1
|
Maphumulo NF, Gordon ML. HIV-1 envelope facilitates the development of protease inhibitor resistance through acquiring mutations associated with viral entry and immune escape. Front Microbiol 2024; 15:1388729. [PMID: 38699474 PMCID: PMC11063367 DOI: 10.3389/fmicb.2024.1388729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/27/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction There is increasing evidence supporting a role for HIV-1 envelope in the development of Protease Inhibitor drug resistance, and a recent report from our group suggested that Env mutations co-evolve with Gag-Protease mutations in the pathway to Lopinavir resistance. In this study, we investigated the effect of co-evolving Env mutations on virus function and structure. Methods Co-receptor usage and n-linked glycosylation were investigated using Geno2Pheno as well as tools available at the Los Alamos sequence database. Molecular dynamics simulations were performed using Amber 18 and analyzed using Cpptraj, and molecular interactions were calculated using the Ring server. Results The results showed that under Protease Inhibitor drug selection pressure, the envelope gene modulates viral entry by protecting the virus from antibody recognition through the increased length and number of N-glycosylation sites observed in V1/V2 and to some extent V5. Furthermore, gp120 mutations appear to modulate viral entry through a switch to the CXCR4 coreceptor, induced by higher charge in the V3 region and specific mutations at the coreceptor binding sites. In gp41, S534A formed a hydrogen bond with L602 found in the disulfide loop region between the Heptad Repeat 1 and Heptad Repeat 2 domains and could negatively affect the association of gp120-gp41 during viral entry. Lastly, P724Q/S formed both intermolecular and intramolecular interactions with residues within the Kennedy loop, a known epitope. Discussion In conclusion, the results suggest that mutations in envelope during Protease Inhibitor treatment failure are related to immune escape and that S534A mutants could preferentially use the cell-to-cell route of infection.
Collapse
Affiliation(s)
| | - Michele L. Gordon
- Department of Virology, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natala, Durban, South Africa
| |
Collapse
|
2
|
Phillips S, Mishra T, Huang S, Wu L. Functional Impacts of Epitranscriptomic m 6A Modification on HIV-1 Infection. Viruses 2024; 16:127. [PMID: 38257827 PMCID: PMC10820791 DOI: 10.3390/v16010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Epitranscriptomic RNA modifications play a crucial role in the posttranscriptional regulation of gene expression. N6-methyladenosine (m6A) is the most prevalent internal modification of eukaryotic RNA and plays a pivotal role in RNA fate. RNA m6A modification is regulated by a group of cellular proteins, methyltransferases (writers) and demethylases (erasers), which add and remove the methyl group from adenosine, respectively. m6A modification is recognized by a group of cellular RNA-binding proteins (readers) that specifically bind to m6A-modified RNA, mediating effects on RNA stability, splicing, transport, and translation. The functional significance of m6A modification of viral and cellular RNA is an active area of virology research. In this review, we summarize and analyze the current literature on m6A modification of HIV-1 RNA, the multifaceted functions of m6A in regulating HIV-1 replication, and the role of viral RNA m6A modification in evading innate immune responses to infection. Furthermore, we briefly discuss the future directions and therapeutic implications of mechanistic studies of HIV-1 epitranscriptomic modifications.
Collapse
Affiliation(s)
| | | | | | - Li Wu
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (S.P.); (T.M.); (S.H.)
