1
|
Ross TA, Zhang J, Skaalvik TG, Atkinson R, Jessop R, Asimakopoulos AG, Jaspers VLB, Klaassen M. Per- and poly-fluoroalkyl substances (PFAS) do not accumulate with age or affect population survival in ruddy turnstone (Arenaria interpres). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176790. [PMID: 39395503 DOI: 10.1016/j.scitotenv.2024.176790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/23/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) may threaten wildlife due to their high environmental persistence, toxicity potential and potential to bioaccumulate. Bioaccumulation may be particularly profound in long-lived animals inhabiting higher trophic niches. To date, there is a paucity of data on PFAS bioaccumulation potential in individual wild birds over their lifetime. In this study, we analysed within-individual PFAS contamination in a declining long-distance migratory shorebird, the ruddy turnstone (Arenaria interpres), and the variation in PFAS contamination with age by repeatedly sampling 19 individuals throughout their lives between 2007 and 2022. We found blood-sampled turnstones on their non-breeding grounds in King Island, Tasmania, exhibited no variation of PFAS contamination with age, with low overall circulating PFAS concentrations (<0.015-25 ng/g, median: 0.78 ng/g). Moreover, irrespective of the increased PFAS usage along the East Asian Australasian Flyway over the past two decades, ruddy turnstone survival remained consistent throughout the 15-year sampling period, with no temporal trend in percentage of juveniles in the population. From a conservation perspective, low concentrations of PFAS found in this study are good news as they suggest PFAS alone do not seem to threaten turnstone survival. However, the unknown effects of exposure to mixtures of pollutants may yet threaten turnstones.
Collapse
Affiliation(s)
- Tobias A Ross
- Deakin University Faculty of Science Engineering and Built Environment, School of Life and Environmental Sciences, 75 Pigdons Road, Highton, VIC 3216, Australia.
| | - Junjie Zhang
- Norwegian University of Science and Technology, Department of Chemistry, Høgskoleringen 1, Trondheim, Trøndelag NO 7491, Norway
| | - Tonje G Skaalvik
- Norwegian University of Science and Technology, Department of Chemistry, Høgskoleringen 1, Trondheim, Trøndelag NO 7491, Norway
| | - Robyn Atkinson
- Victorian Wader Study Group, Melbourne, VIC 3193, Australia
| | - Roz Jessop
- Victorian Wader Study Group, Melbourne, VIC 3193, Australia
| | - Alexandros G Asimakopoulos
- Norwegian University of Science and Technology, Department of Chemistry, Høgskoleringen 1, Trondheim, Trøndelag NO 7491, Norway
| | - Veerle L B Jaspers
- Norwegian University of Science and Technology, Department of Biology, Høgskoleringen 5, Trondheim NO 7491, Norway
| | - Marcel Klaassen
- Deakin University Faculty of Science Engineering and Built Environment, School of Life and Environmental Sciences, 75 Pigdons Road, Highton, VIC 3216, Australia; Victorian Wader Study Group, Melbourne, VIC 3193, Australia.
| |
Collapse
|
2
|
Graziosi G, Lupini C, Gobbo F, Zecchin B, Quaglia G, Pedrazzoli S, Lizzi G, Dosa G, Martini G, Terregino C, Catelli E. Genetic Diversity of Avian Influenza Viruses Detected in Waterbirds in Northeast Italy Using Two Different Sampling Strategies. Animals (Basel) 2024; 14:1018. [PMID: 38612257 PMCID: PMC11010841 DOI: 10.3390/ani14071018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Avian influenza viruses (AIVs), which circulate endemically in wild aquatic birds, pose a significant threat to poultry and raise concerns for their zoonotic potential. From August 2021 to April 2022, a multi-site cross-sectional study involving active AIV epidemiological monitoring was conducted in wetlands of the Emilia-Romagna region, northern Italy, adjacent to densely populated poultry areas. A total of 129 cloacal swab samples (CSs) and 407 avian faecal droppings samples (FDs) were collected, with 7 CSs (5.4%) and 4 FDs (1%) testing positive for the AIV matrix gene through rRT-PCR. A COI-barcoding protocol was applied to recognize the species of origin of AIV-positive FDs. Multiple low-pathogenic AIV subtypes were identified, and five of these were isolated, including an H5N3, an H1N1, and three H9N2 in wild ducks. Following whole-genome sequencing, phylogenetic analyses of the hereby obtained strains showed close genetic relationships with AIVs detected in countries along the Black Sea/Mediterranean migratory flyway. Notably, none of the analyzed gene segments were genetically related to HPAI H5N1 viruses of clade 2.3.4.4b isolated from Italian poultry during the concurrent 2021-2022 epidemic. Overall, the detected AIV genetic diversity emphasizes the necessity for ongoing monitoring in wild hosts using diverse sampling strategies and whole-genome sequencing.
