1
|
Tao J, Zeng Y, Dai B, Liu Y, Pan X, Wang LQ, Chen J, Zhou Y, Lu Z, Xie L, Liang Y. Excess PrP C inhibits muscle cell differentiation via miRNA-enhanced liquid-liquid phase separation implicated in myopathy. Nat Commun 2023; 14:8131. [PMID: 38065962 PMCID: PMC10709375 DOI: 10.1038/s41467-023-43826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The cellular prion protein (PrPC) is required for skeletal muscle function. Here, we report that a higher level of PrPC accumulates in the cytoplasm of the skeletal muscle of six myopathy patients compared to controls. PrPC inhibits skeletal muscle cell autophagy, and blocks myoblast differentiation. PrPC selectively binds to a subset of miRNAs during myoblast differentiation, and the colocalization of PrPC and miR-214-3p was observed in the skeletal muscle of six myopathy patients with excessive PrPC. We demonstrate that PrPC is overexpressed in skeletal muscle cells under pathological conditions, inhibits muscle cell differentiation by physically interacting with a subset of miRNAs, and selectively recruits these miRNAs into its phase-separated condensate in living myoblasts, which in turn enhances liquid-liquid phase separation of PrPC, promotes pathological aggregation of PrP, and results in the inhibition of autophagy-related protein 5-dependent autophagy and muscle bundle formation in myopathy patients characterized by incomplete muscle regeneration.
Collapse
Affiliation(s)
- Jing Tao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yanping Zeng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bin Dai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yin Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaohan Pan
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Li-Qiang Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Jie Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Zuneng Lu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Liwei Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yi Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
- Wuhan University Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
2
|
She Y, Li C, Jiang T, Lei S, Zhou S, Shi H, Chen R. Knockdown of CNN3 Impairs Myoblast Proliferation, Differentiation, and Protein Synthesis via the mTOR Pathway. Front Physiol 2021; 12:659272. [PMID: 34305633 PMCID: PMC8295729 DOI: 10.3389/fphys.2021.659272] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/20/2021] [Indexed: 11/22/2022] Open
Abstract
Background Myogenesis is a complex process that requires optimal outside–in substrate–cell signaling. Calponin 3 (CNN3) plays an important role in regulating myogenic differentiation and muscle regeneration; however, the precise function of CNN3 in myogenesis regulation remains poorly understood. Here, we investigated the role of CNN3 in a knockdown model in the mouse muscle cell line C2C12. Methods Myoblast proliferation, migration, differentiation, fusion, and protein synthesis were examined in CNN3 knockdown C2C12 mouse muscle cells. Involvement of the mTOR pathway in CNN3 signaling was explored by treating cells with the mTOR activator MHY1485. The regulatory mechanisms of CNN3 in myogenesis were further examined by RNA sequencing and subsequent gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene set enrichment analysis (GSEA). Results During proliferation, CNN3 knockdown caused a decrease in cell proliferation and migration. During differentiation, CNN3 knockdown inhibited myogenic differentiation, fusion, and protein synthesis in C2C12 cells via the AKT/mTOR and AMPK/mTOR pathways; this effect was reversed by MHY1485 treatment. Finally, KEGG and GSEA indicated that the NOD-like receptor signaling pathway is affected in CNN3 knockdown cell lines. Conclusion CNN3 may promote C2C12 cell growth by regulating AKT/mTOR and AMPK/mTOR signaling. The KEGG and GSEA indicated that inhibiting CNN3 may activate several pathways, including the NOD-like receptor pathway and pathways involved in necroptosis, apoptosis, and inflammation.
