1
|
Dabi Y, Suisse S, Marie Y, Delbos L, Poilblanc M, Descamps P, Golfier F, Jornea L, Forlani S, Bouteiller D, Touboul C, Puchar A, Bendifallah S, Daraï E. New class of RNA biomarker for endometriosis diagnosis: The potential of salivary piRNA expression. Eur J Obstet Gynecol Reprod Biol 2023; 291:88-95. [PMID: 37857147 DOI: 10.1016/j.ejogrb.2023.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVES In contrast to miRNA expression, little attention has been given to piwiRNA (piRNA) expression among endometriosis patients. The aim of the present study was to explore the human piRNAome and to investigate a potential piRNA saliva-based diagnostic signature for endometriosis. METHODS Data from the prospective "ENDOmiRNA" study (ClinicalTrials.gov Identifier: NCT04728152) were used. Saliva samples from 200 patients were analyzed in order to evaluate human piRNA expression using the piRNA bank. Next Generation Sequencing (NGS), barcoding of unique molecular identifiers and both Artificial Intelligence (AI) and machine learning (ML) were used. For each piRNA, sensitivity, specificity, and ROC AUC values were calculated for the diagnosis of endometriosis. RESULTS 201 piRNAs were identified, none had an AUC ≥ 0.70, and only three piRNAs (piR-004153, piR001918, piR-020401) had an AUC between ≥ 0.6 and < 0.70. Seven were differentially expressed: piR-004153, piR-001918, piR-020401, piR-012864, piR-017716, piR-020326 and piR-016904. The respective correlation and accuracy to diagnose endometriosis according to the F1-score, sensitivity, specificity, and AUC ranged from 0 to 0.862 %, 0-0.961 %, 0.085-1, and 0.425-0.618. A correlation was observed between the patients' age (≥35 years) and piR-004153 (p = 0.002) and piR-017716 (p = 0.030). Among the 201 piRNAs, four were differentially expressed in patients with and without hormonal treatment: piR-004153 (p = 0.015), piR-020401 (p = 0.001), piR-012864 (p = 0.036) and piR-017716 (p = 0.009). CONCLUSION Our results support the link between piRNAs and endometriosis physiopathology and establish its utility as a potential diagnostic biomarker using saliva samples. Per se, piRNA expression should be analyzed along with the clinical status of a patient.
Collapse
Affiliation(s)
- Yohann Dabi
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris, France; Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), France.
| | | | - Yannick Marie
- Department of Obstetrics and Reproductive Medicine - CHU d'Angers, France
| | - Léa Delbos
- Department of Obstetrics and Reproductive Medicine - CHU d'Angers, France; Endometriosis Expert Center - Pays de la Loire, France
| | - Mathieu Poilblanc
- Department of Obstetrics and Reproductive Medicine, Lyon South University Hospital, Lyon Civil Hospices, France; Endometriosis Expert Center - Steering Center of the EndAURA Network, France
| | - Philippe Descamps
- Department of Obstetrics and Reproductive Medicine - CHU d'Angers, France; Endometriosis Expert Center - Pays de la Loire, France
| | - Francois Golfier
- Department of Obstetrics and Reproductive Medicine, Lyon South University Hospital, Lyon Civil Hospices, France; Endometriosis Expert Center - Steering Center of the EndAURA Network, France
| | - Ludmila Jornea
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Sylvie Forlani
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Delphine Bouteiller
- Gentoyping and Sequencing Core Facility, iGenSeq, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital Pitié-Salpêtrière, 47-83 Boulevard de l'Hôpital, 75013 Paris, France
| | - Cyril Touboul
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris, France; Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), France
| | - Anne Puchar
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris, France; Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), France
| | - Sofiane Bendifallah
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris, France; Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), France
| | - Emile Daraï
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris, France; Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), France
| |
Collapse
|
2
|
Tsuji J, Thomson T, Brown C, Ghosh S, Theurkauf WE, Weng Z, Schwartz LM. Somatic piRNAs and Transposons are Differentially Expressed Coincident with Skeletal Muscle Atrophy and Programmed Cell Death. Front Genet 2022; 12:775369. [PMID: 35003216 PMCID: PMC8730325 DOI: 10.3389/fgene.2021.775369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/30/2021] [Indexed: 12/02/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are small single-stranded RNAs that can repress transposon expression via epigenetic silencing and transcript degradation. They have been identified predominantly in the ovary and testis, where they serve essential roles in transposon silencing in order to protect the integrity of the genome in the germline. The potential expression of piRNAs in somatic cells has been controversial. In the present study we demonstrate the expression of piRNAs derived from both genic and transposon RNAs in the intersegmental muscles (ISMs) from the tobacco hawkmoth Manduca sexta. These piRNAs are abundantly expressed, ∼27 nt long, map antisense to transposons, are oxidation resistant, exhibit a 5’ uridine bias, and amplify via the canonical ping-pong pathway. An RNA-seq analysis demonstrated that 19 piRNA pathway genes are expressed in the ISMs and are developmentally regulated. The abundance of piRNAs does not change when the muscles initiate developmentally-regulated atrophy, but are repressed coincident with the commitment of the muscles undergo programmed cell death at the end of metamorphosis. This change in piRNA expression is correlated with the repression of several retrotransposons and the induction of specific DNA transposons. The developmentally-regulated changes in the expression of piRNAs, piRNA pathway genes, and transposons are all regulated by 20-hydroxyecdysone, the steroid hormone that controls the timing of ISM death. Taken together, these data provide compelling evidence for the existence of piRNA in somatic tissues and suggest that they may play roles in developmental processes such as programmed cell death.
Collapse
Affiliation(s)
- Junko Tsuji
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Travis Thomson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States.,Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Christine Brown
- Department of Biology, University of Massachusetts, Amherst, MA, United States
| | - Subhanita Ghosh
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, United States
| | - William E Theurkauf
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Lawrence M Schwartz
- Department of Biology, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
3
|
Retrotransposons Down- and Up-Regulation in Aging Somatic Tissues. Cells 2021; 11:cells11010079. [PMID: 35011640 PMCID: PMC8750722 DOI: 10.3390/cells11010079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 01/19/2023] Open
Abstract
The transposon theory of aging hypothesizes the activation of transposable elements (TEs) in somatic tissues with age, leading to a shortening of the lifespan. It is thought that TE activation in aging produces an increase in DNA double-strand breaks, contributing to genome instability and promoting the activation of inflammatory responses. To investigate how TE regulation changes in somatic tissues during aging, we analyzed the expression of some TEs, as well as a source of small RNAs that specifically silence the analyzed TEs; the Drosophila cluster named flamenco. We found significant variations in the expression levels of all the analyzed TEs during aging, with a trend toward reduction in middle-aged adults and reactivation in older individuals that suggests dynamic regulation during the lifespan.
Collapse
|
4
|
Gainetdinov I, Colpan C, Cecchini K, Arif A, Jouravleva K, Albosta P, Vega-Badillo J, Lee Y, Özata DM, Zamore PD. Terminal modification, sequence, length, and PIWI-protein identity determine piRNA stability. Mol Cell 2021; 81:4826-4842.e8. [PMID: 34626567 DOI: 10.1016/j.molcel.2021.09.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022]
Abstract
In animals, PIWI-interacting RNAs (piRNAs) silence transposons, fight viral infections, and regulate gene expression. piRNA biogenesis concludes with 3' terminal trimming and 2'-O-methylation. Both trimming and methylation influence piRNA stability. Our biochemical data show that multiple mechanisms destabilize unmethylated mouse piRNAs, depending on whether the piRNA 5' or 3' sequence is complementary to a trigger RNA. Unlike target-directed degradation of microRNAs, complementarity-dependent destabilization of piRNAs in mice and flies is blocked by 3' terminal 2'-O-methylation and does not require base pairing to both the piRNA seed and the 3' sequence. In flies, 2'-O-methylation also protects small interfering RNAs (siRNAs) from complementarity-dependent destruction. By contrast, pre-piRNA trimming protects mouse piRNAs from a degradation pathway unaffected by trigger complementarity. In testis lysate and in vivo, internal or 3' terminal uridine- or guanine-rich tracts accelerate pre-piRNA decay. Loss of both trimming and 2'-O-methylation causes the mouse piRNA pathway to collapse, demonstrating that these modifications collaborate to stabilize piRNAs.
Collapse
Affiliation(s)
- Ildar Gainetdinov
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| | - Cansu Colpan
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Katharine Cecchini
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Amena Arif
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Karina Jouravleva
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Paul Albosta
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Joel Vega-Badillo
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Yongjin Lee
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Deniz M Özata
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
5
|
Stitz M, Chaparro C, Lu Z, Olzog VJ, Weinberg CE, Blom J, Goesmann A, Grunau C, Grevelding CG. Satellite-Like W-Elements: Repetitive, Transcribed, and Putative Mobile Genetic Factors with Potential Roles for Biology and Evolution of Schistosoma mansoni. Genome Biol Evol 2021; 13:6361599. [PMID: 34469545 PMCID: PMC8490949 DOI: 10.1093/gbe/evab204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 12/17/2022] Open
Abstract
A large portion of animal and plant genomes consists of noncoding DNA. This part includes tandemly repeated sequences and gained attention because it offers exciting insights into genome biology. We investigated satellite-DNA elements of the platyhelminth Schistosoma mansoni, a parasite with remarkable biological features. Schistosoma mansoni lives in the vasculature of humans causing schistosomiasis, a disease of worldwide importance. Schistosomes are the only trematodes that have evolved separate sexes, and the sexual maturation of the female depends on constant pairing with the male. The schistosome karyotype comprises eight chromosome pairs, males are homogametic (ZZ) and females are heterogametic (ZW). Part of the repetitive DNA of S. mansoni are W-elements (WEs), originally discovered as female-specific satellite DNAs in the heterochromatic block of the W-chromosome. Based on new genome and transcriptome data, we performed a reanalysis of the W-element families (WEFs). Besides a new classification of 19 WEFs, we provide first evidence for stage-, sex-, pairing-, gonad-, and strain-specific/preferential transcription of WEs as well as their mobile nature, deduced from autosomal copies of full-length and partial WEs. Structural analyses suggested roles as sources of noncoding RNA-like hammerhead ribozymes, for which we obtained functional evidence. Finally, the variable WEF occurrence in different schistosome species revealed remarkable divergence. From these results, we propose that WEs potentially exert enduring influence on the biology of S. mansoni. Their variable occurrence in different strains, isolates, and species suggests that schistosome WEs may represent genetic factors taking effect on variability and evolution of the family Schistosomatidae.
