomic characterization of SFVcae_FV2014, which was the first foamy virus isolated from an African green monkey (AGM) and was found to be serotype 3. Infectivity studies in various cell lines from different species (mouse, dog, rhesus monkey, AGM, and human) indicated that like other SFVs, SFVcae_FV2014 had broad species and cell tropism, and in vitro cell culture infection resulted in cytopathic effect (CPE). In Mus dunni (a wild mouse fibroblast cell line), MDCK (Madin-Darby canine kidney cell line), FRhK-4 (a fetal rhesus kidney cell line), and MRC-5 (a human fetal lung cell line), SFVcae_FV2014 infection was productive resulting in CPE, and had delayed or similar replication kinetics compared with SFVmcy_FV21 and SFVmcy_FV34[RF], which are two Taiwanese macaque isolates, designated as serotypes 1 and 2, respectively. However, in Vero (AGM kidney cell line) and A549 (a human lung carcinoma cell line), the replication kinetics of SFVcae_FV2014 and the SFVmcy viruses were discordant: In Vero, SFVcae_FV2014 showed rapid replication kinetics and extensive CPE, and a persistent infection was seen in A549, with delayed, low CPE, which did not progress even upon extended culture (day 55). Nucleotide sequence analysis of the assembled SFVcae_FV2014 genome, obtained by high-throughput sequencing, indicated an overall 80–90% nucleotide sequence identity with SFVcae_LK3, the only available full-length genome sequence of an AGM SFV, and was distinct phylogenetically from other AGM spumaretroviruses, corroborating previous results based on analysis of partial env sequences. Our study confirmed that SFVcae_FV2014 and SFVcae_LK3 are genetically distinct AGM foamy virus (FV) isolates. Furthermore, comparative infectivity studies of SFVcae_FV2014 and SFVmcy isolates showed that although SFVs have a wide host range and cell tropism, regulation of virus replication is complex and depends on the virus strain and cell-specific factors.
Collapse
|
10
|
Hashimoto-Gotoh A, Yoshikawa R, Nakagawa S, Okamoto M, Miyazawa T. Phylogenetic analyses reveal that simian foamy virus isolated from Japanese Yakushima macaques (Macaca fuscata yakui) is distinct from most of Japanese Hondo macaques (Macaca fuscata fuscata). Gene 2020; 734:144382. [PMID: 31978513 DOI: 10.1016/j.gene.2020.144382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 11/25/2022]
Abstract
Japanese macaque (Macaca fuscata) is an indigenous Old World monkey (OWM) species that inhabits the Japanese archipelago. There are two subspecies of Japanese macaque: Yakushima macaque (M. f. yakui) which inhabits Yakushima Island exclusively, and Hondo macaque (M. f. fuscata) which inhabits the mainland of Japan. Yakushima macaque is considered to be branched off from a certain parental macaque group that had inhabited the mainland of Japan. However, the process of sub-speciation of the Yakushima macaque is still unclear at present. In this study, to gain new insight into the process of sub-speciation of Japanese macaque, we utilized the simian foamy virus (SFV) as a marker. SFVs are found in virtually all primates except humans and undergo species-specific cospeciation with the hosts. The phylogenetic analysis of conserved regions of the env gene in SFVs remarkably resembled that of the OWMs with high statistical confidence. The phylogenetic analyses also indicated that there are four (1-4) genotypes among Asian OWMs investigated. SFVs derived from Asian OWMs except Yakushima macaque were classified as genotypes 1-3, whereas SFVs isolated from all Yakushima macaques and one Hondo macaque were classified as genotype 4. Interestingly, genotype 4 was firstly branched off from the rest of the genotypes, which might indicate that the macaques infected with genotype 4 SFV were derived from the "older" population of Japanese macaques. The high prevalence of genotype 4 SFVs among Yakushima macaque might reflect the possibility that they are a descendant of the population settled earlier, which has been geographically isolated in Yakushima Island.