Collapse
Affiliation(s)
- Yanling She
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Cheng Li
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ting Jiang
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Si Lei
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shanyao Zhou
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Huacai Shi
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Rui Chen
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
3
|
Vigil-Garcia M, Demkes CJ, Eding JEC, Versteeg D, de Ruiter H, Perini I, Kooijman L, Gladka MM, Asselbergs FW, Vink A, Harakalova M, Bossu A, van Veen TAB, Boogerd CJ, van Rooij E. Gene expression profiling of hypertrophic cardiomyocytes identifies new players in pathological remodelling. Cardiovasc Res 2021; 117:1532-1545. [PMID: 32717063 PMCID: PMC8152696 DOI: 10.1093/cvr/cvaa233] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 05/15/2020] [Accepted: 07/22/2020] [Indexed: 01/30/2023] Open
Abstract
AIMS Pathological cardiac remodelling is characterized by cardiomyocyte (CM) hypertrophy and fibroblast activation, which can ultimately lead to maladaptive hypertrophy and heart failure (HF). Genome-wide expression analysis on heart tissue has been instrumental for the identification of molecular mechanisms at play. However, these data were based on signals derived from all cardiac cell types. Here, we aimed for a more detailed view on molecular changes driving maladaptive CM hypertrophy to aid in the development of therapies to reverse pathological remodelling. METHODS AND RESULTS Utilizing CM-specific reporter mice exposed to pressure overload by transverse aortic banding and CM isolation by flow cytometry, we obtained gene expression profiles of hypertrophic CMs in the more immediate phase after stress, and CMs showing pathological hypertrophy. We identified subsets of genes differentially regulated and specific for either stage. Among the genes specifically up-regulated in the CMs during the maladaptive phase we found known stress markers, such as Nppb and Myh7, but additionally identified a set of genes with unknown roles in pathological hypertrophy, including the platelet isoform of phosphofructokinase (PFKP). Norepinephrine-angiotensin II treatment of cultured human CMs induced the secretion of N-terminal-pro-B-type natriuretic peptide (NT-pro-BNP) and recapitulated the up-regulation of these genes, indicating conservation of the up-regulation in failing CMs. Moreover, several genes induced during pathological hypertrophy were also found to be increased in human HF, with their expression positively correlating to the known stress markers NPPB and MYH7. Mechanistically, suppression of Pfkp in primary CMs attenuated stress-induced gene expression and hypertrophy, indicating that Pfkp is an important novel player in pathological remodelling of CMs. CONCLUSION Using CM-specific transcriptomic analysis, we identified novel genes induced during pathological hypertrophy that are relevant for human HF, and we show that PFKP is a conserved failure-induced gene that can modulate the CM stress response.
Collapse
MESH Headings
- Animals
- Cardiac Myosins/genetics
- Cardiac Myosins/metabolism
- Cardiomegaly/genetics
- Cardiomegaly/metabolism
- Cardiomegaly/pathology
- Cardiomegaly/physiopathology
- Cells, Cultured
- Disease Models, Animal
- Fibrosis
- Gene Expression Profiling
- Gene Expression Regulation
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Natriuretic Peptide, Brain/genetics
- Natriuretic Peptide, Brain/metabolism
- Phosphofructokinase-1, Type C/genetics
- Phosphofructokinase-1, Type C/metabolism
- Transcriptome
- Ventricular Remodeling/genetics
- Mice
Collapse
Affiliation(s)
- Marta Vigil-Garcia
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Charlotte J Demkes
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
- Department of Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Joep E C Eding
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Danielle Versteeg
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Hesther de Ruiter
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Ilaria Perini
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Lieneke Kooijman
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Monika M Gladka
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
- Health Data Research UK and Institute of Health Informatics, University College London, London, UK
| | - Aryan Vink
- Department of Pathology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Magdalena Harakalova
- Department of Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Alexander Bossu
- Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Toon A B van Veen
- Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Cornelis J Boogerd
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
- Department of Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Experimental Study Using Multiple Strains of Prion Disease in Cattle Reveals an Inverse Relationship between Incubation Time and Misfolded Prion Accumulation, Neuroinflammation, and Autophagy. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1461-1473. [PMID: 32259521 DOI: 10.1016/j.ajpath.2020.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023]
Abstract
Proteinopathies result from aberrant folding and accumulation of specific proteins. Currently, there is a lack of knowledge about the factors that influence disease progression, making this a key challenge for the development of therapies for proteinopathies. Because of the similarities between transmissible spongiform encephalopathies (TSEs) and other protein misfolding diseases, TSEs can be used to understand other proteinopathies. Bovine spongiform encephalopathy (BSE) is a TSE that occurs in cattle and can be subdivided into three strains: classic BSE and atypical BSEs (H and L types) that have shorter incubation periods. The NACHT, LRR, and PYD domains-containing protein 3 inflammasome is a critical component of the innate immune system that leads to release of IL-1β. Macroautophagy is an intracellular mechanism that plays an essential role in protein clearance. In this study, the retina was used as a model to investigate the relationship between disease incubation period, prion protein accumulation, neuroinflammation, and changes in macroautophagy. We demonstrate that atypical BSEs present with increased prion protein accumulation, neuroinflammation, and decreased autophagy. This work suggests a relationship between disease time course, neuroinflammation, and the autophagic stress response, and may help identify novel therapeutic biomarkers that can delay or prevent the progression of proteinopathies.
