1
|
Li B, Ustyugova IV, Szymkowicz L, Zhu S, Ming M, Fung KYY, Cortés G, James DA, Hrynyk M, Rahman N, Brookes RH, Ausar SF. Formulation development of a stable influenza recombinant neuraminidase vaccine candidate. Hum Vaccin Immunother 2024; 20:2304393. [PMID: 38497413 PMCID: PMC10950269 DOI: 10.1080/21645515.2024.2304393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/09/2024] [Indexed: 03/19/2024] Open
Abstract
Current influenza vaccines could be augmented by including recombinant neuraminidase (rNA) protein antigen to broaden protective immunity and improve efficacy. Toward this goal, we investigated formulation conditions to optimize rNA physicochemical stability. When rNA in sodium phosphate saline buffer (NaPBS) was frozen and thawed (F/T), the tetrameric structure transitioned from a "closed" to an "open" conformation, negatively impacting functional activity. Hydrogen deuterium exchange experiments identified differences in anchorage binding sites at the base of the open tetramer, offering a structural mechanistic explanation for the change in conformation and decreased functional activity. Change to the open configuration was triggered by the combined stresses of acidic pH and F/T. The desired closed conformation was preserved in a potassium phosphate buffer (KP), minimizing pH drop upon freezing and including 10% sucrose to control F/T stress. Stability was further evaluated in thermal stress studies where changes in conformation were readily detected by ELISA and size exclusion chromatography (SEC). Both tests were suitable indicators of stability and antigenicity and considered potential critical quality attributes (pCQAs). To understand longer-term stability, the pCQA profiles from thermally stressed rNA at 6 months were modeled to predict stability of at least 24-months at 5°C storage. In summary, a desired rNA closed tetramer was maintained by formulation selection and monitoring of pCQAs to produce a stable rNA vaccine candidate. The study highlights the importance of understanding and controlling vaccine protein structural and functional integrity.
Collapse
Affiliation(s)
- Bing Li
- Sanofi Global Vaccine Drug Product Development, Toronto, ON, Canada
| | | | | | | | - Marin Ming
- Sanofi Analytical Sciences, Toronto, ON, Canada
| | - Karen Y. Y. Fung
- Sanofi Global Vaccine Drug Product Development, Toronto, ON, Canada
| | - Guadalupe Cortés
- Sanofi mRNA & Translational Medicine COVID Franchise, Global Clinical Development, Waltham, MA, USA
| | - D. Andrew James
- Sanofi External Research and Development, Toronto, ON, Canada
| | | | - Nausheen Rahman
- Sanofi Global Vaccine Drug Product Development, Toronto, ON, Canada
| | - Roger H. Brookes
- Sanofi Global Vaccine Drug Product Development, Toronto, ON, Canada
| | | |
Collapse
|
2
|
Catani JPP, Smet A, Ysenbaert T, Vuylsteke M, Bottu G, Mathys J, Botzki A, Cortes-Garcia G, Strugnell T, Gomila R, Hamberger J, Catalan J, Ustyugova IV, Farrell T, Stegalkina S, Ray S, LaRue L, Saelens X, Vogel TU. The antigenic landscape of human influenza N2 neuraminidases from 2009 until 2017. eLife 2024; 12:RP90782. [PMID: 38805550 PMCID: PMC11132685 DOI: 10.7554/elife.90782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Human H3N2 influenza viruses are subject to rapid antigenic evolution which translates into frequent updates of the composition of seasonal influenza vaccines. Despite these updates, the effectiveness of influenza vaccines against H3N2-associated disease is suboptimal. Seasonal influenza vaccines primarily induce hemagglutinin-specific antibody responses. However, antibodies directed against influenza neuraminidase (NA) also contribute to protection. Here, we analysed the antigenic diversity of a panel of N2 NAs derived from human H3N2 viruses that circulated between 2009 and 2017. The antigenic breadth of these NAs was determined based on the NA inhibition (NAI) of a broad panel of ferret and mouse immune sera that were raised by infection and recombinant N2 NA immunisation. This assessment allowed us to distinguish at least four antigenic groups in the N2 NAs derived from human H3N2 viruses that circulated between 2009 and 2017. Computational analysis further revealed that the amino acid residues in N2 NA that have a major impact on susceptibility to NAI by immune sera are in proximity of the catalytic site. Finally, a machine learning method was developed that allowed to accurately predict the impact of mutations that are present in our N2 NA panel on NAI. These findings have important implications for the renewed interest to develop improved influenza vaccines based on the inclusion of a protective NA antigen formulation.