Collapse
Affiliation(s)
- Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy; (C.L.); (G.Q.); (S.P.); (G.L.); (E.C.)
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy; (C.L.); (G.Q.); (S.P.); (G.L.); (E.C.)
| | - Federica Gobbo
- Comparative Biomedical Sciences Division, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy; (F.G.); (B.Z.); (C.T.)
| | - Bianca Zecchin
- Comparative Biomedical Sciences Division, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy; (F.G.); (B.Z.); (C.T.)
| | - Giulia Quaglia
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy; (C.L.); (G.Q.); (S.P.); (G.L.); (E.C.)
| | - Sara Pedrazzoli
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy; (C.L.); (G.Q.); (S.P.); (G.L.); (E.C.)
| | - Gabriele Lizzi
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy; (C.L.); (G.Q.); (S.P.); (G.L.); (E.C.)
| | - Geremia Dosa
- Veterinary Services, Local Health Unit of Imola (A.U.S.L. di Imola), 40026 Imola, BO, Italy; (G.D.); (G.M.)
| | - Gabriella Martini
- Veterinary Services, Local Health Unit of Imola (A.U.S.L. di Imola), 40026 Imola, BO, Italy; (G.D.); (G.M.)
| | - Calogero Terregino
- Comparative Biomedical Sciences Division, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy; (F.G.); (B.Z.); (C.T.)
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy; (C.L.); (G.Q.); (S.P.); (G.L.); (E.C.)
| |
Collapse
|
3
|
Carnegie L, Raghwani J, Fournié G, Hill SC. Phylodynamic approaches to studying avian influenza virus. Avian Pathol 2023; 52:289-308. [PMID: 37565466 DOI: 10.1080/03079457.2023.2236568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023]
Abstract
Avian influenza viruses can cause severe disease in domestic and wild birds and are a pandemic threat. Phylodynamics is the study of how epidemiological, evolutionary, and immunological processes can interact to shape viral phylogenies. This review summarizes how phylodynamic methods have and could contribute to the study of avian influenza viruses. Specifically, we assess how phylodynamics can be used to examine viral spread within and between wild or domestic bird populations at various geographical scales, identify factors associated with virus dispersal, and determine the order and timing of virus lineage movement between geographic regions or poultry production systems. We discuss factors that can complicate the interpretation of phylodynamic results and identify how future methodological developments could contribute to improved control of the virus.
Collapse
Affiliation(s)
- L Carnegie
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| | - J Raghwani
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| | - G Fournié
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, Marcy l'Etoile, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Saint Genes Champanelle, France
| | - S C Hill
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| |
Collapse
|
4
|
Wille M, Lisovski S, Roshier D, Ferenczi M, Hoye BJ, Leen T, Warner S, Fouchier RAM, Hurt AC, Holmes EC, Klaassen M. Strong host phylogenetic and ecological effects on host competency for avian influenza in Australian wild birds. Proc Biol Sci 2023; 290:20222237. [PMID: 36651046 PMCID: PMC9845974 DOI: 10.1098/rspb.2022.2237] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Host susceptibility to parasites is mediated by intrinsic and external factors such as genetics, ecology, age and season. While waterfowl are considered central to the reservoir community for low pathogenic avian influenza A viruses (LPAIV), the role of host phylogeny has received limited formal attention. Herein, we analysed 12 339 oropharyngeal and cloacal swabs and 10 826 serum samples collected over 11 years from wild birds in Australia. As well as describing age and species-level differences in prevalence and seroprevalence, we reveal that host phylogeny is a key driver in host range. Seasonality effects appear less pronounced than in the Northern Hemisphere, while annual variations are potentially linked to El Niño-Southern Oscillation. Our study provides a uniquely detailed insight into the evolutionary ecology of LPAIV in its avian reservoir community, defining distinctive processes on the continent of Australia and expanding our understanding of LPAIV globally.