Collapse
Affiliation(s)
- Maria Stitz
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | - Cristian Chaparro
- IHPE, CNRS, IFREMER, UPVD, University Montpellier, Perpignan, France
| | - Zhigang Lu
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | | | | | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Germany
| | - Christoph Grunau
- IHPE, CNRS, IFREMER, UPVD, University Montpellier, Perpignan, France
| | | |
Collapse
|
6
|
Schneider J, Imler JL. Sensing and signalling viral infection in drosophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 117:103985. [PMID: 33358662 DOI: 10.1016/j.dci.2020.103985] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
The fruitfly Drosophila melanogaster is a valuable model to unravel mechanisms of innate immunity, in particular in the context of viral infections. RNA interference, and more specifically the small interfering RNA pathway, is a major component of antiviral immunity in drosophila. In addition, the contribution of inducible transcriptional responses to the control of viruses in drosophila and other invertebrates is increasingly recognized. In particular, the recent discovery of a STING-IKKβ-Relish signalling cassette in drosophila has confirmed that NF-κB transcription factors play an important role in the control of viral infections, in addition to bacterial and fungal infections. Here, we review recent developments in the field, which begin to shed light on the mechanisms involved in sensing of viral infections and in signalling leading to production of antiviral effectors.
Collapse
Affiliation(s)
- Juliette Schneider
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Jean-Luc Imler
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France; Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
7
|
Santos D, Remans S, Van den Brande S, Vanden Broeck J. RNAs on the Go: Extracellular Transfer in Insects with Promising Prospects for Pest Management. PLANTS (BASEL, SWITZERLAND) 2021; 10:484. [PMID: 33806650 PMCID: PMC8001424 DOI: 10.3390/plants10030484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 01/16/2023]
Abstract
RNA-mediated pathways form an important regulatory layer of myriad biological processes. In the last decade, the potential of RNA molecules to contribute to the control of agricultural pests has not been disregarded, specifically via the RNA interference (RNAi) mechanism. In fact, several proofs-of-concept have been made in this scope. Furthermore, a novel research field regarding extracellular RNAs and RNA-based intercellular/interorganismal communication is booming. In this article, we review key discoveries concerning extracellular RNAs in insects, insect RNA-based cell-to-cell communication, and plant-insect transfer of RNA. In addition, we overview the molecular mechanisms implicated in this form of communication and discuss future biotechnological prospects, namely from the insect pest-control perspective.
Collapse
Affiliation(s)
- Dulce Santos
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (S.R.); (S.V.d.B.); (J.V.B.)
| | | | | | | |
Collapse
|
8
|
piRNAs as Modulators of Disease Pathogenesis. Int J Mol Sci 2021; 22:ijms22052373. [PMID: 33673453 PMCID: PMC7956838 DOI: 10.3390/ijms22052373] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Advances in understanding disease pathogenesis correlates to modifications in gene expression within different tissues and organ systems. In depth knowledge about the dysregulation of gene expression profiles is fundamental to fully uncover mechanisms in disease development and changes in host homeostasis. The body of knowledge surrounding mammalian regulatory elements, specifically regulators of chromatin structure, transcriptional and translational activation, has considerably surged within the past decade. A set of key regulators whose function still needs to be fully elucidated are small non-coding RNAs (sncRNAs). Due to their broad range of unfolding functions in the regulation of gene expression during transcription and translation, sncRNAs are becoming vital to many cellular processes. Within the past decade, a novel class of sncRNAs called PIWI-interacting RNAs (piRNAs) have been implicated in various diseases, and understanding their complete function is of vital importance. Historically, piRNAs have been shown to be indispensable in germline integrity and stem cell development. Accumulating research evidence continue to reveal the many arms of piRNA function. Although piRNA function and biogenesis has been extensively studied in Drosophila, it is thought that they play similar roles in vertebrate species, including humans. Compounding evidence suggests that piRNAs encompass a wider functional range than small interfering RNAs (siRNAs) and microRNAs (miRNAs), which have been studied more in terms of cellular homeostasis and disease. This review aims to summarize contemporary knowledge regarding biogenesis, and homeostatic function of piRNAs and their emerging roles in the development of pathologies related to cardiomyopathies, cancer, and infectious diseases.
Collapse
|
9
|
Sokolova OA, Mikhaleva EA, Kharitonov SL, Abramov YA, Gvozdev VA, Klenov MS. Special vulnerability of somatic niche cells to transposable element activation in Drosophila larval ovaries. Sci Rep 2020; 10:1076. [PMID: 31974416 PMCID: PMC6978372 DOI: 10.1038/s41598-020-57901-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 01/07/2020] [Indexed: 01/09/2023] Open
Abstract
In the Drosophila ovary, somatic escort cells (ECs) form a niche that promotes differentiation of germline stem cell (GSC) progeny. The piRNA (Piwi-interacting RNA) pathway, which represses transposable elements (TEs), is required in ECs to prevent the accumulation of undifferentiated germ cells (germline tumor phenotype). The soma-specific piRNA cluster flamenco (flam) produces a substantial part of somatic piRNAs. Here, we characterized the biological effects of somatic TE activation on germ cell differentiation in flam mutants. We revealed that the choice between normal and tumorous phenotypes of flam mutant ovaries depends on the number of persisting ECs, which is determined at the larval stage. Accordingly, we found much more frequent DNA breaks in somatic cells of flam larval ovaries than in adult ECs. The absence of Chk2 or ATM checkpoint kinases dramatically enhanced oogenesis defects of flam mutants, in contrast to the germline TE-induced defects that are known to be mostly suppressed by сhk2 mutation. These results demonstrate a crucial role of checkpoint kinases in protecting niche cells against deleterious TE activation and suggest substantial differences between DNA damage responses in ovarian somatic and germ cells.
Collapse
Affiliation(s)
- Olesya A Sokolova
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182, Moscow, Russian Federation
| | - Elena A Mikhaleva
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182, Moscow, Russian Federation
| | - Sergey L Kharitonov
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182, Moscow, Russian Federation
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., 119991, Moscow, Russian Federation
| | - Yuri A Abramov
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182, Moscow, Russian Federation
| | - Vladimir A Gvozdev
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182, Moscow, Russian Federation
| | - Mikhail S Klenov
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182, Moscow, Russian Federation.
| |
Collapse
|
10
|
Houé V, Gabiane G, Dauga C, Suez M, Madec Y, Mousson L, Marconcini M, Yen PS, de Lamballerie X, Bonizzoni M, Failloux AB. Evolution and biological significance of flaviviral elements in the genome of the arboviral vector Aedes albopictus. Emerg Microbes Infect 2020; 8:1265-1279. [PMID: 31469046 PMCID: PMC6735342 DOI: 10.1080/22221751.2019.1657785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Since its genome details are publically available, the mosquito Aedes albopictus has become the central stage of attention for deciphering multiple biological and evolutionary aspects at the root of its success as an invasive species. Its genome of 1,967 Mb harbours an unusual high number of non-retroviral integrated RNA virus sequences (NIRVS). NIRVS are enriched in piRNA clusters and produce piRNAs, suggesting an antiviral effect. Here, we investigated the evolutionary history of NIRVS in geographically distant Ae. albopictus populations by comparing genetic variation as derived by neutral microsatellite loci and seven selected NIRVS. We found that the evolution of NIRVS was far to be neutral with variations both in their distribution and sequence polymorphism among Ae. albopictus populations. The Flaviviral elements AlbFlavi2 and AlbFlavi36 were more deeply investigated in their association with dissemination rates of dengue virus (DENV) and chikungunya virus (CHIKV) in Ae. albopictus at both population and individual levels. Our results show a complex association between NIRVS and DENV/CHIKV opening a new avenue for investigating the functional role of NIRVS as antiviral elements shaping vector competence of mosquitoes to arboviruses.
Collapse
Affiliation(s)
- Vincent Houé
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur , Paris , France.,Sorbonne Université, Collège Doctoral , Paris , France
| | - Gaelle Gabiane
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur , Paris , France
| | - Catherine Dauga
- Institut Pasteur, Center for Bioinformatics, BioStatistics and Integrative Biology (C3BI) , Paris , France
| | - Marie Suez
- Institut de Biologie Paris-Seine , Paris , France
| | - Yoann Madec
- Department of Infection and Epidemiology, Institut Pasteur, Epidemiology of Emerging Diseases , Paris , France
| | - Laurence Mousson
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur , Paris , France
| | - Michele Marconcini
- Department of Biology and Biotechnology, University of Pavia , Pavia , Italy
| | - Pei-Shi Yen
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur , Paris , France
| | - Xavier de Lamballerie
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 'Emergence des Pathologies Virales' , Marseille , France.,IHU Méditerranée Infection, APHM Public Hospitals of Marseille , Marseille , France
| | | | - Anna-Bella Failloux
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur , Paris , France
| |
Collapse
|
11
|
Ozata DM, Gainetdinov I, Zoch A, O'Carroll D, Zamore PD. PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet 2019; 20:89-108. [PMID: 30446728 DOI: 10.1038/s41576-018-0073-3] [Citation(s) in RCA: 685] [Impact Index Per Article: 114.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In animals, PIWI-interacting RNAs (piRNAs) of 21-35 nucleotides in length silence transposable elements, regulate gene expression and fight viral infection. piRNAs guide PIWI proteins to cleave target RNA, promote heterochromatin assembly and methylate DNA. The architecture of the piRNA pathway allows it both to provide adaptive, sequence-based immunity to rapidly evolving viruses and transposons and to regulate conserved host genes. piRNAs silence transposons in the germ line of most animals, whereas somatic piRNA functions have been lost, gained and lost again across evolution. Moreover, most piRNA pathway proteins are deeply conserved, but different animals employ remarkably divergent strategies to produce piRNA precursor transcripts. Here, we discuss how a common piRNA pathway allows animals to recognize diverse targets, ranging from selfish genetic elements to genes essential for gametogenesis.