| |
Collapse
|
3
|
Zhang Z, Wang Q, Nguyen HT, Chen HC, Chiu TJ, Smith Iii AB, Sodroski JG. Alterations in gp120 glycans or the gp41 fusion peptide-proximal region modulate the stability of the human immunodeficiency virus (HIV-1) envelope glycoprotein pretriggered conformation. J Virol 2023; 97:e0059223. [PMID: 37696048 PMCID: PMC10537687 DOI: 10.1128/jvi.00592-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/07/2023] [Indexed: 09/13/2023] Open
Abstract
The human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer mediates entry into host cells by binding receptors, CD4 and CCR5/CXCR4, and fusing the viral and cell membranes. In infected cells, cleavage of the gp160 Env precursor yields the mature Env trimer, with gp120 exterior and gp41 transmembrane Env subunits. Env cleavage stabilizes the State-1 conformation, which is the major target for broadly neutralizing antibodies, and decreases the spontaneous sampling of more open Env conformations that expose epitopes for poorly neutralizing antibodies. During HIV-1 entry into cells, CD4 binding drives the metastable Env from a pretriggered (State-1) conformation into more "open," lower-energy states. Here, we report that changes in two dissimilar elements of the HIV-1 Env trimer, namely particular gp120 glycans and the gp41 fusion peptide-proximal region (FPPR), can independently modulate the stability of State 1. Individual deletion of several gp120 glycans destabilized State 1, whereas removal of a V1 glycan resulted in phenotypes indicative of a more stable pretriggered Env conformation. Likewise, some alterations of the gp41 FPPR decreased the level of spontaneous shedding of gp120 from the Env trimer and stabilized the pretriggered State-1 Env conformation. State-1-stabilizing changes were additive and could suppress the phenotypes associated with State-1-destabilizing alterations in Env. Our results support a model in which multiple protein and carbohydrate elements of the HIV-1 Env trimer additively contribute to the stability of the pretriggered (State-1) conformation. The Env modifications identified in this study will assist efforts to characterize the structure and immunogenicity of the metastable State-1 conformation. IMPORTANCE The elicitation of antibodies that neutralize multiple strains of HIV-1 is an elusive goal that has frustrated the development of an effective vaccine. The pretriggered shape of the HIV-1 envelope glycoprotein (Env) spike on the virus surface is the major target for such broadly neutralizing antibodies. The "closed" pretriggered Env shape resists the binding of most antibodies but is unstable and often assumes "open" shapes that elicit ineffective antibodies. We identified particular changes in both the protein and the sugar components of the Env trimer that stabilize the pretriggered shape. Combinations of these changes were even more effective at stabilizing the pretriggered Env than the individual changes. Stabilizing changes in Env could counteract the effect of Env changes that destabilize the pretriggered shape. Locking Env in its pretriggered shape will assist efforts to understand the Env spike on the virus and to incorporate this shape into vaccines.
Collapse
Affiliation(s)
- Zhiqing Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute , Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
| | - Qian Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute , Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
| | - Hanh T Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute , Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
| | - Hung-Ching Chen
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania, USA
| | - Ta-Jung Chiu
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania, USA
| | - Amos B Smith Iii
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania, USA
| | - Joseph G Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute , Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
| |
Collapse
|
4
|
Almehmadi MM, Shafie AA, Allahyani M, Muhammad T, Baammi S, Aljuaid A, Almalki AA, Alsaiari AA, Ashour AA. Identification of human immunodeficiency virus -1 E protein-targeting lead compounds by pharmacophore based screening. Saudi Med J 2022; 43:1324-1332. [PMID: 36517066 PMCID: PMC9994525 DOI: 10.15537/smj.2022.43.12.20220599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/17/2022] [Indexed: 12/17/2023] Open
Abstract
OBJECTIVES To identify potential compounds by seeking the knowledge of molecular interactions between human immunodeficiency virus (HIV) glycoprotein (gp) 120 protein and anti-HIV drug (BMS-488043). METHODS This study is a computational structure-based drug design study, carried out at University of Taif, Saudi Arabia and African Genome Centre (AGC), Mohammed VI Polytechnic University, Benguerir, Morocco from January 2021 to March 2022. Initially, using the docked structure of gp120 with BMS-488043, a structure-based pharmacophore model was created. The generated model was utilized for virtual screening of the ZINC and ChemBridge database in order to identify hit compounds. To further assess the time-dependent stability of the selected complexes, computer simulation was performed. RESULTS From pharmacophore-based screening, 356 hits were obtained from both the database. The docking studies of the retrieved hit compounds reveal that all the compounds fit into the binding site of gp120. However, based on the significant interactions with the crucial residues and docking scores four compounds were suggested as potential hits. MD simulation of ChemBridge14695864 and ZINC06893293 in complex with gp120 suggested that both compounds significantly stabilized the receptor. CONCLUSION These findings could aid in the design of effective drugs against HIV by inhibiting the interaction between gp120 and CD4.