Collapse
|
5
|
Liberski PP. Axonal changes in experimental prion diseases recapitulate those following constriction of postganglionic branches of the superior cervical ganglion: a comparison 40 years later. Prion 2019; 13:83-93. [PMID: 30966865 PMCID: PMC7000151 DOI: 10.1080/19336896.2019.1595315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The major neurological feature of prion diseases is a neuronal loss accomplished through either apoptosis or autophagy. In this review, I compared axonal alterations in prion diseases to those described 40 years earlier as a result of nerve ligation. I also demonstrated that autophagic vacuoles and autophagosomes are a major part of dystrophic neurites. Furthermore, I summarized the current status of the autophagy in prion diseases and hypothesize, that spongiform change may originate from the autophagic vacuoles. This conclusion should be supported by other methods, in particular laser confocal microscopy. We observed neuronal autophagic vacuoles in different stages of formation, and our interpretation of the ‘maturity’ of their formation may or may not equate to actual developmental stages. Initially, a part of the neuronal cytoplasm was sequestrated within double or multiple membranes (phagophores) and often exhibited increased electron-density. The intracytoplasmic membranes formed labyrinth-like structures that suggest a multiplication of those membranes. The autophagic vacuoles then expand and eventually, a vast area of the cytoplasm was transformed into a merging mass of autophagic vacuoles. Margaret R. Matthews published a long treatise in the Philosophical Transactions of the Royal Society of London in which she had described in great detail the ultrastructure of postganglionic branches of the superior cervical ganglion in the rat following ligation of them. The earliest changes observed by Matthews between 6 h to 2 days in the proximal stump were distensions of proximal axons. Analogously, in our models, an increased number of ‘regular’ (round) and ‘irregular’ MVB and some autophagic vacuoles were observed collectively, both processes were similar.
Collapse
Affiliation(s)
- Paweł P Liberski
- a Laboratory of Electron Microscopy and Neuropathology, Department of Molecular Pathology and Neuropathology , Medical University of Lodz , Lodz , Poland
| |
Collapse
|
6
|
Abdelaziz DH, Abdulrahman BA, Gilch S, Schatzl HM. Autophagy pathways in the treatment of prion diseases. Curr Opin Pharmacol 2019; 44:46-52. [PMID: 31096117 DOI: 10.1016/j.coph.2019.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 01/04/2023]
Abstract
Prions use cellular machineries for autocatalytic propagation by conformational conversion of the cellular prion protein into the pathological isoform PrPSc. Autophagy is a basic cellular degradation and recycling machinery that delivers cargo to lysosomes. Increase of autophagic flux in cells results in enhanced delivery of PrPSc in late endosomes to lysosomal degradation, providing a therapeutic target for prion diseases. Application of chemical enhancers of autophagy to cell or mouse models of prion infection provided a solid experimental proof-of-concept for this anti-prion strategy. In addition, increasing autophagy also reduces exosomal release of prions and transfer of prion infectivity between cells. Taken together, pharmacological induction of autophagy is a promising target for containing prion diseases, and ideal candidate for future combination therapies.
Collapse
Affiliation(s)
- Dalia H Abdelaziz
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Comparative Biology & Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Basant A Abdulrahman
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Comparative Biology & Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sabine Gilch
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Ecosystem and Public Health, University of Calgary, Calgary, Alberta, Canada
| | - Hermann M Schatzl
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Comparative Biology & Experimental Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
7
|
Qu W, Zhao WH, Wen X, Yan HY, Liu HX, Hou LF, Ping J. Prenatal nicotine exposure induces thymic hypoplasia in mice offspring from neonatal to adulthood. Toxicol Lett 2018; 304:30-38. [PMID: 30605750 DOI: 10.1016/j.toxlet.2018.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/29/2018] [Accepted: 12/28/2018] [Indexed: 12/24/2022]
Abstract
Clinical study showed that smoking during pregnancy deceased the thymus size in newborns. However, the long-term effect remains unclear. This study was aimed to observe the effects of prenatal nicotine exposure (PNE) on the development of thymus and the T-lymphocyte subpopulation in mice offspring from the neonatal to adulthood. Both the thymus weight and cytometry data indicated that PNE caused persistent thymic hypoplasia in male offspring from neonatal to adult period and transient changes in female offspring from neonatal to prepuberal period. Flow cytometry analysis disclosed a permanent decreased proportion and number of mature CD4 single-positive (SP) T cells in thymus of both sex. In addition, the PNE male offspring showed a more serious thymus atrophy in the ovalbumin (OVA)-sensitized model. Moreover, increased autophagic vacuole and elevated mRNA expression of Beclin 1 were noted in PNE fetal thymus. In conclusion, PNE offspring showed thymus atrophy and CD 4 SP T cell reduction at different life stages. Mechanically, PNE induced excessive autophagy in fetal thymocytes might be involved in these changes. All the results provided evidence for elucidating the PNE-induced programmed immune diseases.