Collapse
Affiliation(s)
- Deniz M Ozata
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ildar Gainetdinov
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ansgar Zoch
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Dónal O'Carroll
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
12
|
Barckmann B, El-Barouk M, Pélisson A, Mugat B, Li B, Franckhauser C, Fiston Lavier AS, Mirouze M, Fablet M, Chambeyron S. The somatic piRNA pathway controls germline transposition over generations. Nucleic Acids Res 2019; 46:9524-9536. [PMID: 30312469 PMCID: PMC6182186 DOI: 10.1093/nar/gky761] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/22/2018] [Indexed: 11/14/2022] Open
Abstract
Transposable elements (TEs) are parasitic DNA sequences that threaten genome integrity by replicative transposition in host gonads. The Piwi-interacting RNAs (piRNAs) pathway is assumed to maintain Drosophila genome homeostasis by downregulating transcriptional and post-transcriptional TE expression in the ovary. However, the bursts of transposition that are expected to follow transposome derepression after piRNA pathway impairment have not yet been reported. Here, we show, at a genome-wide level, that piRNA loss in the ovarian somatic cells boosts several families of the endogenous retroviral subclass of TEs, at various steps of their replication cycle, from somatic transcription to germinal genome invasion. For some of these TEs, the derepression caused by the loss of piRNAs is backed up by another small RNA pathway (siRNAs) operating in somatic tissues at the post transcriptional level. Derepressed transposition during 70 successive generations of piRNA loss exponentially increases the genomic copy number by up to 10-fold.
Collapse
Affiliation(s)
| | - Marianne El-Barouk
- IGH, CNRS, Univ. Montpellier, Montpellier, France.,Institut Cochin, Paris, France
| | | | - Bruno Mugat
- IGH, CNRS, Univ. Montpellier, Montpellier, France
| | - Blaise Li
- IGH, CNRS, Univ. Montpellier, Montpellier, France.,Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756, IP CNRS, Paris France
| | | | | | - Marie Mirouze
- LGPD, CNRS, Univ Perpignan Via Domitia, Perpignan, France
| | - Marie Fablet
- Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Laboratoire de Biométrie et Biologie Evolutive. 43 Boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France
| | | |
Collapse
|
13
|
Houé V, Bonizzoni M, Failloux AB. Endogenous non-retroviral elements in genomes of Aedes mosquitoes and vector competence. Emerg Microbes Infect 2019; 8:542-555. [PMID: 30938223 PMCID: PMC6455143 DOI: 10.1080/22221751.2019.1599302] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent extensive (re)emergences of arthropod-borne viruses (arboviruses) such as chikungunya (CHIKV), zika (ZIKV) and dengue (DENV) viruses highlight the role of the epidemic vectors, Aedes aegypti and Aedes albopictus, in their spreading. Differences of vector competence to arboviruses highlight different virus/vector interactions. While both are highly competent to transmit CHIKV (Alphavirus,Togaviridae), only Ae. albopictus is considered as a secondary vector for DENV (Flavivirus, Flaviviridae). Among other factors such as environmental temperature, mosquito antiviral immunity and microbiota, the presence of non-retroviral integrated RNA virus sequences (NIRVS) in both mosquito genomes may modulate the vector competence. Here we review the current knowledge on these elements, highlighting the mechanisms by which they are produced and endogenized into Aedes genomes. Additionally, we describe their involvement in antiviral immunity as a stimulator of the RNA interference pathways and in some rare cases, as producer of viral-interfering proteins. Finally, we mention NIRVS as a tool for understanding virus/vector co-evolution. The recent discovery of endogenized elements shows that virus/vector interactions are more dynamic than previously thought, and genetic markers such as NIRVS could be one of the potential targets to reduce arbovirus transmission.
Collapse
Affiliation(s)
- Vincent Houé
- a Department of Virology, Arboviruses and Insect Vectors , Institut Pasteur , Paris , France.,b Collège Doctoral , Sorbonne Université , Paris , France
| | | | - Anna-Bella Failloux
- a Department of Virology, Arboviruses and Insect Vectors , Institut Pasteur , Paris , France
| |
Collapse
|
14
|
Pinzón N, Bertrand S, Subirana L, Busseau I, Escrivá H, Seitz H. Functional lability of RNA-dependent RNA polymerases in animals. PLoS Genet 2019; 15:e1007915. [PMID: 30779744 PMCID: PMC6396948 DOI: 10.1371/journal.pgen.1007915] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 03/01/2019] [Accepted: 12/24/2018] [Indexed: 11/18/2022] Open
Abstract
RNA interference (RNAi) requires RNA-dependent RNA polymerases (RdRPs) in many eukaryotes, and RNAi amplification constitutes the only known function for eukaryotic RdRPs. Yet in animals, classical model organisms can elicit RNAi without possessing RdRPs, and only nematode RNAi was shown to require RdRPs. Here we show that RdRP genes are much more common in animals than previously thought, even in insects, where they had been assumed not to exist. RdRP genes were present in the ancestors of numerous clades, and they were subsequently lost at a high frequency. In order to probe the function of RdRPs in a deuterostome (the cephalochordate Branchiostoma lanceolatum), we performed high-throughput analyses of small RNAs from various Branchiostoma developmental stages. Our results show that Branchiostoma RdRPs do not appear to participate in RNAi: we did not detect any candidate small RNA population exhibiting classical siRNA length or sequence features. Our results show that RdRPs have been independently lost in dozens of animal clades, and even in a clade where they have been conserved (cephalochordates) their function in RNAi amplification is not preserved. Such a dramatic functional variability reveals an unexpected plasticity in RNA silencing pathways. RNA interference (RNAi) is a conserved gene regulation system in eukaryotes. In non-animal eukaryotes, it necessitates RNA-dependent RNA polymerases (“RdRPs”). Among animals, only nematodes appear to require RdRPs for RNAi. Yet additional animal clades have RdRPs and it is assumed that they participate in RNAi. Here, we find that RdRPs are much more common in animals than previously thought, but their genes were independently lost in many lineages. Focusing on a species with RdRP genes (a cephalochordate), we found that it does not use them for RNAi. While RNAi is the only known function for eukaryotic RdRPs, our results suggest additional roles. Eukaryotic RdRPs thus have a complex evolutionary history in animals, with frequent independent losses and apparent functional diversification.
Collapse
Affiliation(s)
- Natalia Pinzón
- Institut de Génétique Humaine, UMR 9002 CNRS and université de Montpellier, 141, rue de la Cardonille, 34396 Montpellier CEDEX 5, France
| | - Stéphanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650 Banyuls-sur-Mer, France
| | - Lucie Subirana
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650 Banyuls-sur-Mer, France
| | - Isabelle Busseau
- Institut de Génétique Humaine, UMR 9002 CNRS and université de Montpellier, 141, rue de la Cardonille, 34396 Montpellier CEDEX 5, France
| | - Hector Escrivá
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650 Banyuls-sur-Mer, France
| | - Hervé Seitz
- Institut de Génétique Humaine, UMR 9002 CNRS and université de Montpellier, 141, rue de la Cardonille, 34396 Montpellier CEDEX 5, France
- * E-mail:
| |
Collapse
|
15
|
Fuchs Wightman F, Giono LE, Fededa JP, de la Mata M. Target RNAs Strike Back on MicroRNAs. Front Genet 2018; 9:435. [PMID: 30333855 PMCID: PMC6175985 DOI: 10.3389/fgene.2018.00435] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/13/2018] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are extensively studied regulatory non-coding small RNAs that silence animal genes throughout most biological processes, typically doing so by binding to partially complementary sequences within target RNAs. A plethora of studies has described detailed mechanisms for microRNA biogenesis and function, as well as their temporal and spatial regulation during development. By inducing translational repression and/or degradation of their target RNAs, microRNAs can contribute to achieve highly specific cell- or tissue-specific gene expression, while their aberrant expression can lead to disease. Yet an unresolved aspect of microRNA biology is how such small RNA molecules are themselves cleared from the cell, especially under circumstances where fast microRNA turnover or specific degradation of individual microRNAs is required. In recent years, it was unexpectedly found that binding of specific target RNAs to microRNAs with extensive complementarity can reverse the outcome, triggering degradation of the bound microRNAs. This emerging pathway, named TDMD for Target RNA-Directed MicroRNA Degradation, leads to microRNA 3'-end tailing by the addition of A/U non-templated nucleotides, trimming or shortening from the 3' end, and highly specific microRNA loss, providing a new layer of microRNA regulation. Originally described in flies and known to be triggered by viral RNAs, novel endogenous instances of TDMD have been uncovered and are now starting to be understood. Here, we review our current knowledge of this pathway and its potential role in the control and diversification of microRNA expression patterns.
Collapse
Affiliation(s)
- Federico Fuchs Wightman
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
| | - Luciana E Giono
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
| | - Juan Pablo Fededa
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Manuel de la Mata
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, Buenos Aires, Argentina
| |
Collapse
|
16
|
Zarreen F, Kumar G, Johnson AMA, Dasgupta I. Small RNA-based interactions between rice and the viruses which cause the tungro disease. Virology 2018; 523:64-73. [PMID: 30081310 DOI: 10.1016/j.virol.2018.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 10/28/2022]
Abstract
Rice tungro disease is caused by a complex of two viruses, Rice tungro bacilliform virus (RTBV) and Rice tungro spherical virus (RTSV). To examine the RNAi-based defence response in rice during tungro disease, we characterized the virus-derived small RNAs and miRNAs by Deep Sequencing. We found that, while 21 nt/22 nt (nucleotide) siRNAs are predominantly produced in a continuous, overlapping and asymmetrical manner from RTBV, siRNA accumulation from RTSV were negligible. Additionally, 54 previously known miRNAs from rice, predicted to be regulating genes involved in plant defence, hormone signaling and developmental pathways were differentially expressed in the infected samples, compared to the healthy ones. This is the first study of sRNA profile of tungro virus complex from infected rice plants. The biased response of the host antiviral machinery against the two viruses and the differentially-expressed miRNAs are novel observations, which entail further studies.