Collapse
Affiliation(s)
- Michelle Wille
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia,WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia,Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Simeon Lisovski
- Centre for Integrative Ecology, Deakin University, Geelong, VIC 3217, Australia
| | - David Roshier
- Centre for Integrative Ecology, Deakin University, Geelong, VIC 3217, Australia
| | - Marta Ferenczi
- Centre for Integrative Ecology, Deakin University, Geelong, VIC 3217, Australia
| | - Bethany J. Hoye
- Centre for Integrative Ecology, Deakin University, Geelong, VIC 3217, Australia
| | - Trent Leen
- Geelong Field and Game, Geelong, VIC 3340, Australia,Wetlands Environmental Taskforce, Field and Game Australia, Seymour, VIC 3660, Australia
| | - Simone Warner
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Centre, Rotterdam 3015GE, The Netherlands
| | - Aeron C. Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Geelong, VIC 3217, Australia,Victorian Wader Study Group, Thornbury, Victoria 3071, Australia,Australasian Wader Studies Group, Curtin, ACT 2605, Australia
| |
Collapse
|
5
|
Wille M, Grillo V, Ban de Gouvea Pedroso S, Burgess GW, Crawley A, Dickason C, Hansbro PM, Hoque MA, Horwood PF, Kirkland PD, Kung NYH, Lynch SE, Martin S, McArthur M, O’Riley K, Read AJ, Warner S, Hoye BJ, Lisovski S, Leen T, Hurt AC, Butler J, Broz I, Davies KR, Mileto P, Neave MJ, Stevens V, Breed AC, Lam TTY, Holmes EC, Klaassen M, Wong FYK. Australia as a global sink for the genetic diversity of avian influenza A virus. PLoS Pathog 2022; 18:e1010150. [PMID: 35536868 PMCID: PMC9089890 DOI: 10.1371/journal.ppat.1010150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/13/2022] [Indexed: 12/03/2022] Open
Abstract
Most of our understanding of the ecology and evolution of avian influenza A virus (AIV) in wild birds is derived from studies conducted in the northern hemisphere on waterfowl, with a substantial bias towards dabbling ducks. However, relevant environmental conditions and patterns of avian migration and reproduction are substantially different in the southern hemisphere. Through the sequencing and analysis of 333 unique AIV genomes collected from wild birds collected over 15 years we show that Australia is a global sink for AIV diversity and not integrally linked with the Eurasian gene pool. Rather, AIV are infrequently introduced to Australia, followed by decades of isolated circulation and eventual extinction. The number of co-circulating viral lineages varies per subtype. AIV haemagglutinin (HA) subtypes that are rarely identified at duck-centric study sites (H8-12) had more detected introductions and contemporary co-circulating lineages in Australia. Combined with a lack of duck migration beyond the Australian-Papuan region, these findings suggest introductions by long-distance migratory shorebirds. In addition, on the available data we found no evidence of directional or consistent patterns in virus movement across the Australian continent. This feature corresponds to patterns of bird movement, whereby waterfowl have nomadic and erratic rainfall-dependant distributions rather than consistent intra-continental migratory routes. Finally, we detected high levels of virus gene segment reassortment, with a high diversity of AIV genome constellations across years and locations. These data, in addition to those from other studies in Africa and South America, clearly show that patterns of AIV dynamics in the Southern Hemisphere are distinct from those in the temperate north.
Collapse
Affiliation(s)
- Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, Australia
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | | | | | - Graham W. Burgess
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
| | | | | | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Md. Ahasanul Hoque
- Chattogram (previously Chittagong) Veterinary and Animal Sciences University, Khulshi, Bangladesh
| | - Paul F. Horwood
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
| | - Peter D. Kirkland
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, Australia
| | - Nina Yu-Hsin Kung
- Animal Biosecurity & Welfare, Biosecurity Queensland, Department of Agriculture and Fisheries, Health Food Science Precinct, Coopers Plains, Australia
| | - Stacey E. Lynch
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Australia
| | - Sue Martin
- Department of Primary Industries, Parks, Water and Environment, Hobart, Australia
| | - Michaela McArthur
- Department of Primary Industries and Regional Development, Kensington, Australia
| | - Kim O’Riley
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Australia
| | - Andrew J. Read
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, Australia
| | - Simone Warner
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Australia
| | - Bethany J. Hoye
- Centre for Integrative Ecology, Deakin University, Geelong, Australia
| | - Simeon Lisovski
- Centre for Integrative Ecology, Deakin University, Geelong, Australia
| | - Trent Leen
- Geelong Field & Game, Geelong, Australia
- Wetlands Environmental Taskforce, Field & Game Australia, Seymour, Australia
| | - Aeron C. Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jeff Butler
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, Australia
| | - Ivano Broz
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, Australia
| | - Kelly R. Davies
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, Australia
| | - Patrick Mileto
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, Australia
| | - Matthew J. Neave
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, Australia
| | - Vicky Stevens
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, Australia
| | - Andrew C. Breed
- Department of Agriculture, Water and the Environment, Canberra, Australia
- University of Queensland, St. Lucia, Australia
| | - Tommy T. Y. Lam
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, PR China
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Geelong, Australia
| | - Frank Y. K. Wong
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, Australia
| |
Collapse
|