Collapse
Affiliation(s)
- Wen Qu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China.
| | - Wen-Hao Zhao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Xiao Wen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Hui-Yi Yan
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Han-Xiao Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Li-Fang Hou
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Jie Ping
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
| |
Collapse
|
8
|
Effects of Cobalt Chloride, a Hypoxia-Mimetic Agent, on Autophagy and Atrophy in Skeletal C2C12 Myotubes. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7097580. [PMID: 28706950 PMCID: PMC5494548 DOI: 10.1155/2017/7097580] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/15/2017] [Accepted: 05/24/2017] [Indexed: 11/22/2022]
Abstract
Background Hypoxia-induced autophagy and muscle wasting occur in several environmental and pathological conditions. However, the molecular mechanisms underlying the effects of the hypoxia-mimetic agent CoCl2 on autophagy and muscle atrophy are still unclear. Methods C2C12 myotubes were exposed to increasing concentrations of CoCl2 for 24 hours. Quantitative RT-PCR, Western blotting, and transmission electron microscopy were performed to confirm autophagy occurs. Autophagy proteins were measured to understand the molecule mechanisms. We also inhibited hypoxic autophagy and examined the changes in myogenin expression, myotubes formation, and apoptosis. Results Our results showed that CoCl2-mimicked hypoxia upregulated the expression of the autophagy-related proteins LC3, HIF-1α, BNIP3, p-AMPKα, and beclin-1, whereas p62 and p-mTOR were downregulated. In addition, the autophagosome could be observed after CoCl2 induction. The expression of the autophagy-related E3 ligase parkin and the muscle-specific ubiquitin ligase atrogin-1 was increased by CoCl2. Inhibition of autophagy by 3MA increased myogenin expression and promoted myotubes formation and the percentage of cell death was decreased. Conclusions Our results confirmed that CoCl2-mimicked hypoxia induced autophagy via the HIF-1α/BNIP3/beclin-1 and AMPK/mTOR pathways. Our results also revealed an important link between autophagy and muscle atrophy under hypoxia, which may help to develop new therapeutic strategies for muscle diseases.
Collapse
|
9
|
Speldewinde SH, Grant CM. The frequency of yeast [ PSI+] prion formation is increased during chronological ageing. MICROBIAL CELL 2017; 4:127-132. [PMID: 28435839 PMCID: PMC5376352 DOI: 10.15698/mic2017.04.568] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ageing involves a time-dependent decline in a variety of intracellular mechanisms and is associated with cellular senescence. This can be exacerbated by prion diseases which can occur in a sporadic manner, predominantly during the later stages of life. Prions are infectious, self-templating proteins responsible for several neurodegenerative diseases in mammals and several prion-forming proteins have been found in yeast. We show here that the frequency of formation of the yeast [PSI+ ] prion, which is the altered form of the Sup35 translation termination factor, is increased during chronological ageing. This increase is exacerbated in an atg1 mutant suggesting that autophagy normally acts to suppress age-related prion formation. We further show that cells which have switched to [PSI+ ] have improved viability during chronological ageing which requires active autophagy. [PSI+ ] stains show increased autophagic flux which correlates with increased viability and decreased levels of cellular protein aggregation. Taken together, our data indicate that the frequency of [PSI+ ] prion formation increases during yeast chronological ageing, and switching to the [PSI+ ] form can exert beneficial effects via the promotion of autophagic flux.
