1
|
Xu DW, Tate MD. Taking AIM at Influenza: The Role of the AIM2 Inflammasome. Viruses 2024; 16:1535. [PMID: 39459869 PMCID: PMC11512208 DOI: 10.3390/v16101535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Influenza A viruses (IAV) are dynamic and highly mutable respiratory pathogens that present persistent public health challenges. Inflammasomes, as components of the innate immune system, play a crucial role in the early detection and response to infections. They react to viral pathogens by triggering inflammation to promote immune defences and initiate repair mechanisms. While a strong response is necessary for early viral control, overactivation of inflammasomes can precipitate harmful hyperinflammatory responses, a defining characteristic observed during severe influenza infections. The Absent in Melanoma 2 (AIM2) inflammasome, traditionally recognised for its role as a DNA sensor, has recently been implicated in the response to RNA viruses, like IAV. Paradoxically, AIM2 deficiency has been linked to both enhanced and reduced vulnerability to IAV infection. This review synthesises the current understanding of AIM2 inflammasome activation during IAV and explores its clinical implications. Understanding the nuances of AIM2's involvement could unveil novel therapeutic avenues for mitigating severe influenza outcomes.
Collapse
Affiliation(s)
- Dianne W. Xu
- Center for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Michelle D. Tate
- Center for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
2
|
Zhang X, Chen G, Yin J, Nie L, Li L, Du Q, Tong D, Huang Y. Pseudorabies Virus UL4 protein promotes the ASC-dependent inflammasome activation and pyroptosis to exacerbate inflammation. PLoS Pathog 2024; 20:e1012546. [PMID: 39316625 PMCID: PMC11421794 DOI: 10.1371/journal.ppat.1012546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
Pseudorabies virus (PRV) infection causes systemic inflammatory responses and inflammatory damages in infected animals, which are associated with the activation of inflammasome and pyroptosis in infected tissues. Here, we identified a critical function of PRV non-structural protein UL4 that enhanced ASC-dependent inflammasome activation to promote pyroptosis. Whereas, the deficiency of viral UL4 was able to reduce ASC-dependent inflammasome activation and the occurrences of pyroptosis. Mechanistically, the 132-145 aa of UL4 permitted its translocation from the nucleus to the cytoplasm to interact with cytoplasmic ASC to promote the activation of NLRP3 and AIM2 inflammasome. Further research showed that UL4 promoted the phosphorylation levels of SYK and JNK to enhance the ASC phosphorylation, which led to the increase of ASC oligomerization, thus promoting the activation of NLRP3 and AIM2 inflammasome and enhanced GSDMD-mediated pyroptosis. In vivo experiments further showed that PRV UL4 (132DVAADAAAEAAAAE145) mutated strain (PRV-UL4mut) infection did not lead to a significant decrease in viral titers at 12 h. p. i, but it induced lower levels of IL-1β, IL-18, and GSDMD-NT, which led to an alleviated inflammatory infiltration and pathological damage in the lungs and brains, and a lower death rate compared with wild-type PRV strain infection. Taken together, our findings unravel that UL4 is an important viral regulator to manipulate the inflammasome signaling and pyroptosis of host cells to promote the pathogenicity of PRV, which might be further exploited as a new target for live attenuated vaccines or therapeutic strategies against pseudorabies in the future.
Collapse
Affiliation(s)
- Xiaohua Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Guiyuan Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Junqing Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Lichen Nie
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Linghao Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Yangling, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China
- Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Yangling, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China
- Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling, China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Yangling, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China
- Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling, China
| |
Collapse
|
3
|
Caproni A, Nordi C, Fontana R, Facchini M, Melija S, Pappadà M, Buratto M, Marconi P. Herpes Simplex Virus ICP27 Protein Inhibits AIM 2-Dependent Inflammasome Influencing Pro-Inflammatory Cytokines Release in Human Pigment Epithelial Cells (hTert-RPE 1). Int J Mol Sci 2024; 25:4608. [PMID: 38731826 PMCID: PMC11083950 DOI: 10.3390/ijms25094608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Although Herpes simplex virus type 1 (HSV-1) has been deeply studied, significant gaps remain in the fundamental understanding of HSV-host interactions: our work focused on studying the Infected Cell Protein 27 (ICP27) as an inhibitor of the Absent-in-melanoma-2 (AIM 2) inflammasome pathway, leading to reduced pro-inflammatory cytokines that influence the activation of a protective innate immune response to infection. To assess the inhibition of the inflammasome by the ICP27, hTert-immortalized Retinal Pigment Epithelial cells (hTert-RPE 1) infected with HSV-1 wild type were compared to HSV-1 lacking functional ICP27 (HSV-1∆ICP27) infected cells. The activation of the inflammasome by HSV-1∆ICP27 was demonstrated by quantifying the gene and protein expression of the inflammasome constituents using real-time PCR and Western blot. The detection of the cleavage of the pro-caspase-1 into the active form was performed by using a bioluminescent assay, while the quantification of interleukins 1β (IL-1β) and 18 (IL-18)released in the supernatant was quantified using an ELISA assay. The data showed that the presence of the ICP27 expressed by HSV-1 induces, in contrast to HSV-1∆ICP27 vector, a significant downregulation of AIM 2 inflammasome constituent proteins and, consequently, the release of pro-inflammatory interleukins into the extracellular environment reducing an effective response in counteracting infection.