Collapse
Affiliation(s)
- Akira Hashimoto-Gotoh
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Rokusuke Yoshikawa
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki 852-8523, Japan; Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa 259-1193, Japan
| | - Munehiro Okamoto
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Aichi 484-8506, Japan
| | - Takayuki Miyazawa
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; International Research Unit of Advanced Future Studies, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
11
|
Aiewsakun P. Avian and serpentine endogenous foamy viruses, and new insights into the macroevolutionary history of foamy viruses. Virus Evol 2020; 6:vez057. [PMID: 31942244 PMCID: PMC6955096 DOI: 10.1093/ve/vez057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This study reports and characterises two novel distinct lineages of foamy viruses (FVs) in the forms of endogenous retroviruses (ERVs). Several closely related elements were found in the genome of oriental stork (Ciconia boyciana) and other was found in the genome of spine-bellied sea snake (Hydrophis hardwickii), designated ERV-Spuma.N-Cbo (where 'N' runs from one to thirteen) and ERV-Spuma.1-Hha, respectively. This discovery of avian and serpentine endogenous FVs adds snakes, and perhaps more crucially, birds to the list of currently known hosts of FVs, in addition to mammals, reptiles, amphibians, and fish. This indicates that FVs are, or at least were, capable of infecting all major lineages of vertebrates. Moreover, together with other FVs, phylogenetic analyses showed that both of them are most closely related to mammalian FVs. Further examination revealed that reptilian FVs form a deep paraphyletic group that is basal to mammalian and avian FVs, suggesting that there were multiple ancient FV cross-class transmissions among their hosts. Evolutionary timescales of various FV lineages were estimated in this study, in particular, the timescales of reptilian FVs and that of the clade of mammalian, avian, and serpentine FVs. This was accomplished by using the recently established time-dependent rate phenomenon models, inferred using mainly the knowledge of the co-speciation history between FVs and mammals. It was found that the estimated timescales matched very well with those of reptiles. Combined with the observed phylogenetic patterns, these results suggested that FVs likely co-speciated with ancient reptilian animals, but later jumped to a protomammal and/or a bird, which ultimately gave rise to mammalian and avian FVs. These results contribute to our understanding of FV emergence, specifically the emergence of mammalian and avian FVs, and provide new insights into how FVs co-evolved with their non-mammalian vertebrate hosts in the distant past.
Collapse
Affiliation(s)
- Pakorn Aiewsakun
- Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.,Center of Microbial Genomics (CENMIG), Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| |
Collapse
|
12
|
Kraberger S, Fountain-Jones NM, Gagne RB, Malmberg J, Dannemiller NG, Logan K, Alldredge M, Varsani A, Crooks KR, Craft M, Carver S, VandeWoude S. Frequent cross-species transmissions of foamy virus between domestic and wild felids. Virus Evol 2020; 6:vez058. [PMID: 31942245 PMCID: PMC6955097 DOI: 10.1093/ve/vez058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Emerging viral outbreaks resulting from host switching is an area of continued scientific interest. Such events can result in disease epidemics or in some cases, clinically silent outcomes. These occurrences are likely relatively common and can serve as tools to better understand disease dynamics, and may result in changes in behavior, fecundity, and, ultimately survival of the host. Feline foamy virus (FFV) is a common retrovirus infecting domestic cats globally, which has also been documented in the North American puma (Puma concolor). The prevalent nature of FFV in domestic cats and its ability to infect wild felids, including puma, provides an ideal system to study cross-species transmission across trophic levels (positions in the food chain), and evolution of pathogens transmitted between individuals following direct contact. Here we present findings from an extensive molecular analysis of FFV in pumas, focused on two locations in Colorado, and in relation to FFV recovered from domestic cats in this and previous studies. Prevalence of FFV in puma was high across the two regions, ∼77 per cent (urban interface site) and ∼48 per cent (rural site). Comparison of FFV from pumas living across three states; Colorado, Florida, and California, indicates FFV is widely distributed across North America. FFV isolated from domestic cats and pumas was not distinguishable at the host level, with FFV sequences sharing >93 per cent nucleotide similarity. Phylogenetic, Bayesian, and recombination analyses of FFV across the two species supports frequent cross-species spillover from domestic cat to puma during the last century, as well as frequent puma-to-puma intraspecific transmission in Colorado, USA. Two FFV variants, distinguished by significant difference in the surface unit of the envelope protein, were commonly found in both hosts. This trait is also shared by simian foamy virus and may represent variation in cell tropism or a unique immune evasion mechanism. This study elucidates evolutionary and cross-species transmission dynamics of a highly prevalent multi-host adapted virus, a system which can further be applied to model spillover and transmission of pathogenic viruses resulting in widespread infection in the new host.