Collapse
Affiliation(s)
- João Paulo Portela Catani
- VIB-UGent Center for Medical BiotechnologyGhentBelgium
- Department of Biochemistry and Microbiology, Ghent UniversityGhentBelgium
| | - Anouk Smet
- VIB-UGent Center for Medical BiotechnologyGhentBelgium
- Department of Biochemistry and Microbiology, Ghent UniversityGhentBelgium
| | - Tine Ysenbaert
- VIB-UGent Center for Medical BiotechnologyGhentBelgium
- Department of Biochemistry and Microbiology, Ghent UniversityGhentBelgium
| | | | | | | | | | | | - Tod Strugnell
- Sanofi, Research North AmericaCambridgeUnited States
| | - Raul Gomila
- Sanofi, Research North AmericaCambridgeUnited States
| | | | - John Catalan
- Sanofi, Research North AmericaCambridgeUnited States
| | | | | | | | - Satyajit Ray
- Sanofi, Research North AmericaCambridgeUnited States
| | - Lauren LaRue
- Sanofi, Research North AmericaCambridgeUnited States
| | - Xavier Saelens
- VIB-UGent Center for Medical BiotechnologyGhentBelgium
- Department of Biochemistry and Microbiology, Ghent UniversityGhentBelgium
| | | |
Collapse
|
3
|
Kang H, Malik T, Daniels R. Isolation by multistep chromatography improves the consistency of secreted recombinant influenza neuraminidase antigens. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1232:123975. [PMID: 38141291 DOI: 10.1016/j.jchromb.2023.123975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Recombinant protein-based approaches are ideally suited for producing vaccine antigens that are not overly abundant in viruses, such as influenza neuraminidase (NA). However, obtaining sufficient quantities of recombinant viral surface antigens remains challenging, often resulting in the use of chimeric proteins with affinity tags that can invariably impact the antigen's properties. Here, we developed multistep chromatography approaches for purifying secreted recombinant NA (rNA) antigens that are derived from recent H1N1 and H3N2 viruses and produced using insect cells. Analytical analyses showed that these isolation procedures yielded homogenous tetrameric rNA preparations with consistent specific activities that were not possible from a common immobilized metal affinity chromatography purification procedure. The use of classical chromatography improved the rNA tetramer homogeneity by removing the requirement of the N-terminal poly-histidine affinity tag that was shown to promote higher order rNA oligomer formation. In addition, these procedures reduced the specific activity variation by eliminating the exposure to Ni2+ ions and imidazole, with the latter showing pH and NA subtype dependent effects. Together, these results demonstrate that purification by multistep chromatography improves the homogeneity of secreted rNAs and eliminates the need for affinity tag-based approaches that can potentially alter the properties of these recombinant antigens.
Collapse
Affiliation(s)
- Hyeog Kang
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tahir Malik
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Robert Daniels
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
4
|
Martinez MR, Gao J, Wan H, Kang H, Klenow L, Daniels R. Inactivated influenza virions are a flexible vaccine platform for eliciting protective antibody responses against neuraminidase. Vaccine 2023:S0264-410X(23)00629-1. [PMID: 37301705 DOI: 10.1016/j.vaccine.2023.05.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Most seasonal influenza vaccines are produced using hemagglutinin (HA) surface antigens from inactivated virions. However, virions are thought to be a suboptimal source for the less abundant neuraminidase (NA) surface antigen, which is also protective against severe disease. Here, we demonstrate that inactivated influenza virions are compatible with two modern approaches for improving protective antibody responses against NA. Using a DBA/2J mouse model, we show that the strong infection-induced NA inhibitory (NAI) antibody responses are only achieved by high dose immunizations of inactivated virions, likely due to the low viral NA content. Based on this observation, we first produced virions with higher NA content by using reverse genetics to exchange the viral internal gene segments. Single immunizations with these inactivated virions showed enhanced NAI antibody responses and improved NA-based protection from a lethal viral challenge while also allowing for the development of natural immunity to the heterotypic challenge virus HA. Second, we combined inactivated virions with recombinant NA protein antigens. These combination vaccines increased NA-based protection following viral challenge and elicited stronger antibody responses against NA than either component alone, especially when the NAs possessed similar antigenicity. Together, these results indicate that inactivated virions are a flexible platform that can be easily combined with protein-based vaccines to improve protective antibody responses against influenza antigens.
Collapse
Affiliation(s)
- Mira Rakic Martinez
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jin Gao
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Hongquan Wan
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Hyeog Kang
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Laura Klenow
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Robert Daniels
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
5
|
Hörner C, Fiedler AH, Bodmer BS, Walz L, Scheuplein VA, Hutzler S, Matrosovich MN, von Messling V, Mühlebach MD. A protective measles virus-derived vaccine inducing long-lasting immune responses against influenza A virus H7N9. NPJ Vaccines 2023; 8:46. [PMID: 36964176 PMCID: PMC10037405 DOI: 10.1038/s41541-023-00643-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/09/2023] [Indexed: 03/26/2023] Open
Abstract
A novel Influenza A virus (subtype H7N9) emerged in spring 2013 and caused considerable mortality in zoonotically infected patients. To be prepared for potential pandemics, broadly effective and safe vaccines are crucial. Recombinant measles virus (MeV) encoding antigens of foreign pathogens constitutes a promising vector platform to generate novel vaccines. To characterize the efficacy of H7N9 antigens in a prototypic vaccine platform technology, we generated MeVs encoding either neuraminidase (N9) or hemagglutinin (H7). Moraten vaccine strain-derived vaccine candidates were rescued; they replicated with efficiency comparable to that of the measles vaccine, robustly expressed H7 and N9, and were genetically stable over 10 passages. Immunization of MeV-susceptible mice triggered the production of antibodies against H7 and N9, including hemagglutination-inhibiting and neutralizing antibodies induced by MVvac2-H7(P) and neuraminidase-inhibiting antibodies by MVvac2-N9(P). Vaccinated mice also developed long-lasting H7- and N9-specific T cells. Both MVvac2-H7(P) and MVvac2-N9(P)-vaccinated mice were protected from lethal H7N9 challenge.