Collapse
Affiliation(s)
- Mazen M. Almehmadi
- From the Department of Clinical Laboratory Sciences (Almehmadi, Shafie, Allahyani, Aljuaid, Almalki, Alsaiari), College of Applied Medical Sciences, and from the Department of Oral (Ashour), Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Kingdom of Saudi Arabia; from the Molecular Neuropsychiatry & Development (MiND) Lab (Muhammad), Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; and from the African Genome Centre (Baammi), Mohammad VI Polytechnic University, Benguerir, Morocco.
| | - Alaa A. Shafie
- From the Department of Clinical Laboratory Sciences (Almehmadi, Shafie, Allahyani, Aljuaid, Almalki, Alsaiari), College of Applied Medical Sciences, and from the Department of Oral (Ashour), Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Kingdom of Saudi Arabia; from the Molecular Neuropsychiatry & Development (MiND) Lab (Muhammad), Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; and from the African Genome Centre (Baammi), Mohammad VI Polytechnic University, Benguerir, Morocco.
| | - Mamdouh Allahyani
- From the Department of Clinical Laboratory Sciences (Almehmadi, Shafie, Allahyani, Aljuaid, Almalki, Alsaiari), College of Applied Medical Sciences, and from the Department of Oral (Ashour), Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Kingdom of Saudi Arabia; from the Molecular Neuropsychiatry & Development (MiND) Lab (Muhammad), Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; and from the African Genome Centre (Baammi), Mohammad VI Polytechnic University, Benguerir, Morocco.
| | - Tahir Muhammad
- From the Department of Clinical Laboratory Sciences (Almehmadi, Shafie, Allahyani, Aljuaid, Almalki, Alsaiari), College of Applied Medical Sciences, and from the Department of Oral (Ashour), Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Kingdom of Saudi Arabia; from the Molecular Neuropsychiatry & Development (MiND) Lab (Muhammad), Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; and from the African Genome Centre (Baammi), Mohammad VI Polytechnic University, Benguerir, Morocco.
| | - Soukayna Baammi
- From the Department of Clinical Laboratory Sciences (Almehmadi, Shafie, Allahyani, Aljuaid, Almalki, Alsaiari), College of Applied Medical Sciences, and from the Department of Oral (Ashour), Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Kingdom of Saudi Arabia; from the Molecular Neuropsychiatry & Development (MiND) Lab (Muhammad), Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; and from the African Genome Centre (Baammi), Mohammad VI Polytechnic University, Benguerir, Morocco.
| | - Abdulelah Aljuaid
- From the Department of Clinical Laboratory Sciences (Almehmadi, Shafie, Allahyani, Aljuaid, Almalki, Alsaiari), College of Applied Medical Sciences, and from the Department of Oral (Ashour), Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Kingdom of Saudi Arabia; from the Molecular Neuropsychiatry & Development (MiND) Lab (Muhammad), Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; and from the African Genome Centre (Baammi), Mohammad VI Polytechnic University, Benguerir, Morocco.
| | - Abdulraheem A. Almalki
- From the Department of Clinical Laboratory Sciences (Almehmadi, Shafie, Allahyani, Aljuaid, Almalki, Alsaiari), College of Applied Medical Sciences, and from the Department of Oral (Ashour), Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Kingdom of Saudi Arabia; from the Molecular Neuropsychiatry & Development (MiND) Lab (Muhammad), Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; and from the African Genome Centre (Baammi), Mohammad VI Polytechnic University, Benguerir, Morocco.
| | - Ahad Amer Alsaiari
- From the Department of Clinical Laboratory Sciences (Almehmadi, Shafie, Allahyani, Aljuaid, Almalki, Alsaiari), College of Applied Medical Sciences, and from the Department of Oral (Ashour), Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Kingdom of Saudi Arabia; from the Molecular Neuropsychiatry & Development (MiND) Lab (Muhammad), Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; and from the African Genome Centre (Baammi), Mohammad VI Polytechnic University, Benguerir, Morocco.
| | - Amal Adnan Ashour
- From the Department of Clinical Laboratory Sciences (Almehmadi, Shafie, Allahyani, Aljuaid, Almalki, Alsaiari), College of Applied Medical Sciences, and from the Department of Oral (Ashour), Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Kingdom of Saudi Arabia; from the Molecular Neuropsychiatry & Development (MiND) Lab (Muhammad), Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; and from the African Genome Centre (Baammi), Mohammad VI Polytechnic University, Benguerir, Morocco.