Collapse
Affiliation(s)
- Fauzia Zarreen
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Gaurav Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - A M Anthony Johnson
- Department of Botany, Sri Krishnadevaraya University, Anantapur 515003, Andhra Pradesh, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
17
|
Fu Y, Yang Y, Zhang H, Farley G, Wang J, Quarles KA, Weng Z, Zamore PD. The genome of the Hi5 germ cell line from Trichoplusia ni, an agricultural pest and novel model for small RNA biology. eLife 2018; 7:31628. [PMID: 29376823 PMCID: PMC5844692 DOI: 10.7554/elife.31628] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/26/2018] [Indexed: 12/30/2022] Open
Abstract
We report a draft assembly of the genome of Hi5 cells from the lepidopteran insect pest, Trichoplusia ni, assigning 90.6% of bases to one of 28 chromosomes and predicting 14,037 protein-coding genes. Chemoreception and detoxification gene families reveal T. ni-specific gene expansions that may explain its widespread distribution and rapid adaptation to insecticides. Transcriptome and small RNA data from thorax, ovary, testis, and the germline-derived Hi5 cell line show distinct expression profiles for 295 microRNA- and >393 piRNA-producing loci, as well as 39 genes encoding small RNA pathway proteins. Nearly all of the W chromosome is devoted to piRNA production, and T. ni siRNAs are not 2´-O-methylated. To enable use of Hi5 cells as a model system, we have established genome editing and single-cell cloning protocols. The T. ni genome provides insights into pest control and allows Hi5 cells to become a new tool for studying small RNAs ex vivo. A common moth called the cabbage looper is becoming increasingly relevant to the scientific community. Its caterpillars are a serious threat to cabbage, broccoli and cauliflower crops, and they have started to resist the pesticides normally used to control them. Moreover, the insect’s germline cells – the ones that will produce sperm and eggs – are used in laboratories as ‘factories’ to artificially produce proteins of interest. The germline cells also host a group of genetic mechanisms called RNA silencing. One of these processes is known as piRNA, and it protects the genome against ‘jumping genes’. These genetic elements can cause mutations by moving from place to place in the DNA: in germline cells, piRNA suppresses them before the genetic information is transmitted to the next generation. Not all germline cells grow equally well under experimental conditions, or are easy to use to examine piRNA mechanisms in a laboratory. The germline cells from the cabbage looper, on the other hand, have certain characteristics that would make them ideal to study piRNA in insects. However, the genome of the moth had not yet been fully resolved. This hinders research on new ways of controlling the pest, on how to use the germline cells to produce more useful proteins, or on piRNA. Decoding a genome requires several steps. First, the entire genetic information is broken in short sections that can then be deciphered. Next, these segments need to be ‘assembled’ – put together, and in the right order, to reconstitute the entire genome. Certain portions of the genome, which are formed of repeats of the same sections, can be difficult to assemble. Finally, the genome must be annotated: the different regions – such as the genes – need to be identified and labeled. Here, Fu et al. assembled and annotated the genome of the cabbage looper, and in the process developed strategies that could be used for other species with a lot of repeated sequences in their genomes. Having access to the looper’s full genetic information makes it possible to use their germline cells to produce new types of proteins, for example for pharmaceutical purposes. Fu et al. went on to make working with these cells even easier by refining protocols so that modern research techniques, such as the gene-editing technology CRISPR-Cas9, can be used on the looper germline cells. The mapping of the genome also revealed that the genes involved in removing toxins from the insects’ bodies are rapidly evolving, which may explain why the moths readily become resistant to insecticides. This knowledge could help finding new ways of controlling the pest. Finally, the genes involved in RNA silencing were labeled: results show that an entire chromosome is the source of piRNAs. Combined with the new protocols developed by Fu et al., this could make cabbage looper germline cells the default option for any research into the piRNA mechanism. How piRNA works in the moth could inform work on human piRNA, as these processes are highly similar across the animal kingdom.
Collapse
Affiliation(s)
- Yu Fu
- Bioinformatics Program, Boston University, Boston, United States.,Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, United States
| | - Yujing Yang
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| | - Han Zhang
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| | - Gwen Farley
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| | - Junling Wang
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| | - Kaycee A Quarles
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, United States
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
18
|
Abstract
MicroRNAs (miRNAs), widely distributed, small regulatory RNA genes, target both messenger RNA (mRNA) degradation and suppression of protein translation based on sequence complementarity between the miRNA and its targeted mRNA. Different names have been used to describe various types of miRNA. During evolution, RNA retroviruses or transgenes invaded the eukaryotic genome and were inserted itself in the noncoding regions of DNA, conceivably acting as transposon-like jumping genes, providing defense from viral invasion and fine-tuning of gene expression as a secondary level of gene modulation in eukaryotes. When a transposon is inserted in the intron, it becomes an intronic miRNA, taking advantage of the protein synthesis machinery, i.e., mRNA transcription and splicing, as a means for processing and maturation. MiRNAs have been found to play an important, but not life-threatening, role in embryonic development. They might play a pivotal role in diverse biological systems in various organisms, facilitating a quick response and accurate plotting of body physiology and structures. Based on these unique properties, manufactured intronic miRNAs have been developed for in vitro evaluation of gene function, in vivo gene therapy, and generation of transgenic animal models. The biogenesis of miRNAs, circulating miRNAs, miRNAs and cancer, iPSCs, and heart disease are presented in this chapter, highlighting some recent studies on these topics.
Collapse
Affiliation(s)
- Shao-Yao Ying
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Donald C Chang
- WJWU & LYNN Institute for Stem Cell Research, Santa Fe Springs, CA, USA
| | - Shi-Lung Lin
- Division of Regenerative Medicine, WJWU & LYNN Institute for Stem Cell Research, Santa Fe Springs, CA, USA
| |
Collapse
|
19
|
Yamashiro H, Siomi MC. PIWI-Interacting RNA in Drosophila: Biogenesis, Transposon Regulation, and Beyond. Chem Rev 2017; 118:4404-4421. [PMID: 29281264 DOI: 10.1021/acs.chemrev.7b00393] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are germline-enriched small RNAs that control transposons to maintain genome integrity. To achieve this, upon being processed from piRNA precursors, most of which are transcripts of intergenic piRNA clusters, piRNAs bind PIWI proteins, germline-specific Argonaute proteins, to form effector complexes. The mechanism of this piRNA-mediated transposon silencing pathway is fundamentally similar to that of siRNA/miRNA-dependent gene silencing in that a small RNA guides its partner Argonaute protein to target gene transcripts for repression via RNA-RNA base pairing. However, the uniqueness of this piRNA pathway has emerged through intensive genetic, biochemical, bioinformatic, and structural investigations. Here, we review the studies that elucidated the piRNA pathway, mainly in Drosophila, by describing both historical and recent progress. Studies in other species that have made important contributions to the field are also described.
Collapse
Affiliation(s)
- Haruna Yamashiro
- Department of Biological Sciences, Graduate School of Science , The University of Tokyo , Tokyo 113-0032 , Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science , The University of Tokyo , Tokyo 113-0032 , Japan
| |
Collapse
|
20
|
Villarreal LP. Viruses and the placenta: the essential virus first view. APMIS 2016; 124:20-30. [PMID: 26818259 DOI: 10.1111/apm.12485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/26/2015] [Indexed: 01/05/2023]
Abstract
A virus first perspective is presented as an alternative hypothesis to explain the role of various endogenized retroviruses in the origin of the mammalian placenta. It is argued that virus-host persistence is a key determinant of host survival and the various ERVs involved have directly affected virus-host persistence.
Collapse
Affiliation(s)
- Luis P Villarreal
- Center for Virus Research, Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
21
|
Gebert D, Rosenkranz D. RNA-based regulation of transposon expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:687-708. [DOI: 10.1002/wrna.1310] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/08/2015] [Accepted: 09/13/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Daniel Gebert
- Institute of Anthropology; Johannes Gutenberg University; Mainz Germany
| | - David Rosenkranz
- Institute of Anthropology; Johannes Gutenberg University; Mainz Germany
| |
Collapse
|
22
|
Fablet M, Vieira C. Evolvability, epigenetics and transposable elements. Biomol Concepts 2015; 2:333-41. [PMID: 25962041 DOI: 10.1515/bmc.2011.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 07/11/2011] [Indexed: 12/31/2022] Open
Abstract
Evolvability can be defined as the capacity of an individual to evolve and thus to capture adaptive mutations. Transposable elements (TE) are an important source of mutations in organisms. Their capacity to transpose within a genome, sometimes at a high rate, and their copy number regulation are environment-sensitive, as are the epigenetic pathways that mediate TE regulation in a genome. In this review we revisit the way we see evolvability with regard to transposable elements and epigenetics.
Collapse
|
23
|
Macias V, Coleman J, Bonizzoni M, James AA. piRNA pathway gene expression in the malaria vector mosquito Anopheles stephensi. INSECT MOLECULAR BIOLOGY 2014; 23:579-86. [PMID: 24947897 PMCID: PMC4159409 DOI: 10.1111/imb.12106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The ability of transposons to mobilize to new places in a genome enables them to introgress rapidly into populations. The piRNA pathway has been characterized recently in the germ line of the fruit fly, Drosophila melanogaster, and is responsible for downregulating transposon mobility. Transposons have been used as tools in mosquitoes to genetically transform a number of species including Anopheles stephensi, a vector of human malaria. These mobile genetic elements also have been proposed as tools to drive antipathogen effector genes into wild mosquito populations to replace pathogen-susceptible insects with those engineered genetically to be resistant to or unable to transmit a pathogen. The piRNA pathway may affect the performance of such proposed genetic engineering strategies. In the present study, we identify and describe the An. stephensi orthologues of the major genes in the piRNA pathway, Ago3, Aubergine (Aub) and Piwi. Consistent with a role in protection from transposon movement, these three genes are expressed constitutively in the germ-line cells of ovaries and induced further after a blood meal.