Collapse
Affiliation(s)
- Simona Kraberger
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life sciences, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA
| | - Nicholas M Fountain-Jones
- Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Ave, Falcon Heights, St Paul, MN 55108, USA
| | - Roderick B Gagne
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jennifer Malmberg
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Nicholas G Dannemiller
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Ken Logan
- Colorado Parks and Wildlife, 317 W Prospect Rd, Fort Collins, CO 80526, USA
| | - Mat Alldredge
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, 1474 Campus Delivery Fort Collins, CO 80523, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life sciences, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Kevin R Crooks
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, 1474 Campus Delivery Fort Collins, CO 80523, USA
| | - Meggan Craft
- Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Ave, Falcon Heights, St Paul, MN 55108, USA
| | - Scott Carver
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Sue VandeWoude
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
13
|
Aiewsakun P, Richard L, Gessain A, Mouinga-Ondémé A, Vicente Afonso P, Katzourakis A. Modular nature of simian foamy virus genomes and their evolutionary history. Virus Evol 2019; 5:vez032. [PMID: 31636999 PMCID: PMC6795992 DOI: 10.1093/ve/vez032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Among all known retroviruses, foamy viruses (FVs) have the most stable virus–host co-speciation history, co-diverging in concert with their vertebrate hosts for hundreds of millions of years. However, detailed molecular analyses indicate that different parts of their genome might have different evolutionary histories. While their polymerase gene displays a robust and straightforward virus–host co-speciation pattern, the evolutionary history of their envelope (env) gene, is much more complicated. Here, we report eleven new FV env sequences in two mandrill populations in Central Africa, geographically separated by the Ogooué River into the North and the South populations. Phylogenetic reconstruction of the polymerase gene shows that the two virus populations are distinct, and each contains two variants of env genes co-existing with one another. The distinction between the two env variants can be mapped to the surface domain, flanked by two recombination hotspots, as previously reported for chimpanzee and gorilla FVs. Our analyses suggest that the two env variants originated during the diversification of Old World monkeys and apes, ∼30 million years ago. We also show that this env gene region forms two phylogenetically distinct clades, each displaying a host co-divergence and geographical separation pattern, while the rest of the genome of the two strains is phylogenetically indistinguishable in each of the host-specific groups. We propose possible evolutionary mechanisms to explain the modular nature of the FV genome.
Collapse
Affiliation(s)
- Pakorn Aiewsakun
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Léa Richard
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, UMR3569 CNRS, Paris, France.,Université Paris Diderot - Paris7, Sorbonne Paris Cité, Paris, France
| | - Antoine Gessain
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, UMR3569 CNRS, Paris, France
| | - Augustin Mouinga-Ondémé
- Unité des Infections Rétrovirales et Pathologies Associées, Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - Philippe Vicente Afonso
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, UMR3569 CNRS, Paris, France
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
| |
Collapse
|
14
|
Eco-Epidemiological Profile and Molecular Characterization of Simian Foamy Virus in a Recently-Captured Invasive Population of Leontopithecus chrysomelas (Golden-Headed Lion Tamarin) in Rio de Janeiro, Brazil. Viruses 2019; 11:v11100931. [PMID: 31658739 PMCID: PMC6832254 DOI: 10.3390/v11100931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 11/17/2022] Open
Abstract
Simian foamy viruses (SFV) infect a wide range of Old World and Neotropical primates (NP). Unlike Old World primates, little is known about the diversity and prevalence of SFV in NP, mainly from a free-living population. Phylogenetic analyses have shown that SFV coevolved with their hosts. However, viral strains infecting Leontopithecus chrysomelas did not behave as expected for this hypothesis. The purpose of this study was to determine the eco-epidemiological profile and molecular characterization of SFV in a recently captured invasive population of L. chrysomelas located in Niteroi/RJ using buccal swab as an alternative collection method. A prevalence of 34.8% (32/92) and a mean viral load of 4.7 log copies of SFV/106 cells were observed. With respect to time since capture, SFV prevalence was significantly higher in the group of animals sampled over 6 months after capture (55.2%) than in those more recently captured (25.4%) (p = 0.005). Infected solitary animals can contribute to SFV transmission between different groups in the population. SFV strains formed two distinct clades within the SFV infecting the Cebidae family. This is the first study to use buccal swabs as a tool to study SFV diversity and prevalence in a recently free-living NP population upon recent capture.
