1
|
Ramos-González PL, Pons T, Chabi-Jesus C, Arena GD, Freitas-Astua J. Poorly Conserved P15 Proteins of Cileviruses Retain Elements of Common Ancestry and Putative Functionality: A Theoretical Assessment on the Evolution of Cilevirus Genomes. FRONTIERS IN PLANT SCIENCE 2021; 12:771983. [PMID: 34804105 PMCID: PMC8602818 DOI: 10.3389/fpls.2021.771983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
The genus Cilevirus groups enveloped single-stranded (+) RNA virus members of the family Kitaviridae, order Martellivirales. Proteins P15, scarcely conserved polypeptides encoded by cileviruses, have no apparent homologs in public databases. Accordingly, the open reading frames (ORFs) p15, located at the 5'-end of the viral RNA2 molecules, are considered orphan genes (ORFans). In this study, we have delved into ORFs p15 and the relatively poorly understood biochemical properties of the proteins P15 to posit their importance for viruses across the genus and theorize on their origin. We detected that the ORFs p15 are under purifying selection and that, in some viral strains, the use of synonymous codons is biased, which might be a sign of adaptation to their plant hosts. Despite the high amino acid sequence divergence, proteins P15 show the conserved motif [FY]-L-x(3)-[FL]-H-x-x-[LIV]-S-C-x-C-x(2)-C-x-G-x-C, which occurs exclusively in members of this protein family. Proteins P15 also show a common predicted 3D structure that resembles the helical scaffold of the protein ORF49 encoded by radinoviruses and the phosphoprotein C-terminal domain of mononegavirids. Based on the 3D structural similarities of P15, we suggest elements of common ancestry, conserved functionality, and relevant amino acid residues. We conclude by postulating a plausible evolutionary trajectory of ORFans p15 and the 5'-end of the RNA2 of cileviruses considering both protein fold superpositions and comparative genomic analyses with the closest kitaviruses, negeviruses, nege/kita-like viruses, and unrelated viruses that share the ecological niches of cileviruses.
Collapse
Affiliation(s)
- Pedro L. Ramos-González
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico de São Paulo, São Paulo, Brazil
| | - Tirso Pons
- National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Camila Chabi-Jesus
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico de São Paulo, São Paulo, Brazil
- Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo, Piracicaba, Brazil
| | - Gabriella Dias Arena
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico de São Paulo, São Paulo, Brazil
| | - Juliana Freitas-Astua
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico de São Paulo, São Paulo, Brazil
- Embrapa Mandioca e Fruticultura, Cruz das Almas, Brazil
| |
Collapse
|
2
|
Chung WC, Kim J, Kim BC, Kang HR, Son J, Ki H, Hwang KY, Song MJ. Structure-based mechanism of action of a viral poly(ADP-ribose) polymerase 1-interacting protein facilitating virus replication. IUCRJ 2018; 5:866-879. [PMID: 30443370 PMCID: PMC6211522 DOI: 10.1107/s2052252518013854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/01/2018] [Indexed: 06/09/2023]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1), an enzyme that modifies nuclear proteins by poly(ADP-ribosyl)ation, regulates various cellular activities and restricts the lytic replication of oncogenic gammaherpesviruses by inhibiting the function of replication and transcription activator (RTA), a key switch molecule of the viral life cycle. A viral PARP-1-interacting protein (vPIP) encoded by murine gammaherpesvirus 68 (MHV-68) orf49 facilitates lytic replication by disrupting interactions between PARP-1 and RTA. Here, the structure of MHV-68 vPIP was determined at 2.2 Å resolution. The structure consists of 12 α-helices with characteristic N-terminal β-strands (Nβ) and forms a V-shaped-twist dimer in the asymmetric unit. Structure-based mutagenesis revealed that Nβ and the α1 helix (residues 2-26) are essential for the nuclear localization and function of vPIP; three residues were then identified (Phe5, Ser12 and Thr16) that were critical for the function of vPIP and its interaction with PARP-1. A recombinant MHV-68 harboring mutations of these three residues showed severely attenuated viral replication both in vitro and in vivo. Moreover, ORF49 of Kaposi's sarcoma-associated herpesvirus also directly interacted with PARP-1, indicating a conserved mechanism of action of vPIPs. The results elucidate the novel molecular mechanisms by which oncogenic gammaherpesviruses overcome repression by PARP-1 using vPIPs.
Collapse
Affiliation(s)
- Woo-Chang Chung
- Virus–Host Interactions Laboratory, Department of Biosystems and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Junsoo Kim
- Structural Proteomics Laboratory, Department of Biosystems and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Byung Chul Kim
- Virus–Host Interactions Laboratory, Department of Biosystems and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hye-Ri Kang
- Virus–Host Interactions Laboratory, Department of Biosystems and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - JongHyeon Son
- Structural Proteomics Laboratory, Department of Biosystems and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hosam Ki
- Structural Proteomics Laboratory, Department of Biosystems and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kwang Yeon Hwang
- Structural Proteomics Laboratory, Department of Biosystems and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Moon Jung Song
- Virus–Host Interactions Laboratory, Department of Biosystems and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
3
|
The Epstein-Barr Virus BRRF1 Gene Is Dispensable for Viral Replication in HEK293 cells and Transformation. Sci Rep 2017; 7:6044. [PMID: 28729695 PMCID: PMC5519699 DOI: 10.1038/s41598-017-06413-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/14/2017] [Indexed: 12/13/2022] Open
Abstract
The Epstein-Barr virus (EBV) is a gamma-herpesvirus associated with several malignancies. It establishes a latent infection in B lymphocytes and is occasionally reactivated to enter the lytic cycle. Here we examined the role of the EBV gene BRRF1, which is expressed in the lytic state. We first confirmed, using a DNA polymerase inhibitor, that the BRRF1 gene is expressed with early kinetics. A BRRF1-deficient recombinant virus was constructed using a bacterial artificial chromosome system. No obvious differences were observed between the wild-type, BRRF1-deficient mutant and the revertant virus in HEK293 cells in terms of viral lytic protein expression, viral DNA synthesis, progeny production, pre-latent abortive lytic gene expression and transformation of primary B cells. However, reporter assays indicated that BRRF1 may activate transcription in promoter- and cell type-dependent manners. Taken together, BRRF1 is dispensable for viral replication in HEK293 cells and transformation of B cells, but it may have effects on transcription.
Collapse
|