| |
Collapse
|
5
|
Rojas Chávez RA, Boyt D, Schwery N, Han C, Wu L, Haim H. Commonly Elicited Antibodies against the Base of the HIV-1 Env Trimer Guide the Population-Level Evolution of a Structure-Regulating Region in gp41. J Virol 2022; 96:e0040622. [PMID: 35658529 PMCID: PMC9278142 DOI: 10.1128/jvi.00406-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/11/2022] [Indexed: 01/28/2023] Open
Abstract
The antibody response against the HIV-1 envelope glycoproteins (Envs) guides evolution of this protein within each host. Whether antibodies with similar target specificities are elicited in different individuals and affect the population-level evolution of Env is poorly understood. To address this question, we analyzed properties of emerging variants in the gp41 fusion peptide-proximal region (FPPR) that exhibit distinct evolutionary patterns in HIV-1 clade B. For positions 534, 536, and 539 in the FPPR, alanine was the major emerging variant. However, 534A and 536A show a constant frequency in the population between 1979 and 2016, whereas 539A is gradually increasing. To understand the basis for these differences, we introduced alanine substitutions in the FPPR of primary HIV-1 strains and examined their functional and antigenic properties. Evolutionary patterns could not be explained by fusion competence or structural stability of the emerging variants. Instead, 534A and 536A exhibited modest but significant increases in sensitivity to antibodies against the membrane-proximal external region (MPER) and gp120-gp41 interface. These Envs were also more sensitive to poorly neutralizing sera from HIV-1-infected individuals than the clade ancestral form or 539A variant. Competition binding assays confirmed for all sera tested the presence of antibodies against the base of the Env trimer that compete with monoclonal antibodies targeting the MPER and gp120-gp41 interface. Our findings suggest that weakly neutralizing antibodies against the trimer base are commonly elicited; they do not exert catastrophic population size reduction effects on emerging variants but, instead, determine their set point frequencies in the population and historical patterns of change. IMPORTANCE Infection by HIV-1 elicits formation of antibodies that target the viral Env proteins and can inactivate the virus. The specific targets of these antibodies vary among infected individuals. It is unclear whether some target specificities are shared among the antibody responses of different individuals. We observed that antibodies against the base of the Env protein are commonly elicited during infection. The selective pressure applied by such antibodies is weak. As a result, they do not completely eliminate the sensitive forms of the virus from the population, but maintain their frequency at a low level that has not increased since the beginning of the AIDS pandemic. Interestingly, the changes in Env do not occur at the sites targeted by the antibodies, but at a distinct region of Env, the fusion peptide-proximal region, which regulates their exposure.
Collapse
Affiliation(s)
- Roberth Anthony Rojas Chávez
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Devlin Boyt
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Nathan Schwery
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Changze Han
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Li Wu
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Hillel Haim
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
6
|
Valadés-Alcaraz A, Reinosa R, Holguín Á. HIV Transmembrane Glycoprotein Conserved Domains and Genetic Markers Across HIV-1 and HIV-2 Variants. Front Microbiol 2022; 13:855232. [PMID: 35694284 PMCID: PMC9184819 DOI: 10.3389/fmicb.2022.855232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
HIV envelope transmembrane glycoproteins gp41 (HIV-1) and gp36 (HIV-2) present high variability and play a key role in the HIV-host cell membrane's fusion, as a target for human broadly neutralizing antibodies (bnAbs) and drugs. Thus, a better knowledge of amino acid (aa) conservation across structural domains and HIV variants can help to identify conserved targets to direct new therapeutic and diagnostic strategies. All available gp41/gp36 nucleotide sequences were downloaded from Los Alamos National Laboratory (LANL) HIV Sequence Database, selecting 17,078 sequences ascribed to HIV-1 and HIV-2 variants with ≥3 sequences. After aligning and translating into aa with MEGAv6.0, an in-house bioinformatics program (EpiMolBio) was used to identify the most conserved aa and the aa changes that were specific for each variant (V-markers) vs. HXB2/BEN (HIV-1/HIV-2) reference sequence. We analyzed the presence of specific aa changes among V-markers affecting infectivity, gp41 structure, function, or resistance to the enfuvirtide viral fusion inhibitor (T-20). We also inferred the consensus sequences per HIV variant, describing in each HIV-1 group (M, N, O, P) the conservation level along the complete gp41 per structural domain and locating in each binding site the anti-gp41 human Abs (bnAbs and non bnAbs) described in LANL. We found 38.3/59.7% highly conserved aa present in ≥90% of the 16,803/275 gp41/gp36 sequences ascribed to 105/3 HIV-1/HIV-2 variants, with 9/12.6% of them showing complete conservation across LANL sequences. The fusion peptide, its proximal region, the N-heptad repeat, and the membrane-proximal external region were the gp41 domains with ≥84% of conserved aa in the HIV-1 consensus sequence, the target of most Abs. No natural major resistance mutations to T-20 were observed. Our results show, for the first time, a complete conservation study of gp41/gp36 per variant in the largest panel of HIV variants analyzed to date, providing useful information for a more rational design of drugs, vaccines, and molecular detection tests targeting the HIV transmembrane glycoprotein.