Collapse
|
15
|
Aiewsakun P, Simmonds P, Katzourakis A. The First Co-Opted Endogenous Foamy Viruses and the Evolutionary History of Reptilian Foamy Viruses. Viruses 2019; 11:v11070641. [PMID: 31336856 PMCID: PMC6669660 DOI: 10.3390/v11070641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 12/17/2022] Open
Abstract
A recent study reported the discovery of an endogenous reptilian foamy virus (FV), termed ERV-Spuma-Spu, found in the genome of tuatara. Here, we report two novel reptilian foamy viruses also identified as endogenous FVs (EFVs) in the genomes of panther gecko (ERV-Spuma-Ppi) and Schlegel’s Japanese gecko (ERV-Spuma-Gja). Their presence indicates that FVs are capable of infecting reptiles in addition to mammals, amphibians, and fish. Numerous copies of full length ERV-Spuma-Spu elements were found in the tuatara genome littered with in-frame stop codons and transposable elements, suggesting that they are indeed endogenous and are not functional. ERV-Spuma-Ppi and ERV-Spuma-Gja, on the other hand, consist solely of a foamy virus-like env gene. Examination of host flanking sequences revealed that they are orthologous, and despite being more than 96 million years old, their env reading frames are fully coding competent with evidence for strong purifying selection to maintain expression and for them likely being transcriptionally active. These make them the oldest EFVs discovered thus far and the first documented EFVs that may have been co-opted for potential cellular functions. Phylogenetic analyses revealed a complex virus–host co-evolutionary history and cross-species transmission routes of ancient FVs.
Collapse
Affiliation(s)
- Pakorn Aiewsakun
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3SY, UK.
| |
Collapse
|
16
|
Shankar A, Sibley SD, Goldberg TL, Switzer WM. Molecular Analysis of the Complete Genome of a Simian Foamy Virus Infecting Hylobates pileatus (pileated gibbon) Reveals Ancient Co-Evolution with Lesser Apes. Viruses 2019; 11:E605. [PMID: 31277268 PMCID: PMC6669568 DOI: 10.3390/v11070605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 02/07/2023] Open
Abstract
Foamy viruses (FVs) are complex retroviruses present in many mammals, including nonhuman primates, where they are called simian foamy viruses (SFVs). SFVs can zoonotically infect humans, but very few complete SFV genomes are available, hampering the design of diagnostic assays. Gibbons are lesser apes widespread across Southeast Asia that can be infected with SFV, but only two partial SFV sequences are currently available. We used a metagenomics approach with next-generation sequencing of nucleic acid extracted from the cell culture of a blood specimen from a lesser ape, the pileated gibbon (Hylobates pileatus), to obtain the complete SFVhpi_SAM106 genome. We used Bayesian analysis to co-infer phylogenetic relationships and divergence dates. SFVhpi_SAM106 is ancestral to other ape SFVs with a divergence date of ~20.6 million years ago, reflecting ancient co-evolution of the host and SFVhpi_SAM106. Analysis of the complete SFVhpi_SAM106 genome shows that it has the same genetic architecture as other SFVs but has the longest recorded genome (13,885-nt) due to a longer long terminal repeat region (2,071 bp). The complete sequence of the SFVhpi_SAM106 genome fills an important knowledge gap in SFV genetics and will facilitate future studies of FV infection, transmission, and evolutionary history.
Collapse
Affiliation(s)
- Anupama Shankar
- Laboratory Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Samuel D Sibley
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William M Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, Atlanta, GA 30329, USA.
| |
Collapse
|
17
|
An Immunodominant and Conserved B-Cell Epitope in the Envelope of Simian Foamy Virus Recognized by Humans Infected with Zoonotic Strains from Apes. J Virol 2019; 93:JVI.00068-19. [PMID: 30894477 DOI: 10.1128/jvi.00068-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/13/2019] [Indexed: 11/20/2022] Open
Abstract
Cross-species transmission of simian foamy viruses (SFVs) from nonhuman primates (NHPs) to humans is currently ongoing. These zoonotic retroviruses establish lifelong persistent infection in their human hosts. SFV are apparently nonpathogenic in vivo, with ubiquitous in vitro tropism. Here, we aimed to identify envelope B-cell epitopes that are recognized following a zoonotic SFV infection. We screened a library of 169 peptides covering the external portion of the envelope from the prototype foamy virus (SFVpsc_huHSRV.13) for recognition by samples from 52 Central African hunters (16 uninfected and 36 infected with chimpanzee, gorilla, or Cercopithecus SFV). We demonstrate the specific recognition of peptide N96-V110 located in the leader peptide, gp18LP Forty-three variant peptides with truncations, alanine substitutions, or amino acid changes found in other SFV species were tested. We mapped the epitope between positions 98 and 108 and defined six amino acids essential for recognition. Most plasma samples from SFV-infected humans cross-reacted with sequences from apes and Old World monkey SFV species. The magnitude of binding to peptide N96-V110 was significantly higher for samples of individuals infected with a chimpanzee or gorilla SFV than those infected with a Cercopithecus SFV. In conclusion, we have been the first to define an immunodominant B-cell epitope recognized by humans following zoonotic SFV infection.IMPORTANCE Foamy viruses are the oldest known retroviruses and have been mostly described to be nonpathogenic in their natural animal hosts. SFVs can be transmitted to humans, in whom they establish persistent infection, like the simian lenti- and deltaviruses that led to the emergence of two major human pathogens, human immunodeficiency virus type 1 and human T-lymphotropic virus type 1. This is the first identification of an SFV-specific B-cell epitope recognized by human plasma samples. The immunodominant epitope lies in gp18LP, probably at the base of the envelope trimers. The NHP species the most genetically related to humans transmitted SFV strains that induced the strongest antibody responses. Importantly, this epitope is well conserved across SFV species that infect African and Asian NHPs.