Collapse
Affiliation(s)
- V Macias
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | | | | | | |
Collapse
|
24
|
Wolbachia influences the maternal transmission of the gypsy endogenous retrovirus in Drosophila melanogaster. mBio 2014; 5:e01529-14. [PMID: 25182324 PMCID: PMC4173782 DOI: 10.1128/mbio.01529-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The endosymbiotic bacteria of the genus Wolbachia are present in most insects and are maternally transmitted through the germline. Moreover, these intracellular bacteria exert antiviral activity against insect RNA viruses, as in Drosophila melanogaster, which could explain the prevalence of Wolbachia bacteria in natural populations. Wolbachia is maternally transmitted in D. melanogaster through a mechanism that involves distribution at the posterior pole of mature oocytes and then incorporation into the pole cells of the embryos. In parallel, maternal transmission of several endogenous retroviruses is well documented in D. melanogaster. Notably, gypsy retrovirus is expressed in permissive follicle cells and transferred to the oocyte and then to the offspring by integrating into their genomes. Here, we show that the presence of Wolbachia wMel reduces the rate of gypsy insertion into the ovo gene. However, the presence of Wolbachia does not modify the expression levels of gypsy RNA and envelope glycoprotein from either permissive or restrictive ovaries. Moreover, Wolbachia affects the pattern of distribution of the retroviral particles and the gypsy envelope protein in permissive follicle cells. Altogether, our results enlarge the knowledge of the antiviral activity of Wolbachia to include reducing the maternal transmission of endogenous retroviruses in D. melanogaster. Animals have established complex relationships with bacteria and viruses that spread horizontally among individuals or are vertically transmitted, i.e., from parents to offspring. It is well established that members of the genus Wolbachia, maternally inherited symbiotic bacteria present mainly in arthropods, reduce the replication of several RNA viruses transmitted horizontally. Here, we demonstrate for the first time that Wolbachia diminishes the maternal transmission of gypsy, an endogenous retrovirus in Drosophila melanogaster. We hypothesize that gypsy cannot efficiently integrate into the germ cells of offspring during embryonic development in the presence of Wolbachia because both are competitors for localization to the posterior pole of the egg. More generally, it would be of interest to analyze the influence of Wolbachia on vertically transmitted exogenous viruses, such as some arboviruses.
Collapse
|
25
|
Chambeyron S, Seitz H. Insect small non-coding RNA involved in epigenetic regulations. CURRENT OPINION IN INSECT SCIENCE 2014; 1:1-9. [PMID: 32846724 DOI: 10.1016/j.cois.2014.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 05/01/2014] [Accepted: 05/01/2014] [Indexed: 06/11/2023]
Abstract
Small regulatory RNAs can not only guide post-transcriptional repression of target genes, but some of them can also direct heterochromatin formation of specific genomic loci. Here we review the published literature on small RNA-guided epigenetic regulation in insects. The recent development of novel analytical technologies (deep sequencing and RNAi screens) has led to the identification of some of the factors involved in these processes, as well as their molecular mechanism and subcellular localization. Other findings uncovered an additional mode of epigenetic control, where maternally inherited small RNAs can affect phenotypes in a stable, transgenerational manner. The evolutive history of small RNA effector proteins in insects suggests that these two modes of regulation are variably conserved among species.
Collapse
Affiliation(s)
- Séverine Chambeyron
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), UPR 1142, 141, rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Hervé Seitz
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), UPR 1142, 141, rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| |
Collapse
|
26
|
Ku HY, Lin H. PIWI proteins and their interactors in piRNA biogenesis, germline development and gene expression. Natl Sci Rev 2014; 1:205-218. [PMID: 25512877 DOI: 10.1093/nsr/nwu014] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are a complex class of small non-coding RNAs that are mostly 24-32 nucleotides in length and composed of at least hundreds of thousands of species that specifically interact with the PIWI protein subfamily of the ARGONAUTE family. Recent studies revealed that PIWI proteins interact with a number of proteins, especially the TUDOR-domain-containing proteins, to regulate piRNA biogenesis and regulatory function. Current research also provides evidence that PIWI proteins and piRNAs are not only crucial for transposon silencing in the germline, but also mediate novel mechanisms of epigenetic programming, DNA rearrangements, mRNA turnover, and translational control both in the germline and in the soma. These new discoveries begin to reveal an exciting new dimension of gene regulation in the cell.
Collapse
Affiliation(s)
- Hsueh-Yen Ku
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
27
|
Olovnikov IA, Kalmykova AI. piRNA clusters as a main source of small RNAs in the animal germline. BIOCHEMISTRY (MOSCOW) 2014; 78:572-84. [PMID: 23980884 DOI: 10.1134/s0006297913060035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PIWI subfamily Argonaute proteins and small RNAs bound to them (PIWI interacting RNA, piRNA) control mobilization of transposable elements (TE) in the animal germline. piRNAs are generated by distinct genomic regions termed piRNA clusters. piRNA clusters are often extensive loci enriched in damaged fragments of TEs. New TE integration into piRNA clusters causes production of TE-specific piRNAs and repression of cognate sequences. piRNAs are thought to be generated from long single-stranded precursors encoded by piRNA clusters. Special chromatin structures might be essential to distinguish these genomic loci as a source for piRNAs. In this review, we present recent findings on the structural organization of piRNA clusters and piRNA biogenesis in Drosophila and other organisms, which are important for understanding a key epigenetic mechanism that provides defense against TE expansion.
Collapse
Affiliation(s)
- I A Olovnikov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia.
| | | |
Collapse
|
28
|
Chaudhary A, Mukherjee SK. The role of small RNAs in vaccination. Methods Mol Biol 2014; 1184:479-501. [PMID: 25048141 DOI: 10.1007/978-1-4939-1115-8_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The concept of vaccination came to light following Edward Jenner's classical observation on milkmaids who were protected against smallpox. However, plants lack the cellular based immunity system and thus it was not appreciated earlier that plants can also be protected from their pathogens. But phenomena like cross-protection, pathogen derived resistance (PDR), viral recovery, etc. in plants suggested that plants have also evolved immunity against their pathogens. The further advances in the field revealed that an endogenous defense system could have multiple prongs. With the advent of RNAi, it was clear that the antiviral immune responses are related to the induction of specific small RNAs. The detection of virus specific small RNAs (vsiRNA) in immunized plants confirmed their roles in the immunity against pathogens. Although many issues related to antiviral mechanisms are yet to be addressed, the existing tools of RNAi can be efficiently used to control the invading viruses in transgenic plants. It is also possible that the microRNA(s) induced in infected plants impart immunity against viral pathogens. So the small RNA molecules play a vital role in defense system and these can be engineered to enhance the immunity against specific viral pathogens.
Collapse
Affiliation(s)
- Ajeet Chaudhary
- Department of Genetics, University of Delhi-South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | | |
Collapse
|
29
|
Fablet M, Akkouche A, Braman V, Vieira C. Variable expression levels detected in the Drosophila effectors of piRNA biogenesis. Gene 2013; 537:149-53. [PMID: 24361206 DOI: 10.1016/j.gene.2013.11.095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 11/30/2013] [Indexed: 11/18/2022]
Abstract
piRNAs (piwi-interacting RNAs) are a class of small interfering RNAs that play a major role in the regulation of transposable elements (TEs) in Drosophila and are considered of fundamental importance in gonadal development. Genes encoding the effectors of the piRNA machinery are thus often thought to be highly constrained. On the contrary, as actors of genetic immunity, these genes have also been shown to evolve rapidly and display a high level of sequence variability. In order to assess the support for these competing models, we analyzed seven genes of the piRNA pathway using a collection of wild-type strains of Drosophila simulans, which are known to display significant variability in their TE content between strains. We showed that these genes exhibited wide variation in transcript levels, and we discuss some evolutionary considerations regarding the observed variability in TE copy numbers.
Collapse
Affiliation(s)
- Marie Fablet
- Université de Lyon, Université Lyon 1, F-69000 Lyon, France; CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France.
| | - Abdou Akkouche
- Université de Lyon, Université Lyon 1, F-69000 Lyon, France; CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France
| | - Virginie Braman
- Université de Lyon, Université Lyon 1, F-69000 Lyon, France; CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France
| | - Cristina Vieira
- Université de Lyon, Université Lyon 1, F-69000 Lyon, France; CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France; Institut Universitaire de France.
| |
Collapse
|
30
|
Abstract
The past two decades have seen an explosion in research on non-coding RNAs and their physiological and pathological functions. Several classes of small (20-30 nucleotides) and long (>200 nucleotides) non-coding RNAs have been firmly established as key regulators of gene expression in myriad processes ranging from embryonic development to innate immunity. In this review, we focus on our current understanding of the molecular mechanisms underlying the biogenesis and function of small interfering RNAs (siRNAs), microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs). In addition, we briefly review the relevance of small and long non-coding RNAs to human physiology and pathology and their potential to be exploited as therapeutic agents.
Collapse
Affiliation(s)
- Veena S Patil
- Program for RNA Biology, Sanford-Burnham Medical Research Institute , La Jolla, CA , USA
| | | | | |
Collapse
|
31
|
Dennis C, Zanni V, Brasset E, Eymery A, Zhang L, Mteirek R, Jensen S, Rong YS, Vaury C. "Dot COM", a nuclear transit center for the primary piRNA pathway in Drosophila. PLoS One 2013; 8:e72752. [PMID: 24039799 PMCID: PMC3767702 DOI: 10.1371/journal.pone.0072752] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 07/18/2013] [Indexed: 01/15/2023] Open
Abstract
The piRNA pathway protects genomes by silencing mobile elements. Despite advances in understanding the processing events that generate piRNAs for silencing, little is known about how primary transcripts are transported from their genomic clusters to their processing centers. Using a model of the Drosophila COM/flamenco locus in ovarian somatic cells, we identified a prominent nuclear structure called Dot COM, which is enriched in long transcripts from piRNA clusters but located far from their transcription sites. Remarkably, transcripts from multiple clusters accumulate at Dot COM, which is often juxtaposed with Yb-bodies, the cytoplasmic processing centers for cluster transcripts. Genetic evidence suggests that the accumulation of precursor transcripts at Dot COM represents one of the most upstream events in the piRNA pathway. Our results provide new insights into the initial steps of the piRNA pathway, and open up a new research area important for a complete understanding of this conserved pathway.