Collapse
Affiliation(s)
- Anna Caproni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.N.); (R.F.); (M.F.); (S.M.); (M.P.); (M.B.)
| | - Chiara Nordi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.N.); (R.F.); (M.F.); (S.M.); (M.P.); (M.B.)
| | - Riccardo Fontana
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.N.); (R.F.); (M.F.); (S.M.); (M.P.); (M.B.)
| | - Martina Facchini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.N.); (R.F.); (M.F.); (S.M.); (M.P.); (M.B.)
| | - Sara Melija
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.N.); (R.F.); (M.F.); (S.M.); (M.P.); (M.B.)
| | - Mariangela Pappadà
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.N.); (R.F.); (M.F.); (S.M.); (M.P.); (M.B.)
| | - Mattia Buratto
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.N.); (R.F.); (M.F.); (S.M.); (M.P.); (M.B.)
| | - Peggy Marconi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.C.); (C.N.); (R.F.); (M.F.); (S.M.); (M.P.); (M.B.)
- LTTA Laboratory for Advanced Therapies, Technopole of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
4
|
Yu G, Choi YK, Lee S. Inflammasome diversity: exploring novel frontiers in the innate immune response. Trends Immunol 2024; 45:248-258. [PMID: 38519271 DOI: 10.1016/j.it.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/20/2024] [Accepted: 02/24/2024] [Indexed: 03/24/2024]
Abstract
Pathogens elicit complex mammalian immune responses by activating multiple sensors within inflammasomes, which recognize diverse pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). This simultaneous activation induces the formation of protein complexes referred to as multiple inflammasomes, that orchestrate a spectrum of programmed cell death pathways, including pyroptosis, apoptosis, and necroptosis. This concept is crucial for comprehending the complexity of the innate immune system's response to diverse pathogens and its implications for various diseases. Novel contributions here include emphasizing simultaneous sensor activation by pathogens, proposing the existence of multiple inflammasome complexes, and advocating for further exploration of their structural basis. Understanding these mechanisms may offer insights into disease pathogenesis, paving the way for potential therapeutic interventions targeting inflammasome-mediated immune responses.
Collapse
Affiliation(s)
- Gyeongju Yu
- Department of Biological Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Young Ki Choi
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - SangJoon Lee
- Department of Biological Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea; Graduate School of Health Science and Technology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
| |
Collapse
|
5
|
Cui JZ, Chew ZH, Lim LHK. New insights into nucleic acid sensor AIM2: The potential benefit in targeted therapy for cancer. Pharmacol Res 2024; 200:107079. [PMID: 38272334 DOI: 10.1016/j.phrs.2024.107079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
The AIM2 inflammasome represents a multifaceted oligomeric protein complex within the innate immune system, with the capacity to perceive double-stranded DNA (dsDNA) and engage in diverse physiological reactions and disease contexts, including cancer. While originally conceived as a discerning DNA sensor, AIM2 has demonstrated its capability to discern various nucleic acid variations, encompassing RNA and DNA-RNA hybrids. Through its interaction with nucleic acids, AIM2 orchestrates the assembly of a complex involving multiple proteins, aptly named the AIM2 inflammasome, which facilitates the enzymatic cleavage of proinflammatory cytokines, namely pro-IL-1β and pro-IL-18. This process, in turn, underpins its pivotal biological role. In this review, we provide a systematic summary and discussion of the latest advancements in AIM2 sensing various types of nucleic acids. Additionally, we discuss the modulation of AIM2 activation, which can cause cell death, including pyroptosis, apoptosis, and autophagic cell death. Finally, we fully illustrate the evidence for the dual role of AIM2 in different cancer types, including both anti-tumorigenic and pro-tumorigenic functions. Considering the above information, we uncover the therapeutic promise of modulating the AIM2 inflammasome in cancer treatment.