Collapse
Affiliation(s)
- Shaun H Speldewinde
- University of Manchester, Faculty of Biology, Medicine and Health, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Chris M Grant
- University of Manchester, Faculty of Biology, Medicine and Health, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
10
|
Shi Q, Chen LN, Lv Y, Zhang BY, Xiao K, Zhou W, Chen C, Sun J, Yang XD, Dong XP. Comparative proteomics analyses for 139A and ME7 scrapie infected mice brains in the middle and terminal stages. Proteomics Clin Appl 2017; 11. [PMID: 27991723 DOI: 10.1002/prca.201600113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/27/2016] [Accepted: 12/12/2016] [Indexed: 11/06/2022]
Abstract
PURPOSE To analyze the proteomics patterns in the cortex regions of scrapie strains 139A- and ME7-infected mice collected in the middle and terminal stages. EXPERIMENTAL DESIGN Western Blot and immunohistochemistry methods are used to analyze the pathological changes in mice collected in the middle and terminal stages. The technique of iTRAQ and multidimensional LC and MS are used to analyze the proteomics patterns of mice in different stages. RESULTS In total, 2891 with 95% confidence interval are identified. The study here also demonstrates a similar protein expressions in the CNS tissues of two scrapie strains infected mice at the terminal stages, but markedly different one between the middle and terminal samples, not only in the numbers of differentially expressed proteins and involved gene ontologies and pathways but also in the relevant functional constitutions. CONCLUSIONS It may provide useful clue in exploring the abnormalities of biological functions at different time points of prion infections and in searching for potential therapeutic and diagnostic biomarkers for prion diseases.
Collapse
Affiliation(s)
- Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li-Na Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Lv
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bao-Yun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wei Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jing Sun
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiao-Dong Yang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University, Hangzhou), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Ayyadevara S, Balasubramaniam M, Suri P, Mackintosh SG, Tackett AJ, Sullivan DH, Shmookler Reis RJ, Dennis RA. Proteins that accumulate with age in human skeletal-muscle aggregates contribute to declines in muscle mass and function in Caenorhabditis elegans. Aging (Albany NY) 2016; 8:3486-3497. [PMID: 27992858 PMCID: PMC5270681 DOI: 10.18632/aging.101141] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/03/2016] [Indexed: 06/06/2023]
Abstract
Protein aggregation increases with age in normal tissues, and with pathology and age in Alzheimer's hippocampus and mouse cardiac muscle. We now ask whether human skeletal muscle accumulates aggregates with age. Detergent-insoluble protein aggregates were isolated from vastus lateralis biopsies from 5 young (23–27 years of age) and 5 older (64-80 years) adults. Aggregates, quantified after gel electrophoresis, contain 2.1-fold more protein (P<0.0001) when isolated from older subjects relative to young. Of 515 proteins identified by liquid chromatography coupled to tandem mass spectrometry, 56 (11%) were significantly more abundant in older muscle, while 21 (4%) were depleted with age (each P<0.05). Orthologs to seven of these proteins were then targeted in C. elegans by RNA interference. Six of the seven knockdown treatments decreased protein aggregation (range 6-45%, P<0.01 to <0.0001) and increased muscle mass (range 1.5- to 1.85-fold, P<0.01 to <0.0001) in aged nematodes, and rescued mobility (range 1.4 to 1.65-fold, P≤0.0005 each) in a nematode amyloidopathy model. We conclude that specific aggregate proteins, discovered as differentially abundant in aging human muscle, have orthologs that contribute functionally to aggregation and age-associated muscle loss in nematodes, and thus can be considered potential drug targets for sarcopenia in humans.
Collapse
Affiliation(s)
- Srinivas Ayyadevara
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
- Reynolds Institute on Aging, Dept. of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Meenakshisundaram Balasubramaniam
- Reynolds Institute on Aging, Dept. of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- BioInformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Pooja Suri
- Reynolds Institute on Aging, Dept. of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Samuel G. Mackintosh
- Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alan J. Tackett
- Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Dennis H. Sullivan
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
- Reynolds Institute on Aging, Dept. of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Geriatric Research, Education and Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Robert J. Shmookler Reis
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
- Reynolds Institute on Aging, Dept. of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- BioInformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Geriatric Research, Education and Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Richard A. Dennis
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
- Reynolds Institute on Aging, Dept. of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Geriatric Research, Education and Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| |
Collapse
|
12
|
Martini-Stoica H, Xu Y, Ballabio A, Zheng H. The Autophagy-Lysosomal Pathway in Neurodegeneration: A TFEB Perspective. Trends Neurosci 2016; 39:221-234. [PMID: 26968346 PMCID: PMC4928589 DOI: 10.1016/j.tins.2016.02.002] [Citation(s) in RCA: 313] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/03/2016] [Accepted: 02/09/2016] [Indexed: 02/08/2023]
Abstract
The autophagy-lysosomal pathway (ALP) is involved in the degradation of long-lived proteins. Deficits in the ALP result in protein aggregation, the generation of toxic protein species, and accumulation of dysfunctional organelles, which are hallmarks of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and prion disease. Decades of research have therefore focused on enhancing the ALP in neurodegenerative diseases. More recently, transcription factor EB (TFEB), a major regulator of autophagy and lysosomal biogenesis, has emerged as a leading factor in addressing disease pathology. We review the regulation of the ALP and TFEB and their impact on neurodegenerative diseases. We also offer our perspective on the complex role of autophagy and TFEB in disease pathogenesis and its therapeutic implications through the examination of prion disease.