Collapse
|
18
|
Lambert C, Couteaudier M, Gouzil J, Richard L, Montange T, Betsem E, Rua R, Tobaly-Tapiero J, Lindemann D, Njouom R, Mouinga-Ondémé A, Gessain A, Buseyne F. Potent neutralizing antibodies in humans infected with zoonotic simian foamy viruses target conserved epitopes located in the dimorphic domain of the surface envelope protein. PLoS Pathog 2018; 14:e1007293. [PMID: 30296302 PMCID: PMC6193739 DOI: 10.1371/journal.ppat.1007293] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/18/2018] [Accepted: 08/23/2018] [Indexed: 12/31/2022] Open
Abstract
Human diseases of zoonotic origin are a major public health problem. Simian foamy viruses (SFVs) are complex retroviruses which are currently spilling over to humans. Replication-competent SFVs persist over the lifetime of their human hosts, without spreading to secondary hosts, suggesting the presence of efficient immune control. Accordingly, we aimed to perform an in-depth characterization of neutralizing antibodies raised by humans infected with a zoonotic SFV. We quantified the neutralizing capacity of plasma samples from 58 SFV-infected hunters against primary zoonotic gorilla and chimpanzee SFV strains, and laboratory-adapted chimpanzee SFV. The genotype of the strain infecting each hunter was identified by direct sequencing of the env gene amplified from the buffy coat with genotype-specific primers. Foamy virus vector particles (FVV) enveloped by wild-type and chimeric gorilla SFV were used to map the envelope region targeted by antibodies. Here, we showed high titers of neutralizing antibodies in the plasma of most SFV-infected individuals. Neutralizing antibodies target the dimorphic portion of the envelope protein surface domain. Epitopes recognized by neutralizing antibodies have been conserved during the cospeciation of SFV with their nonhuman primate host. Greater neutralization breadth in plasma samples of SFV-infected humans was statistically associated with smaller SFV-related hematological changes. The neutralization patterns provide evidence for persistent expression of viral proteins and a high prevalence of coinfection. In conclusion, neutralizing antibodies raised against zoonotic SFV target immunodominant and conserved epitopes located in the receptor binding domain. These properties support their potential role in restricting the spread of SFV in the human population.