Collapse
Affiliation(s)
- Jian-Zhou Cui
- Translational Immunology Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore; NUS-Cambridge Immunophenotyping Centre, Life Science Institute, National University of Singapore, Singapore.
| | - Zhi Huan Chew
- Translational Immunology Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lina H K Lim
- Translational Immunology Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
6
|
Fukui A, Maruzuru Y, Ohno S, Nobe M, Iwata S, Takeshima K, Koyanagi N, Kato A, Kitazume S, Yamaguchi Y, Kawaguchi Y. Dual impacts of a glycan shield on the envelope glycoprotein B of HSV-1: evasion from human antibodies in vivo and neurovirulence. mBio 2023; 14:e0099223. [PMID: 37366623 PMCID: PMC10470582 DOI: 10.1128/mbio.00992-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 06/28/2023] Open
Abstract
Identification of the mechanisms of viral evasion from human antibodies is crucial both for understanding viral pathogenesis and for designing effective vaccines. Here we show in cell cultures that an N-glycan shield on the herpes simplex virus 1 (HSV-1) envelope glycoprotein B (gB) mediated evasion from neutralization and antibody-dependent cellular cytotoxicity due to pooled γ-globulins derived from human blood. We also demonstrated that the presence of human γ-globulins in mice and immunity to HSV-1 induced by viral infection in mice significantly reduced replication in their eyes of a mutant virus lacking the glycosylation site but had little effect on the replication of its repaired virus. These results suggest that an N-glycan shield on a specific site of HSV-1 envelope gB mediated evasion from human antibodies in vivo and from HSV-1 immunity induced by viral infection in vivo. Notably, we also found that an N-glycan shield on a specific site of HSV-1 gB was significant for HSV-1 neurovirulence and replication in the central nervous system of naïve mice. Thus, we have identified a critical N-glycan shield on HSV-1 gB that has dual impacts, namely evasion from human antibodies in vivo and viral neurovirulence. IMPORTANCE Herpes simplex virus 1 (HSV-1) establishes lifelong latent and recurrent infections in humans. To produce recurrent infections that contribute to transmission of the virus to new human host(s), the virus must be able to evade the antibodies persisting in latently infected individuals. Here, we show that an N-glycan shield on the specific site of the envelope glycoprotein B (gB) of HSV-1 mediates evasion from pooled γ-globulins derived from human blood both in cell cultures and mice. Notably, the N-glycan shield on the specific site of gB was also significant for HSV-1 neurovirulence in naïve mice. Considering the clinical features of HSV-1 infection, these results suggest that the glycan shield not only facilitates recurrent HSV-1 infections in latently infected humans by evading antibodies but is also important for HSV-1 pathogenesis during the initial infection.
Collapse
Affiliation(s)
- Ayano Fukui
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuhei Maruzuru
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shiho Ohno
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Moeka Nobe
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shuji Iwata
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kosuke Takeshima
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Naoto Koyanagi
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akihisa Kato
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shinobu Kitazume
- Department of Clinical Laboratory Sciences, School of Health Sciences, Fukushima Medical University, Fukushima, Japan
| | - Yoshiki Yamaguchi
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Yasushi Kawaguchi
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- The University of Tokyo, Pandemic Preparedness, Infection and Advanced Research Center, Tokyo, Japan
| |
Collapse
|
7
|
Murata T. Tegument proteins of Epstein-Barr virus: Diverse functions, complex networks, and oncogenesis. Tumour Virus Res 2023; 15:200260. [PMID: 37169175 DOI: 10.1016/j.tvr.2023.200260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
The tegument is the structure between the envelope and nucleocapsid of herpesvirus particles. Viral (and cellular) proteins accumulate to create the layers of the tegument. Some Epstein-Barr virus (EBV) tegument proteins are conserved widely in Herpesviridae, but others are shared only by members of the gamma-herpesvirus subfamily. As the interface to envelope and nucleocapsid, the tegument functions in virion morphogenesis and budding of the nucleocapsid during progeny production. When a virus particle enters a cell, enzymes such as kinase and deubiquitinase, and transcriptional activators are released from the virion to promote virus infection. Moreover, some EBV tegument proteins are involved in oncogenesis. Here, we summarize the roles of EBV tegument proteins, in comparison to those of other herpesviruses.
Collapse
Affiliation(s)
- Takayuki Murata
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Japan.
| |
Collapse
|
8
|
Khatri V, Kalyanasundaram R. Therapeutic implications of inflammasome in inflammatory bowel disease. FASEB J 2021; 35:e21439. [PMID: 33774860 PMCID: PMC8010917 DOI: 10.1096/fj.202002622r] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD) remains a persistent health problem with a global burden surging over 6.8 million cases currently. Clinical pathology of IBD is complicated; however, hyperactive inflammatory and immune responses in the gut is shown to be one of the persistent causes of the disease. Human gut inflammasome, the activator of innate immune system is believed to be a primary underlying cause for the pathology and is largely associated with the progression of IBD. To manage IBD, there is a need to fully understand the role of inflammasome activation in IBD. Since inflammasome potentially play a significant role in IBD, systemic modulation of inflammasome may provide an effective therapeutic and clinical approach to control IBD symptoms. In this review, we have focused on this association between IBD and gut inflammasome, and recent advances in the research and therapeutic strategies for IBD. We have discussed inflammasomes and their components, outcomes from the experimental animals and human studies, inflammasome inhibitors, and developments in the inflammasome-targeted therapies for IBD.
Collapse
Affiliation(s)
- Vishal Khatri
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | | |
Collapse
|