Collapse
Affiliation(s)
- Cynthia Dennis
- Clermont Université, Université d'Auvergne, Clermont-Ferrand, France, Inserm, U 1103, Clermont-Ferrand, France, CNRS, UMR 6293, Clermont-Ferrand, France
| | - Vanessa Zanni
- Clermont Université, Université d'Auvergne, Clermont-Ferrand, France, Inserm, U 1103, Clermont-Ferrand, France, CNRS, UMR 6293, Clermont-Ferrand, France
- UMR 1318, INRA-AgroParisTech, Versailles, France
| | - Emilie Brasset
- Clermont Université, Université d'Auvergne, Clermont-Ferrand, France, Inserm, U 1103, Clermont-Ferrand, France, CNRS, UMR 6293, Clermont-Ferrand, France
| | - Angeline Eymery
- Clermont Université, Université d'Auvergne, Clermont-Ferrand, France, Inserm, U 1103, Clermont-Ferrand, France, CNRS, UMR 6293, Clermont-Ferrand, France
| | - Liang Zhang
- LBMB, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rana Mteirek
- Clermont Université, Université d'Auvergne, Clermont-Ferrand, France, Inserm, U 1103, Clermont-Ferrand, France, CNRS, UMR 6293, Clermont-Ferrand, France
| | - Silke Jensen
- Clermont Université, Université d'Auvergne, Clermont-Ferrand, France, Inserm, U 1103, Clermont-Ferrand, France, CNRS, UMR 6293, Clermont-Ferrand, France
| | - Yikang S. Rong
- LBMB, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (CV); (YSR)
| | - Chantal Vaury
- Clermont Université, Université d'Auvergne, Clermont-Ferrand, France, Inserm, U 1103, Clermont-Ferrand, France, CNRS, UMR 6293, Clermont-Ferrand, France
- * E-mail: (CV); (YSR)
| |
Collapse
|
32
|
Carré C, Jacquier C, Bougé AL, de Chaumont F, Besnard-Guerin C, Thomassin H, Pidoux J, Da Silva B, Chalatsi E, Zahra S, Olivo-Marin JC, Munier-Lehmann H, Antoniewski C. AutomiG, a biosensor to detect alterations in miRNA biogenesis and in small RNA silencing guided by perfect target complementarity. PLoS One 2013; 8:e74296. [PMID: 24019960 PMCID: PMC3760873 DOI: 10.1371/journal.pone.0074296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/30/2013] [Indexed: 12/19/2022] Open
Abstract
Defects in miRNA biogenesis or activity are associated to development abnormalities and diseases. In Drosophila, miRNAs are predominantly loaded in Argonaute-1, which they guide for silencing of target RNAs. The miRNA pathway overlaps the RNAi pathway in this organism, as miRNAs may also associate with Argonaute-2, the mediator of RNAi. We set up a gene construct in which a single inducible promoter directs the expression of the GFP protein as well as two miRNAs perfectly matching the GFP sequences. We show that self-silencing of the resulting automiG gene requires Drosha, Pasha, Dicer-1, Dicer-2 and Argonaute-2 loaded with the anti-GFP miRNAs. In contrast, self-silencing of the automiG gene does not involve Argonaute-1. Thus, automiG reports in vivo for both miRNA biogenesis and Ago-2 mediated silencing, providing a powerful biosensor to identify situations where miRNA or siRNA pathways are impaired. As a proof of concept, we used automiG as a biosensor to screen a chemical library and identified 29 molecules that strongly inhibit miRNA silencing, out of which 5 also inhibit RNAi triggered by long double-stranded RNA. Finally, the automiG sensor is also self-silenced by the anti-GFP miRNAs in HeLa cells and might be easily used to identify factors involved in miRNA biogenesis and silencing guided by perfect target complementarity in mammals.
Collapse
Affiliation(s)
- Clément Carré
- Drosophila Genetics and Epigenetics, Laboratory of Developmental Biology, CNRS UMR7622, Université Pierre et Marie Curie, Paris, France
| | - Caroline Jacquier
- Institut Pasteur, Drosophila Genetics and Epigenetics, Paris, France
- Chromatin and Cell Biology, Institute of Human Genetics, Montpellier, France
| | - Anne-Laure Bougé
- Institut Pasteur, Drosophila Genetics and Epigenetics, Paris, France
- mRNA Regulation and Development, Institute of Human Genetics, Montpellier, France
| | | | - Corinne Besnard-Guerin
- Institut Pasteur, Drosophila Genetics and Epigenetics, Paris, France
- Inserm U1016 - CNRS UMR 8104, Faculté de Médecine-Cochin, Paris, France
| | - Hélène Thomassin
- Drosophila Genetics and Epigenetics, Laboratory of Developmental Biology, CNRS UMR7622, Université Pierre et Marie Curie, Paris, France
- Institut Pasteur, Drosophila Genetics and Epigenetics, Paris, France
| | - Josette Pidoux
- Institut Pasteur, Drosophila Genetics and Epigenetics, Paris, France
| | - Bruno Da Silva
- Drosophila Genetics and Epigenetics, Laboratory of Developmental Biology, CNRS UMR7622, Université Pierre et Marie Curie, Paris, France
| | - Eleftheria Chalatsi
- Drosophila Genetics and Epigenetics, Laboratory of Developmental Biology, CNRS UMR7622, Université Pierre et Marie Curie, Paris, France
| | - Sarah Zahra
- Drosophila Genetics and Epigenetics, Laboratory of Developmental Biology, CNRS UMR7622, Université Pierre et Marie Curie, Paris, France
| | | | - Hélène Munier-Lehmann
- Institut Pasteur, Unité de Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, Paris, France
- CNRS, UMR3523, Paris, France
| | - Christophe Antoniewski
- Drosophila Genetics and Epigenetics, Laboratory of Developmental Biology, CNRS UMR7622, Université Pierre et Marie Curie, Paris, France
- Institut Pasteur, Drosophila Genetics and Epigenetics, Paris, France
- * E-mail:
| |
Collapse
|
33
|
Sitikov AS. Antisense RNAs as envoys in intercellular communication: 20 years later. BIOCHEMISTRY (MOSCOW) 2013; 77:1478-86. [PMID: 23379523 DOI: 10.1134/s0006297912130068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
More than 20 years ago we showed that some types of cells are capable of secreting RNAs. It was suggested that these secreted RNAs could serve as molecular envoys in intercellular communication, for example, these RNAs being complementary to specific sites of the gene in another cell (e.g. to the variable region of immunoglobulin gene) could regulate the expression of genes that contain sites in coding regions complementary to antisense RNA. It has since been proven that eukaryotic cells contain antisense RNAs (particularly microRNAs and small interfering RNAs), which can regulate the expression of genes at the posttranscriptional level (the so-called regulatory pathway of RNA interference). Here I provide a short review of advances in the field of intracellular regulation of gene expression by different types of RNAs. In addition, an overview of recent data on the secretion of RNA molecules by different cell types and possible involvement of these secreted antisense RNAs in intercellular regulation of gene expression in target cells is given.
Collapse
|
34
|
Abstract
MicroRNAs (miRNAs) regulate the expression of most genes in animals, but we are only now beginning to understand how they are generated, assembled into functional complexes and destroyed. Various mechanisms have now been identified that regulate miRNA stability and that diversify miRNA sequences to create distinct isoforms. The production of different isoforms of individual miRNAs in specific cells and tissues may have broader implications for miRNA-mediated gene expression control. Rigorously testing the many discrepant models for how miRNAs function using quantitative biochemical measurements made in vivo and in vitro remains a major challenge for the future.
Collapse
|
35
|
Jung YD, Ahn K, Kim YJ, Bae JH, Lee JR, Kim HS. Retroelements: molecular features and implications for disease. Genes Genet Syst 2013; 88:31-43. [PMID: 23676708 DOI: 10.1266/ggs.88.31] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Eukaryotic genomes comprise numerous retroelements that have a major impact on the structure and regulation of gene function. Retroelements are regulated by epigenetic controls, and they generate multiple miRNAs that are involved in the induction and progression of genomic instability. Elucidation of the biological roles of retroelements deserves continuous investigation to better understand their evolutionary features and implications for disease.
Collapse
Affiliation(s)
- Yi-Deun Jung
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | | | |
Collapse
|
36
|
Akkouche A, Grentzinger T, Fablet M, Armenise C, Burlet N, Braman V, Chambeyron S, Vieira C. Maternally deposited germline piRNAs silence the tirant retrotransposon in somatic cells. EMBO Rep 2013; 14:458-64. [PMID: 23559065 DOI: 10.1038/embor.2013.38] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/27/2013] [Accepted: 03/01/2013] [Indexed: 01/17/2023] Open
Abstract
Transposable elements (TEs), whose propagation can result in severe damage to the host genome, are silenced in the animal gonad by Piwi-interacting RNAs (piRNAs). piRNAs produced in the ovaries are deposited in the embryonic germline and initiate TE repression in the germline progeny. Whether the maternally transmitted piRNAs play a role in the silencing of somatic TEs is however unknown. Here we show that maternally transmitted piRNAs from the tirant retrotransposon in Drosophila are required for the somatic silencing of the TE and correlate with an increase in histone H3K9 trimethylation an active tirant copy.
Collapse
Affiliation(s)
- Abdou Akkouche
- Université de Lyon, Université Lyon 1, CNRS UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Rozhkov NV, Hammell M, Hannon GJ. Multiple roles for Piwi in silencing Drosophila transposons. Genes Dev 2013; 27:400-12. [PMID: 23392609 DOI: 10.1101/gad.209767.112] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Silencing of transposons in the Drosophila ovary relies on three Piwi family proteins--Piwi, Aubergine (Aub), and Ago3--acting in concert with their small RNA guides, the Piwi-interacting RNAs (piRNAs). Aub and Ago3 are found in the germ cell cytoplasm, where they function in the ping-pong cycle to consume transposon mRNAs. The nuclear Piwi protein is required for transposon silencing in both germ and somatic follicle cells, yet the precise mechanisms by which Piwi acts remain largely unclear. We investigated the role of Piwi by combining cell type-specific knockdowns with measurements of steady-state transposon mRNA levels, nascent RNA synthesis, chromatin state, and small RNA abundance. In somatic cells, Piwi loss led to concerted effects on nascent transcripts and transposon mRNAs, indicating that Piwi acts through transcriptional gene silencing (TGS). In germ cells, Piwi loss showed disproportionate impacts on steady-state RNA levels, indicating that it also exerts an effect on post-transcriptional gene silencing (PTGS). Piwi knockdown affected levels of germ cell piRNAs presumably bound to Aub and Ago3, perhaps explaining its post-transcriptional impacts. Overall, our results indicate that Piwi plays multiple roles in the piRNA pathway, in part enforcing transposon repression through effects on local chromatin states and transcription but also participating in germ cell piRNA biogenesis.