Collapse
Affiliation(s)
- Caroline Lambert
- Unité d’Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
- UMR CNRS 3569, Institut Pasteur, Paris, France
- Sorbonne Paris Cité, Cellule Pasteur, Université Paris Diderot, Institut Pasteur, Paris, France
| | - Mathilde Couteaudier
- Unité d’Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
- UMR CNRS 3569, Institut Pasteur, Paris, France
| | - Julie Gouzil
- Unité d’Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
- UMR CNRS 3569, Institut Pasteur, Paris, France
| | - Léa Richard
- Unité d’Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
- UMR CNRS 3569, Institut Pasteur, Paris, France
- Sorbonne Paris Cité, Cellule Pasteur, Université Paris Diderot, Institut Pasteur, Paris, France
| | - Thomas Montange
- Unité d’Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
- UMR CNRS 3569, Institut Pasteur, Paris, France
| | - Edouard Betsem
- Unité d’Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
- UMR CNRS 3569, Institut Pasteur, Paris, France
- University of Yaounde I, Yaounde, Cameroon
| | - Réjane Rua
- Unité d’Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
- UMR CNRS 3569, Institut Pasteur, Paris, France
| | - Joelle Tobaly-Tapiero
- CNRS UMR 7212, INSERM U944, Institut Universitaire d’Hématologie, Hôpital Saint-Louis, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Dirk Lindemann
- Institute of Virology, Medical Faculty “Carl Gustav Carus”, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Richard Njouom
- Laboratoire de Virologie, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | - Augustin Mouinga-Ondémé
- Unité de Rétrovirologie, Centre International de Recherche Médicale de Franceville, Franceville, Gabon
| | - Antoine Gessain
- Unité d’Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
- UMR CNRS 3569, Institut Pasteur, Paris, France
| | - Florence Buseyne
- Unité d’Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
- UMR CNRS 3569, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
19
|
Duraisamy R, Akiana J, Davoust B, Mediannikov O, Michelle C, Robert C, Parra HJ, Raoult D, Biagini P, Desnues C. Detection of novel RNA viruses from free-living gorillas, Republic of the Congo: genetic diversity of picobirnaviruses. Virus Genes 2018; 54:256-271. [PMID: 29476397 PMCID: PMC7088520 DOI: 10.1007/s11262-018-1543-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/16/2018] [Indexed: 12/27/2022]
Abstract
Most of the emerging infectious diseases reported so far originated in wildlife. Therefore, virological surveillance of animals and particularly great apes is of great interest to establish the repertory of viruses associated with healthy hosts. This will further help to identify the emergence of new viruses and predict the possibility of interspecies transmission. In this study, we performed shotgun viral metagenomics on stool samples collected from seventeen free-living wild gorillas from the Republic of the Congo. The analysis revealed the presence of novel RNA viruses (picobirnaviruses, partitivirus, and Picornavirales (posa-like and dicistrovirus-like viruses)). Among these, picobirnavirus-related sequences were abundantly covered in the stools. Based on genetic variations both in capsid and RdRp proteins of picobirnaviruses, at least 96 variants were identified and most of them were novel. Among the 96, 22 variants had a nearly complete genome or segment. A comprehensive sequence analysis identified a potential new genogroup/genetic cluster and the presence of a short linear amino acid motif (ExxRxNxxxE) in a hypothetical protein. The sequence analysis of posa-like virus and dicistrovirus showed that these two viruses were novel members in the respective viral families. In conclusion, the identification of novel RNA viruses and their genetic diversity increases our knowledge about viruses that are associated with stools of wild gorillas and contributes to the initiatives in the search for potential emerging zoonotic viruses.
Collapse
Affiliation(s)
- Raja Duraisamy
- Aix-Marseille Université, CNRS 7278, IRD 198, INSERM 1095, Assistance-Publique des Hôpitaux de Marseille, Unité de Recherche sur les Maladies Infectieuses Tropicales Emergentes (URMITE), IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.
| | - Jean Akiana
- Laboratoire national de santé publique, Brazzaville, Republic of the Congo
| | - Bernard Davoust
- Aix-Marseille Université, CNRS 7278, IRD 198, INSERM 1095, Assistance-Publique des Hôpitaux de Marseille, Unité de Recherche sur les Maladies Infectieuses Tropicales Emergentes (URMITE), IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Oleg Mediannikov
- Aix-Marseille Université, CNRS 7278, IRD 198, INSERM 1095, Assistance-Publique des Hôpitaux de Marseille, Unité de Recherche sur les Maladies Infectieuses Tropicales Emergentes (URMITE), IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Caroline Michelle
- Aix-Marseille Université, CNRS 7278, IRD 198, INSERM 1095, Assistance-Publique des Hôpitaux de Marseille, Unité de Recherche sur les Maladies Infectieuses Tropicales Emergentes (URMITE), IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Catherine Robert