Collapse
Affiliation(s)
- Heidi Martini-Stoica
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA; Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Yin Xu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Andrea Ballabio
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Dan and Jan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Telethon Institute of Genetics and Medicine (TIGEM) and Department of Translational Medical Sciences, Frederico II University, Naples, Italy
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
13
|
Pal R, Bajaj L, Sharma J, Palmieri M, Di Ronza A, Lotfi P, Chaudhury A, Neilson J, Sardiello M, Rodney GG. NADPH oxidase promotes Parkinsonian phenotypes by impairing autophagic flux in an mTORC1-independent fashion in a cellular model of Parkinson's disease. Sci Rep 2016; 6:22866. [PMID: 26960433 PMCID: PMC4785399 DOI: 10.1038/srep22866] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/22/2016] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress and aberrant accumulation of misfolded proteins in the cytosol are key pathological features associated with Parkinson's disease (PD). NADPH oxidase (Nox2) is upregulated in the pathogenesis of PD; however, the underlying mechanism(s) of Nox2-mediated oxidative stress in PD pathogenesis are still unknown. Using a rotenone-inducible cellular model of PD, we observed that a short exposure to rotenone (0.5 μM) resulted in impaired autophagic flux through activation of a Nox2 dependent Src/PI3K/Akt axis, with a consequent disruption of a Beclin1-VPS34 interaction that was independent of mTORC1 activity. Sustained exposure to rotenone at a higher dose (10 μM) decreased mTORC1 activity; however, autophagic flux was still impaired due to dysregulation of lysosomal activity with subsequent induction of the apoptotic machinery. Cumulatively, our results highlight a complex pathogenic mechanism for PD where short- and long-term oxidative stress alters different signaling pathways, ultimately resulting in anomalous autophagic activity and disease phenotype. Inhibition of Nox2-dependent oxidative stress attenuated the impaired autophagy and cell death, highlighting the importance and therapeutic potential of these pathways for treating patients with PD.
Collapse
Affiliation(s)
- Rituraj Pal
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| | - Lakshya Bajaj
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Jaiprakash Sharma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Michela Palmieri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Alberto Di Ronza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Parisa Lotfi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Arindam Chaudhury
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| | - Joel Neilson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| | - Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - George G Rodney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| |
Collapse
|
14
|
Speldewinde SH, Doronina VA, Grant CM. Autophagy protects against de novo formation of the [PSI+] prion in yeast. Mol Biol Cell 2015; 26:4541-51. [PMID: 26490118 PMCID: PMC4678013 DOI: 10.1091/mbc.e15-08-0548] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/14/2015] [Indexed: 11/11/2022] Open
Abstract
The molecular basis by which prions arise spontaneously is poorly understood. The present data point toward oxidative protein damage as one of the triggers of de novo prion formation. Autophagy functions to clear oxidatively damaged proteins before their conversion to the prion form. Prions are self-propagating, infectious proteins that underlie several neurodegenerative diseases. The molecular basis underlying their sporadic formation is poorly understood. We show that autophagy protects against de novo formation of [PSI+], which is the prion form of the yeast Sup35 translation termination factor. Autophagy is a cellular degradation system, and preventing autophagy by mutating its core components elevates the frequency of spontaneous [PSI+] formation. Conversely, increasing autophagic flux by treating cells with the polyamine spermidine suppresses prion formation in mutants that normally show a high frequency of de novo prion formation. Autophagy also protects against the de novo formation of another prion, namely the Rnq1/[PIN+] prion, which is not related in sequence to the Sup35/[PSI+] prion. We show that growth under anaerobic conditions in the absence of molecular oxygen abrogates Sup35 protein damage and suppresses the high frequency of [PSI+] formation in an autophagy mutant. Autophagy therefore normally functions to remove oxidatively damaged Sup35, which accumulates in cells grown under aerobic conditions, but in the absence of autophagy, damaged/misfolded Sup35 undergoes structural transitions favoring its conversion to the propagatable [PSI+] form.