Collapse
Affiliation(s)
- Nikolay V Rozhkov
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
38
|
Scott DD, Norbury CJ. RNA decay via 3' uridylation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:654-65. [PMID: 23385389 DOI: 10.1016/j.bbagrm.2013.01.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 01/22/2013] [Accepted: 01/24/2013] [Indexed: 11/30/2022]
Abstract
The post-transcriptional addition of non-templated nucleotides to the 3' ends of RNA molecules can have a profound impact on their stability and biological function. Evidence accumulated over the past few decades has identified roles for polyadenylation in RNA stabilisation, degradation and, in the case of eukaryotic mRNAs, translational competence. By contrast, the biological significance of RNA 3' modification by uridylation has only recently started to become apparent. The evolutionary origin of eukaryotic RNA terminal uridyltransferases can be traced to an ancestral poly(A) polymerase. Here we review what is currently known about the biological roles of these enzymes, the ways in which their activity is regulated and the consequences of this covalent modification for the target RNA molecule, with a focus on those instances where uridylation has been found to contribute to RNA degradation. Roles for uridylation have been identified in the turnover of mRNAs, pre-microRNAs, piwi-interacting RNAs and the products of microRNA-directed mRNA cleavage; many mature microRNAs are also modified by uridylation, though the consequences in this case are currently less well understood. In the case of piwi-interacting RNAs, modification of the 3'-terminal nucleotide by the HEN1 methyltransferase blocks uridylation and so stabilises the small RNA. The extent to which other uridylation-dependent mechanisms of RNA decay are similarly regulated awaits further investigation. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Daniel D Scott
- University of Oxford, Sir William Dunn School of Pathology, Oxford, UK.
| | | |
Collapse
|
39
|
Fujii YR. The RNA gene information: retroelement-microRNA entangling as the RNA quantum code. Methods Mol Biol 2013; 936:47-67. [PMID: 23007498 DOI: 10.1007/978-1-62703-083-0_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
MicroRNA (miRNA) and retroelements may be a master of regulator in our life, which are evolutionally involved in the origin of species. To support the Darwinism from the aspect of molecular evolution process, it has tremendously been interested in the molecular information of naive RNA. The RNA wave model 2000 consists of four concepts that have altered from original idea of the miRNA genes for crosstalk among embryonic stem cells, their niche cells, and retroelements as a carrier vesicle of the RNA genes. (1) the miRNA gene as a mobile genetic element induces transcriptional and posttranscriptional silencing via networking-processes (no hierarchical architecture); (2) the RNA information supplied by the miRNA genes expands to intracellular, intercellular, intraorgan, interorgan, intraspecies, and interspecies under the cycle of life into the global environment; (3) the mobile miRNAs can self-proliferate; and (4) cells contain two types information as resident and genomic miRNAs. Based on RNA wave, we have developed an interest in investigation of the transformation from RNA information to quantum bits as physicochemical characters of RNA with the measurement of RNA electron spin. When it would have been given that the fundamental bases for the acquired characters in genetics can be controlled by RNA gene information, it may be available to apply for challenging against RNA gene diseases, such as stress-induced diseases.
Collapse
|
40
|
Abstract
MicroRNAs (miRNAs), widely distributed, small regulatory RNA genes, target both messenger RNA (mRNA) degradation and suppression of protein translation based on sequence complementarity between the miRNA and its targeted mRNA. Different names have been used to describe various types of miRNA. During evolution, RNA retroviruses or transgenes invaded the eukaryotic genome and inserted itself in the noncoding regions of DNA, conceivably acting as transposon-like jumping genes, providing defense from viral invasion and fine-tuning of gene expression as a secondary level of gene modulation in eukaryotes. When a transposon is inserted in the intron, it becomes an intronic miRNA, taking advantage of the protein synthesis machinery, i.e., mRNA transcription and splicing, as a means for processing and maturation. Recently, miRNAs have been found to play an important, but not life-threatening, role in embryonic development. They might play a pivotal role in diverse biological systems in various organisms, facilitating a quick response and accurate plotting of body physiology and structures. Based on these unique properties, manufactured intronic miRNAs have been developed for in vitro evaluation of gene function, in vivo gene therapy, and generation of transgenic animal models. The biogenesis and identification of miRNAs, potential applications, and future directions for research are presented in this chapter, hopefully providing a guideline for further miRNA and gene function studies.
Collapse
Affiliation(s)
- Shao-Yao Ying
- Department of Cell and Neurobiology, University of Southern California, Los Angeles, CA, USA.
| | | | | |
Collapse
|
41
|
Atayde VD, Shi H, Franklin JB, Carriero N, Notton T, Lye LF, Owens K, Beverley SM, Tschudi C, Ullu E. The structure and repertoire of small interfering RNAs in Leishmania (Viannia) braziliensis reveal diversification in the trypanosomatid RNAi pathway. Mol Microbiol 2012; 87:580-93. [PMID: 23217017 DOI: 10.1111/mmi.12117] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2012] [Indexed: 12/01/2022]
Abstract
Among trypanosomatid protozoa the mechanism of RNA interference (RNAi) has been investigated in Trypanosoma brucei and to a lesser extent in Leishmania braziliensis. Although these two parasitic organisms belong to the same family, they are evolutionarily distantly related raising questions about the conservation of the RNAi pathway. Here we carried out an in-depth analysis of small interfering RNAs (siRNAs) associated with L. braziliensis Argonaute1 (LbrAGO1). In contrast to T. brucei, Leishmania siRNAs are sensitive to 3' end oxidation, indicating the absence of blocking groups, and the Leishmania genome does not code for a HEN1 RNA 2'-O-methyltransferase, which modifies small RNA 3' ends. Consistent with this observation, ~20% of siRNA 3' ends carry non-templated uridines. Thus siRNA biogenesis, and most likely their metabolism, is different in these organisms. Similarly to T. brucei, putative mobile elements and repeats constitute the major Leishmania siRNA-producing loci and AGO1 ablation leads to accumulation of long transcripts derived from putative mobile elements. However, contrary to T. brucei, no siRNAs were detected from other genomic regions with the potential to form double-stranded RNA, namely sites of convergent transcription and inverted repeats. Thus, our results indicate that organism-specific diversification has occurred in the RNAi pathway during evolution of the trypanosomatid lineage.
Collapse
Affiliation(s)
- Vanessa D Atayde
- Departments of Internal Medicine, Yale University, New Haven, CT 06536, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sienski G, Dönertas D, Brennecke J. Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression. Cell 2012; 151:964-80. [PMID: 23159368 PMCID: PMC3504300 DOI: 10.1016/j.cell.2012.10.040] [Citation(s) in RCA: 457] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/27/2012] [Accepted: 10/25/2012] [Indexed: 11/01/2022]
Abstract
Eukaryotic genomes are colonized by transposons whose uncontrolled activity causes genomic instability. The piRNA pathway silences transposons in animal gonads, yet how this is achieved molecularly remains controversial. Here, we show that the HMG protein Maelstrom is essential for Piwi-mediated silencing in Drosophila. Genome-wide assays revealed highly correlated changes in RNA polymerase II recruitment, nascent RNA output, and steady-state RNA levels of transposons upon loss of Piwi or Maelstrom. Our data demonstrate piRNA-mediated trans-silencing of hundreds of transposon copies at the transcriptional level. We show that Piwi is required to establish heterochromatic H3K9me3 marks on transposons and their genomic surroundings. In contrast, loss of Maelstrom affects transposon H3K9me3 patterns only mildly yet leads to increased heterochromatin spreading, suggesting that Maelstrom acts downstream of or in parallel to H3K9me3. Our work illustrates the widespread influence of transposons and the piRNA pathway on chromatin patterns and gene expression.
Collapse
Affiliation(s)
- Grzegorz Sienski
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohrgasse 3, 1030 Vienna, Austria
| | | | | |
Collapse
|
43
|
The Caenorhabditis elegans HEN1 ortholog, HENN-1, methylates and stabilizes select subclasses of germline small RNAs. PLoS Genet 2012; 8:e1002617. [PMID: 22548001 PMCID: PMC3330095 DOI: 10.1371/journal.pgen.1002617] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 02/03/2012] [Indexed: 01/01/2023] Open
Abstract
Small RNAs regulate diverse biological processes by directing effector proteins called Argonautes to silence complementary mRNAs. Maturation of some classes of small RNAs involves terminal 2'-O-methylation to prevent degradation. This modification is catalyzed by members of the conserved HEN1 RNA methyltransferase family. In animals, Piwi-interacting RNAs (piRNAs) and some endogenous and exogenous small interfering RNAs (siRNAs) are methylated, whereas microRNAs are not. However, the mechanisms that determine animal HEN1 substrate specificity have yet to be fully resolved. In Caenorhabditis elegans, a HEN1 ortholog has not been studied, but there is evidence for methylation of piRNAs and some endogenous siRNAs. Here, we report that the worm HEN1 ortholog, HENN-1 (HEN of Nematode), is required for methylation of C. elegans small RNAs. Our results indicate that piRNAs are universally methylated by HENN-1. In contrast, 26G RNAs, a class of primary endogenous siRNAs, are methylated in female germline and embryo, but not in male germline. Intriguingly, the methylation pattern of 26G RNAs correlates with the expression of distinct male and female germline Argonautes. Moreover, loss of the female germline Argonaute results in loss of 26G RNA methylation altogether. These findings support a model wherein methylation status of a metazoan small RNA is dictated by the Argonaute to which it binds. Loss of henn-1 results in phenotypes that reflect destabilization of substrate small RNAs: dysregulation of target mRNAs, impaired fertility, and enhanced somatic RNAi. Additionally, the henn-1 mutant shows a weakened response to RNAi knockdown of germline genes, suggesting that HENN-1 may also function in canonical RNAi. Together, our results indicate a broad role for HENN-1 in both endogenous and exogenous gene silencing pathways and provide further insight into the mechanisms of HEN1 substrate discrimination and the diversity within the Argonaute family.