Collapse
|
7
|
Wei Hou ZZ, Chen S. Updates on CRISPR-based gene editing in HIV-1/AIDS therapy. Virol Sin 2022; 37:1-10. [PMID: 35234622 PMCID: PMC8922418 DOI: 10.1016/j.virs.2022.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022] Open
Abstract
Although tremendous efforts have been made to prevent and treat HIV-1 infection, HIV-1/AIDS remains a major threat to global human health. The combination antiretroviral therapy (cART), although able to suppress HIV-1 replication, cannot eliminate the proviral DNA integrated into the human genome and thus requires lifelong treatment that may lead to various side effects. In recent years, clustered regularly interspaced short palindromic repeat (CRISPR)-associated nuclease 9 (Cas9) related gene-editing systems have been developed and designed as effective ways to treat HIV-1 infection. However, new gene-targeting tools derived from or functioning like CRISPR/Cas9, including base editor, prime editing, SHERLOCK, DETECTR, PAC-MAN, ABACAS, pfAGO, have been developed and optimized for pathogens detection and diseases correction. Here, we summarize recent studies on HIV-1/AIDS gene therapy and provide more gene-editing targets based on studies relating to the molecular mechanism of HIV-1 infection. We also identify the strategies and potential applications of these new gene-editing technologies for HIV-1/AIDS treatment in the future. Moreover, we discuss the caveats and problems that should be addressed before the clinical use of these versatile CRISPR-based gene targeting tools. Finally, we offer alternative solutions to improve the practice of gene targeting in HIV-1/AIDS gene therapy. New gene-targeting tools derived from CRISPR/Cas9 have been introduced. Recent researches in HIV-1/AIDS gene therapy have been summarized. The strategies and potential applications of new gene editing technologies for HIV-1/AIDS treatment have been provided. The caveats and challenges in HIV-1/AIDS gene therapy have been discussed.
Collapse
|
8
|
Reverted HIV-1 Mutants in CD4 + T-Cells Reveal Critical Residues in the Polar Region of Viral Envelope Glycoprotein. Microbiol Spectr 2021; 9:e0165321. [PMID: 34935422 PMCID: PMC8693918 DOI: 10.1128/spectrum.01653-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
HIV-1 envelope glycoprotein (Env) interacts with cell surface receptors and induces membrane fusion to enter cells and initiate infection. HIV-1 Env on virions comprises trimers of the gp120 and gp41 subunits. The polar region (PR) in the N-terminus of gp41 is composed of 17 conserved residues, including seven polar amino acids. We have reported that the PR is crucial for Env trimer stability and fusogenicity. Mutations of three highly conserved residues (S534P, T536A, or T538A) in the PR of HIV-1NL4-3 significantly decrease or eliminate viral infectivity due to defective fusion and increased gp120 shedding. To identify compensatory Env mutations that restore viral infectivity, we infected a CD4+ T-cell line with PR mutants pseudotyped with wild-type (WT) HIV-1 Env or vesicular stomatitis virus envelope glycoprotein (VSV-G). We found that PR mutant-infected CD4+ T-cells produced infectious viruses at 7 days postinfection (dpi). Sequencing of the env cDNA from cells infected with the recovered HIV-1 revealed that the S534P mutant reverted to serine or threonine at residue 534. Interestingly, the combined PR-mutant HIV-1 (S534P/T536A or S534P/T536A/T538A) recovered its infectivity and reverted to S534, but maintained the T536A or T538A mutation, suggesting that HIV-1 replication in CD4+ T-cells can tolerate T536A and T538A Env mutations, but not S534P. Moreover, VSV-G-pseudotyped HIV-1 mutants with a fusion-defective Env also recovered infectivity in CD4+ T-cells through reverted Env mutations. These new observations help define the Env residues critical for HIV-1 infection and demonstrate that Env-defective HIV-1 mutants can rapidly regain replication competency in CD4+ T-cells. IMPORTANCE Our previous mutagenesis study revealed that serine at position 534 of HIV-1 Env is critical for viral infectivity. We found that HIV-1 Env containing serine to proline mutation at position 534 (S534P) are incapable of supporting virus-cell and cell-cell fusion. To investigate whether these mutant viruses can recover infectivity and what amino acid changes account for recovered infectivity, we infected CD4+ T-cells with Env-mutant HIV-1 pseudotyped with WT HIV-1 Env or VSV-G and monitored cultures for the production of infectious viruses. Our results showed that most of the pseudotyped viruses recovered their infectivity within 1-week postinfection, and all the recovered viruses mutated proline at position 534. These observations help define the Env residues critical for HIV-1 replication. Because Env-defective HIV-1 mutants can rapidly regain replication competency in CD4+ T-cells, it is important to carefully monitor viral mutations for biosafety consideration when using HIV-1-derived lentivirus vectors pseudotyped with Env.