Collapse
Affiliation(s)
- Cindy Hörner
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Anna H Fiedler
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Bianca S Bodmer
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Lisa Walz
- Section 4/0: Research in Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Vivian A Scheuplein
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Stefan Hutzler
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Mikhail N Matrosovich
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
- Institute of Virology, Philipps University, Marburg, Germany
| | - Veronika von Messling
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
- Section 4/0: Research in Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Michael D Mühlebach
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany.
- German Center for Infection Research, Gießen-Marburg-Langen, Germany.
| |
Collapse
|
6
|
Tripp RA. Understanding immunity to influenza: implications for future vaccine development. Expert Rev Vaccines 2023; 22:871-875. [PMID: 37794732 DOI: 10.1080/14760584.2023.2266033] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023]
Abstract
INTRODUCTION Influenza virus changes its genotype through antigenic drift or shift making it difficult to develop immunity to infection or vaccination. Zoonotic influenza A virus (IAV) strains can become established in humans. Several impediments to human infection and transmission include sialic acid expression, host anti-viral factors (including interferons), and other elements that govern viral replication. Controlling influenza infection, replication, and transmission is important because IAVs cause annual epidemics and occasional pandemics. Effective seasonal influenza vaccines exist, but these vaccines do not fully protect against novel or pandemic strains. AREAS COVERED With new vaccine production technology, vaccines can be produced rapidly. Universal IAV vaccines are being developed to protect against seasonal, novel, and zoonotic IAVs. These efforts are being enhanced and accelerated by a better understanding the host immune response to influenza viruses. EXPERT OPINION This review discusses several implications for future influenza vaccine development. Host immune responses to influenza virus infection or vaccination can guide vaccine development as anti-influenza immunity is affected by responses influenced by the previous immune history including first and subsequent exposures to influenza virus infections and vaccinations.
Collapse
Affiliation(s)
- Ralph A Tripp
- College of Veterinary Medicine, Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| |
Collapse
|
7
|
Rosu ME, Lexmond P, Bestebroer TM, Hauser BM, Smith DJ, Herfst S, Fouchier RAM. Substitutions near the HA receptor binding site explain the origin and major antigenic change of the B/Victoria and B/Yamagata lineages. Proc Natl Acad Sci U S A 2022; 119:e2211616119. [PMID: 36215486 PMCID: PMC9586307 DOI: 10.1073/pnas.2211616119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Influenza B virus primarily infects humans, causing seasonal epidemics globally. Two antigenic variants-Victoria-like and Yamagata-like-were detected in the 1980s, of which the molecular basis of emergence is still incompletely understood. Here, the antigenic properties of a unique collection of historical virus isolates, sampled from 1962 to 2000 and passaged exclusively in mammalian cells to preserve antigenic properties, were determined with the hemagglutination inhibition assay and an antigenic map was built to quantify and visualize the divergence of the lineages. The antigenic map revealed only three distinct antigenic clusters-Early, Victoria, and Yamagata-with relatively little antigenic diversity in each cluster until 2000. Viruses with Victoria-like antigenic properties emerged around 1972 and diversified subsequently into two genetic lineages. Viruses with Yamagata-like antigenic properties evolved from one lineage and became clearly antigenically distinct from the Victoria-like viruses around 1988. Recombinant mutant viruses were tested to show that insertions and deletions (indels), as observed frequently in influenza B virus hemagglutinin, had little effect on antigenic properties. In contrast, amino-acid substitutions at positions 148, 149, 150, and 203, adjacent to the hemagglutinin receptor binding site, determined the main antigenic differences between the Early, Victoria-like, and Yamagata-like viruses. Surprisingly, substitutions at two of the four positions reverted in recent viruses of the Victoria lineage, resulting in antigenic properties similar to viruses circulating ∼50 y earlier. These data shed light on the antigenic diversification of influenza viruses and suggest there may be limits to the antigenic evolution of influenza B virus.
Collapse
Affiliation(s)
- Miruna E. Rosu
- Department of Viroscience, Erasmus Medical Centre, Rotterdam 3015 CE, The Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Erasmus Medical Centre, Rotterdam 3015 CE, The Netherlands
| | - Theo M. Bestebroer
- Department of Viroscience, Erasmus Medical Centre, Rotterdam 3015 CE, The Netherlands
| | - Blake M. Hauser
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Derek J. Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Sander Herfst
- Department of Viroscience, Erasmus Medical Centre, Rotterdam 3015 CE, The Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Centre, Rotterdam 3015 CE, The Netherlands
| |
Collapse
|