Collapse
|
44
|
Perron H, Germi R, Bernard C, Garcia-Montojo M, Deluen C, Farinelli L, Faucard R, Veas F, Stefas I, Fabriek BO, Van-Horssen J, Van-der-Valk P, Gerdil C, Mancuso R, Saresella M, Clerici M, Marcel S, Creange A, Cavaretta R, Caputo D, Arru G, Morand P, Lang AB, Sotgiu S, Ruprecht K, Rieckmann P, Villoslada P, Chofflon M, Boucraut J, Pelletier J, Hartung HP. Human endogenous retrovirus type W envelope expression in blood and brain cells provides new insights into multiple sclerosis disease. Mult Scler 2012; 18:1721-36. [PMID: 22457345 PMCID: PMC3573672 DOI: 10.1177/1352458512441381] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: The envelope protein from multiple sclerosis (MS) associated retroviral element (MSRV), a member of the Human Endogenous Retroviral family ‘W’ (HERV-W), induces dysimmunity and inflammation. Objective: The objective of this study was to confirm and specify the association between HERV-W/MSRV envelope (Env) expression and MS. Methods: 103 MS, 199 healthy controls (HC) and controls with other neurological diseases (28), chronic infections (30) or autoimmunity (30) were analysed with an immunoassay detecting Env in serum. Env RNA or DNA copy numbers in peripheral blood mononuclear cells (PBMC) were determined by a quantitative polymerase chain reaction (PCR). Env was detected by immunohistology in the brains of patients with MS with three specific monoclonals. Results: Env antigen was detected in a serum of 73% of patients with MS with similar prevalence in all clinical forms, and not in chronic infection, systemic lupus, most other neurological diseases and healthy donors (p<0.01). Cases with chronic inflammatory demyelinating polyneuropathy (5/8) and rare HC (4/103) were positive. RNA expression in PBMC and DNA copy numbers were significantly elevated in patients with MS versus HC (p<0.001). In patients with MS, DNA copy numbers were significantly increased in chronic progressive MS (secondary progressive MS vs relapsing–remitting MS (RRMS) p<0.001; primary progressive MS vs RRMS –<0.02). Env protein was evidenced in macrophages within MS brain lesions with particular concentrations around vascular elements. Conclusion: The association between MS disease and the MSRV-type HERV-W element now appears quite strong, as evidenced ex-vivo from serum and PBMC with post-mortem confirmation in brain lesions. Chronic progressive MS, RRMS and clinically isolated syndrome show different ELISA (Enzyme-Linked Immunosorbent Assay) and/or PCR profiles suggestive of an increase with disease evolution, and amplicon sequencing confirms the association with particular HERV-W elements.
Collapse
|
45
|
Lepesant JMJ, Cosseau C, Boissier J, Freitag M, Portela J, Climent D, Perrin C, Zerlotini A, Grunau C. Chromatin structural changes around satellite repeats on the female sex chromosome in Schistosoma mansoni and their possible role in sex chromosome emergence. Genome Biol 2012; 13:R14. [PMID: 22377319 PMCID: PMC3701142 DOI: 10.1186/gb-2012-13-2-r14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/13/2012] [Accepted: 02/29/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In the leuphotrochozoan parasitic platyhelminth Schistosoma mansoni, male individuals are homogametic (ZZ) whereas females are heterogametic (ZW). To elucidate the mechanisms that led to the emergence of sex chromosomes, we compared the genomic sequence and the chromatin structure of male and female individuals. As for many eukaryotes, the lower estimate for the repeat content is 40%, with an unknown proportion of domesticated repeats. We used massive sequencing to de novo assemble all repeats, and identify unambiguously Z-specific, W-specific and pseudoautosomal regions of the S. mansoni sex chromosomes. RESULTS We show that 70 to 90% of S. mansoni W and Z are pseudoautosomal. No female-specific gene could be identified. Instead, the W-specific region is composed almost entirely of 36 satellite repeat families, of which 33 were previously unknown. Transcription and chromatin status of female-specific repeats are stage-specific: for those repeats that are transcribed, transcription is restricted to the larval stages lacking sexual dimorphism. In contrast, in the sexually dimorphic adult stage of the life cycle, no transcription occurs. In addition, the euchromatic character of histone modifications around the W-specific repeats decreases during the life cycle. Recombination repression occurs in this region even if homologous sequences are present on both the Z and W chromosomes. CONCLUSION Our study provides for the first time evidence for the hypothesis that, at least in organisms with a ZW type of sex chromosomes, repeat-induced chromatin structure changes could indeed be the initial event in sex chromosome emergence.
Collapse
Affiliation(s)
- Julie M J Lepesant
- Université de Perpignan Via Domitia, CNRS, UMR 5244 Ecologie et Evolution des Interactions (2EI), 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
The Cutoff protein regulates piRNA cluster expression and piRNA production in the Drosophila germline. EMBO J 2012; 30:4601-15. [PMID: 21952049 PMCID: PMC3243597 DOI: 10.1038/emboj.2011.334] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 08/08/2011] [Indexed: 12/14/2022] Open
Abstract
The identity and function of many factors involved in the piRNA pathway remain unknown. Here, in Drosophila, cutoff plays a role in regulating piRNA cluster transcript levels and biogenesis together with the heterochromatin protein Rhino. In a broad range of organisms, Piwi-interacting RNAs (piRNAs) have emerged as core components of a surveillance system that protects the genome by silencing transposable and repetitive elements. A vast proportion of piRNAs is produced from discrete genomic loci, termed piRNA clusters, which are generally embedded in heterochromatic regions. The molecular mechanisms and the factors that govern their expression are largely unknown. Here, we show that Cutoff (Cuff), a Drosophila protein related to the yeast transcription termination factor Rai1, is essential for piRNA production in germline tissues. Cuff accumulates at centromeric/pericentromeric positions in germ-cell nuclei and strongly colocalizes with the major heterochromatic domains. Remarkably, we show that Cuff is enriched at the dual-strand piRNA cluster 1/42AB and is likely to be involved in regulation of transcript levels of similar loci dispersed in the genome. Consistent with this observation, Cuff physically interacts with the Heterochromatin Protein 1 (HP1) variant Rhino (Rhi). Our results unveil a link between Cuff activity, heterochromatin assembly and piRNA cluster expression, which is critical for stem-cell and germ-cell development in Drosophila.
Collapse
|
47
|
Separation of stem cell maintenance and transposon silencing functions of Piwi protein. Proc Natl Acad Sci U S A 2011; 108:18760-5. [PMID: 22065765 DOI: 10.1073/pnas.1106676108] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) and Piwi proteins have the evolutionarily conserved function of silencing of repetitive genetic elements in germ lines. The founder of the Piwi subfamily, Drosophila nuclear Piwi protein, was also shown to be required for the maintenance of germ-line stem cells (GSCs). Hence, null mutant piwi females exhibit two types of abnormalities, overexpression of transposons and severely underdeveloped ovaries. It remained unknown whether the failure of GSC maintenance is related to transposon derepression or if GSC self-renewal and piRNA silencing are two distinct functions of the Piwi protein. We have revealed a mutation, piwi(Nt), removing the nuclear localization signal of the Piwi protein. piwi(Nt) females retain the ability of GSC self-renewal and a near-normal number of egg chambers in the ovarioles but display a drastic transposable element derepression and nuclear accumulation of their transcripts in the germ line. piwi(Nt) mutants are sterile most likely because of the disturbance of piRNA-mediated transposon silencing. Analysis of chromatin modifications in the piwi(Nt) ovaries indicated that Piwi causes chromatin silencing only of certain types of transposons, whereas others are repressed in the nuclei without their chromatin modification. Thus, Piwi nuclear localization that is required for its silencing function is not essential for the maintenance of GSCs. We suggest that the Piwi function in GSC self-renewal is independent of transposon repression and is normally realized in the cytoplasm of GSC niche cells.
Collapse
|
48
|
Han BW, Hung JH, Weng Z, Zamore PD, Ameres SL. The 3'-to-5' exoribonuclease Nibbler shapes the 3' ends of microRNAs bound to Drosophila Argonaute1. Curr Biol 2011; 21:1878-87. [PMID: 22055293 DOI: 10.1016/j.cub.2011.09.034] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/08/2011] [Accepted: 09/20/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are ~22 nucleotide (nt) small RNAs that control development, physiology, and pathology in animals and plants. Production of miRNAs involves the sequential processing of primary hairpin-containing RNA polymerase II transcripts by the RNase III enzymes Drosha in the nucleus and Dicer in the cytoplasm. miRNA duplexes then assemble into Argonaute proteins to form the RNA-induced silencing complex (RISC). In mature RISC, a single-stranded miRNA directs the Argonaute protein to bind partially complementary sequences, typically in the 3' untranslated regions of messenger RNAs, repressing their expression. RESULTS Here, we show that after loading into Argonaute1 (Ago1), more than a quarter of all Drosophila miRNAs undergo 3' end trimming by the 3'-to-5' exoribonuclease Nibbler (CG9247). Depletion of Nibbler by RNA interference (RNAi) reveals that miRNAs are frequently produced by Dicer-1 as intermediates that are longer than ~22 nt. Trimming of miRNA 3' ends occurs after removal of the miRNA* strand from pre-RISC and may be the final step in RISC assembly, ultimately enhancing target messenger RNA repression. In vivo, depletion of Nibbler by RNAi causes developmental defects. CONCLUSIONS We provide a molecular explanation for the previously reported heterogeneity of miRNA 3' ends and propose a model in which Nibbler converts miRNAs into isoforms that are compatible with the preferred length of Ago1-bound small RNAs.
Collapse
Affiliation(s)
- Bo W Han
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
49
|
Abstract
All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the 'Big Bang' theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features.
Collapse
|
50
|
Villarreal LP. Viral ancestors of antiviral systems. Viruses 2011; 3:1933-58. [PMID: 22069523 PMCID: PMC3205389 DOI: 10.3390/v3101933] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/01/2011] [Accepted: 10/10/2011] [Indexed: 02/06/2023] Open
Abstract
All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the 'Big Bang' theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features.
Collapse
Affiliation(s)
- Luis P Villarreal
- Center for Virus Research, University of California, Irvine, CA 92697, USA.
| |
Collapse
|