Collapse
|
9
|
Yadavar-Nikravesh MS, Milani A, Vahabpour R, Khoobi M, Bakhshandeh H, Bolhassani A. In vitro Anti-HIV-1 Activity of the Recombinant HIV-1 TAT Protein Along With Tenofovir Drug. Curr HIV Res 2021; 19:138-146. [PMID: 33045968 DOI: 10.2174/1570162x18666201012152600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/19/2020] [Accepted: 09/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND HIV-1 TAT protein is essential for the regulation of viral genome transcription. The first exon of TAT protein has a fundamental role in the stimulation of the extrinsic and intrinsic apoptosis pathways, but its anti-HIV activity is not clear yet. METHODS In the current study, we firstly cloned the first exon of the TAT coding sequence in the pET-24a expression vector and then protein expression was done in the Rosetta expression host. Next, the expressed TAT protein was purified by Ni-NTA column under native conditions. After that, the protein yield was determined by Bradford kit and NanoDrop spectrophotometry. Finally, the cytotoxicity effect and anti-Scr-HIV-1 activity of the recombinant TAT protein alone and along with Tenofovir drug were assessed by MTT and ELISA, respectively. RESULTS The recombinant TAT protein was successfully generated in E. coli, as confirmed by 13.5% SDS-PAGE and western blotting. The protein yield was ~150-200 μg/ml. In addition, the recombinant TAT protein at a certain dose with low toxicity could suppress Scr-HIV replication in the infected HeLa cells (~30%) that was comparable with a low toxic dose of Tenofovir drug (~40%). It was interesting that the recombinant TAT protein could enhance anti-HIV potency of Tenofovir drug up to 66%. CONCLUSION Generally, a combination of TAT protein and Tenofovir drug could significantly inhibit HIV-1 replication. It will be required to determine their mechanism of action in the next studies.
Collapse
Affiliation(s)
| | - Alireza Milani
- Department of Hepatitis, AIDS and Blood Borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Rouhollah Vahabpour
- Department of Medical Lab Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences; Tehran, Iran
| | - Mehdi Khoobi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Bakhshandeh
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis, AIDS and Blood Borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
10
|
Conserved Residue Asn-145 in the C-Terminal Heptad Repeat Region of HIV-1 gp41 is Critical for Viral Fusion and Regulates the Antiviral Activity of Fusion Inhibitors. Viruses 2019; 11:v11070609. [PMID: 31277353 PMCID: PMC6669600 DOI: 10.3390/v11070609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 06/29/2019] [Accepted: 06/29/2019] [Indexed: 12/21/2022] Open
Abstract
Entry of HIV-1 into target cells is mediated by its envelope (Env) glycoprotein composed of the receptor binding subunit gp120 and the fusion protein gp41. Refolding of the gp41 N- and C-terminal heptad repeats (NHR and CHR) into a six-helix bundle (6-HB) conformation drives the viral and cellular membranes in close apposition and generates huge amounts of energy to overcome the kinetic barrier leading to membrane fusion. In this study, we focused on characterizing the structural and functional properties of a single Asn-145 residue, which locates at the middle CHR site of gp41 and is extremely conserved among all the HIV-1, HIV-2, and simian immunodeficiency virus (SIV) isolates. By mutational analysis, we found that Asn-145 plays critical roles for Env-mediated cell-cell fusion and HIV-1 entry. As determined by circular dichroism (CD) spectroscopy and isothermal titration calorimetry (ITC), the substitution of Asn-145 with alanine (N145A) severely impaired the interactions between the NHR and CHR helices. Asn-145 was also verified to be important for the antiviral activity of CHR-derived peptide fusion inhibitors and served as a turn-point for the inhibitory potency. Intriguingly, Asn-145 could regulate the functionality of the M-T hook structure at the N-terminus of the inhibitors and displayed comparable activities with the C-terminal IDL anchor. Crystallographic studies further demonstrated the importance of Asn-145-mediated interhelical and intrahelical interactions in the 6-HB structure. Combined, the present results have provided valuable information for the structure-function relationship of HIV-1 gp41 and the structure-activity relationship of gp41-dependent fusion inhibitors.
Collapse
|