- Aix-Marseille Université, CNRS 7278, IRD 198, INSERM 1095, Assistance-Publique des Hôpitaux de Marseille, Unité de Recherche sur les Maladies Infectieuses Tropicales Emergentes (URMITE), IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Henri-Joseph Parra
- Laboratoire national de santé publique, Brazzaville, Republic of the Congo
| | - Didier Raoult
- Aix-Marseille Université, CNRS 7278, IRD 198, INSERM 1095, Assistance-Publique des Hôpitaux de Marseille, Unité de Recherche sur les Maladies Infectieuses Tropicales Emergentes (URMITE), IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Philippe Biagini
- Unité Mixte de Recherche 7268 ADES, Etablissement Français du Sang, Marseille, France
| | - Christelle Desnues
- Aix-Marseille Université, CNRS 7278, IRD 198, INSERM 1095, Assistance-Publique des Hôpitaux de Marseille, Unité de Recherche sur les Maladies Infectieuses Tropicales Emergentes (URMITE), IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
20
|
Khan AS, Bodem J, Buseyne F, Gessain A, Johnson W, Kuhn JH, Kuzmak J, Lindemann D, Linial ML, Löchelt M, Materniak-Kornas M, Soares MA, Switzer WM. Spumaretroviruses: Updated taxonomy and nomenclature. Virology 2018; 516:158-164. [PMID: 29407373 PMCID: PMC11318574 DOI: 10.1016/j.virol.2017.12.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 12/29/2017] [Accepted: 12/29/2017] [Indexed: 01/28/2023]
Abstract
Spumaretroviruses, commonly referred to as foamy viruses, are complex retroviruses belonging to the subfamily Spumaretrovirinae, family Retroviridae, which naturally infect a variety of animals including nonhuman primates (NHPs). Additionally, cross-species transmissions of simian foamy viruses (SFVs) to humans have occurred following exposure to tissues of infected NHPs. Recent research has led to the identification of previously unknown exogenous foamy viruses, and to the discovery of endogenous spumaretrovirus sequences in a variety of host genomes. Here, we describe an updated spumaretrovirus taxonomy that has been recently accepted by the International Committee on Taxonomy of Viruses (ICTV) Executive Committee, and describe a virus nomenclature that is generally consistent with that used for other retroviruses, such as lentiviruses and deltaretroviruses. This taxonomy can be applied to distinguish different, but closely related, primate (e.g., human, ape, simian) foamy viruses as well as those from other hosts. This proposal accounts for host-virus co-speciation and cross-species transmission.
Collapse
Affiliation(s)
- Arifa S Khan
- Laboratory of Retroviruses, US Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Jochen Bodem
- Institut für Virologie und Immunbiologie, Universität Würzburg, Würzburg, Germany
| | - Florence Buseyne
- Unit of Epidemiology and Physiopathology of Oncogenic Viruses, Institut Pasteur, Paris, France; Centre National de la Recherche Scientifique, CNRS UMR3569, Paris, France
| | - Antoine Gessain
- Unit of Epidemiology and Physiopathology of Oncogenic Viruses, Institut Pasteur, Paris, France; Centre National de la Recherche Scientifique, CNRS UMR3569, Paris, France
| | - Welkin Johnson
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Jacek Kuzmak
- Department of Biochemistry, National Veterinary Research Institute, Puławy, Poland
| | - Dirk Lindemann
- Institute of Virology, Technische Universität Dresden, Dresden, Germany
| | - Maxine L Linial
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Martin Löchelt
- Research Program Infection, Inflammation and Cancer, German Cancer Research Center (DFKZ), Heidelberg, Germany
| | | | - Marcelo A Soares
- Instituto Nacional de Câncer and Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - William M Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
21
|
Pinto-Santini DM, Stenbak CR, Linial ML. Foamy virus zoonotic infections. Retrovirology 2017; 14:55. [PMID: 29197389 PMCID: PMC5712078 DOI: 10.1186/s12977-017-0379-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/22/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Foamy viruses (FV) are ancient complex retroviruses that differ from orthoretroviruses such as human immunodeficiency virus (HIV) and murine leukemia virus (MLV) and comprise a distinct subfamily of retroviruses, the Spumaretrovirinae. FV are ubiquitous in their natural hosts, which include cows, cats, and nonhuman primates (NHP). FV are transmitted mainly through saliva and appear nonpathogenic by themselves, but they may increase morbidity of other pathogens in coinfections. CONCLUSIONS This review summarizes and discusses what is known about FV infection of natural hosts. It also emphasizes what is known about FV zoonotic infections A large number of studies have revealed that the FV of NHP, simian foamy viruses (SFV), are transmitted to humans who interact with infected NHP. SFV from a variety of NHP establish persistent infection in humans, while bovine foamy virus and feline foamy virus rarely or never do. The possibility of FV recombination and mutation leading to pathogenesis is considered. Since humans can be infected by SFV, a seemingly nonpathogenic virus, there is interest in using SFV vectors for human gene therapy. In this regard, detailed understanding of zoonotic SFV infection is highly relevant.
Collapse
Affiliation(s)
| | | | - Maxine L. Linial
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., A3-205, Seattle, WA 98109 USA
| |
Collapse
|
22
|
Buseyne F, Gessain A, Soares MA, Santos AF, Materniak-Kornas M, Lesage P, Zamborlini A, Löchelt M, Qiao W, Lindemann D, Wöhrl BM, Stoye JP, Taylor IA, Khan AS. Eleventh International Foamy Virus Conference-Meeting Report. Viruses 2016; 8:v8110318. [PMID: 27886074 PMCID: PMC5127032 DOI: 10.3390/v8110318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 12/11/2022] Open
Abstract
The Eleventh International Foamy Virus Conference took place on 9–10 June 2016 at the Institut Pasteur, Paris, France. The meeting reviewed progress on foamy virus (FV) research, as well as related current topics in retrovirology. FVs are complex retroviruses that are widespread in several animal species. Several research topics on these viruses are relevant to human health: cross-species transmission and viral emergence, vectors for gene therapy, development of antiretroviral drugs, retroviral evolution and its influence on the human genome. In this article, we review the conference presentations on these viruses and highlight the major questions to be answered.
Collapse
Affiliation(s)
- Florence Buseyne
- Unité d'Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, 75015 Paris, France.
- Centre National de la Recherche Scientifique (CNRS), UMR3569, 75015 Paris, France.
| | - Antoine Gessain
- Unité d'Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, 75015 Paris, France.
- Centre National de la Recherche Scientifique (CNRS), UMR3569, 75015 Paris, France.
| | - Marcelo A Soares
- Department of Genetics, Universidade Federal do Rio de Janeiro, 21949-570 Rio de Janeiro, Brazil.
- Oncovirology Program, Instituto Nacional de Câncer, 20231-050 Rio de Janeiro, Brazil.
| | - André F Santos
- Department of Genetics, Universidade Federal do Rio de Janeiro, 21949-570 Rio de Janeiro, Brazil.
| | | | - Pascale Lesage
- Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Université Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR 7212, 75010 Paris, France.
| | - Alessia Zamborlini
- Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Université Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR 7212, 75010 Paris, France.
- Conservatoire National des Arts et Métiers, Laboratoire de Pathologie et Virologie Moléculaire, 75003 Paris, France.
| | - Martin Löchelt
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection, Inflammation and Cancer, 69120 Heidelberg, Germany.
| | - Wentao Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Dirk Lindemann
- Institute of Virology, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, 01307 Dresden, Germany.
| | - Birgitta M Wöhrl
- University of Bayreuth, Department of Biopolymers, 95447 Bayreuth, Germany.
| | | | | | - Arifa S Khan
- Laboratory of Retroviruses, Division of Viral Products, OVRR, CBER, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
23
|
Lambert C, Rua R, Gessain A, Buseyne F. A new sensitive indicator cell line reveals cross-transactivation of the viral LTR by gorilla and chimpanzee simian foamy viruses. Virology 2016; 496:219-226. [PMID: 27348053 DOI: 10.1016/j.virol.2016.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 12/25/2022]
Abstract
The majority of currently identified simian foamy virus (SFV)-infected Cameroonian and Gabonese individuals harbor SFV from the gorilla lineage. We constructed an indicator cell line for the quantification of gorilla SFVs, in which the U3 sequence of a gorilla SFV directs the expression of the β-galactosidase protein. The gorilla foamy virus activated β-galactosidase (GFAB) cells efficiently quantified two zoonotic primary gorilla isolates and SFVs from three chimpanzee subspecies. Primary gorilla SFVs replicated more slowly and at lower levels than primary chimpanzee SFVs. Analysis of previously described motifs of Tas proteins and U3 LTRs involved in viral gene synthesis revealed conservation of such motifs in Tas proteins from gorilla and chimpanzee SFVs, but little sequence homology in the LTR regions previously shown to interact with viral and cellular factors.
Collapse
Affiliation(s)
- Caroline Lambert
- Unité d'épidémiologie et physiopathologie des virus oncogènes, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France; UMR CNRS 3569, Institut Pasteur, Paris 75015, France; Sorbonne Paris Cité, Cellule Pasteur, Université Paris Diderot, Institut Pasteur, 75015 Paris, France
| | - Réjane Rua
- Unité d'épidémiologie et physiopathologie des virus oncogènes, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| | - Antoine Gessain
- Unité d'épidémiologie et physiopathologie des virus oncogènes, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France; UMR CNRS 3569, Institut Pasteur, Paris 75015, France
| | - Florence Buseyne
- Unité d'épidémiologie et physiopathologie des virus oncogènes, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France; UMR CNRS 3569, Institut Pasteur, Paris 75015, France.
| |
Collapse
|