Collapse
Affiliation(s)
- Shaun H Speldewinde
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Victoria A Doronina
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Chris M Grant
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
15
|
Shikiya RA, Eckland TE, Young AJ, Bartz JC. Prion formation, but not clearance, is supported by protein misfolding cyclic amplification. Prion 2015; 8:415-20. [PMID: 25482601 DOI: 10.4161/19336896.2014.983759] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prion diseases are fatal transmissible neurodegenerative disorders that affect animals including humans. The kinetics of prion infectivity and PrP(Sc) accumulation can differ between prion strains and within a single strain in different tissues. The net accumulation of PrP(Sc) in animals is controlled by the relationship between the rate of PrP(Sc) formation and clearance. Protein misfolding cyclic amplification (PMCA) is a powerful technique that faithfully recapitulates PrP(Sc) formation and prion infectivity in a cell-free system. PMCA has been used as a surrogate for animal bioassay and can model species barriers, host range, strain co-factors and strain interference. In this study we investigated if degradation of PrP(Sc) and/or prion infectivity occurs during PMCA. To accomplish this we performed PMCA under conditions that do not support PrP(Sc) formation and did not observe either a reduction in PrP(Sc) abundance or an extension of prion incubation period, compared to untreated control samples. These results indicate that prion clearance does not occur during PMCA. These data have significant implications for the interpretation of PMCA based experiments such as prion amplification rate, adaptation to new species and strain interference where production and clearance of prions can affect the outcome.
Collapse
Affiliation(s)
- Ronald A Shikiya
- a Department of Medical Microbiology and Immunology ; School of Medicine; Creighton University ; Omaha, NE USA
| | | | | | | |
Collapse
|
16
|
Yan MM, Ni JD, Song D, Ding M, Huang J. Interplay between unfolded protein response and autophagy promotes tumor drug resistance. Oncol Lett 2015; 10:1959-1969. [PMID: 26622781 PMCID: PMC4579870 DOI: 10.3892/ol.2015.3508] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 06/23/2015] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is involved in the quality control of secreted protein via promoting the correct folding of nascent protein and mediating the degradation of unfolded or misfolded protein, namely ER-associated degradation. When the unfolded or misfolded proteins are abundant, the unfolded protein response (UPR) is elicited, an adaptive signaling cascade from the ER to the nucleus, which restores the homeostatic functions of the ER. Autophagy is a conserved catabolic process where cellular long-lived proteins and damaged organelles are engulfed and degraded for recycling to maintain homeostasis. The UPR and autophagy occur simultaneously and are involved in pathological processes, including tumorigenesis, chemoresistance of malignancies and neurodegeneration. Accumulative data has indicated that the UPR may induce autophagy and that autophagy is able to alleviate the UPR. However, the detailed mechanism of interplay between autophagy and UPR remains to be fully understood. The present review aimed to depict the core pathways of the two processes and to elucidate how autophagy and UPR are regulated. Moreover, the review also discusses the molecular mechanism of crosstalk between the UPR and autophagy and their roles in malignant survival and drug resistance.
Collapse
Affiliation(s)
- Ming-Ming Yan
- Department of Orthopedic Surgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Jiang-Dong Ni
- Department of Orthopedic Surgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Deye Song
- Department of Orthopedic Surgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Muliang Ding
- Department of Orthopedic Surgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Jun Huang
- Department of Orthopedic Surgery, Second Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| |
Collapse
|
17
|
Dysfunction in protein clearance by the proteasome: impact on autoinflammatory diseases. Semin Immunopathol 2015; 37:323-33. [PMID: 25963519 DOI: 10.1007/s00281-015-0486-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/23/2015] [Indexed: 10/23/2022]
Abstract
During innate immune responses, proteostasis is greatly impacted by synthesis of pathogen proteins as well as by inflammatory tissue damage through radicals or other damaging molecules released by phagocytes. An adequate adaptation of cellular clearance pathways to the increased burden of damaged proteins is thus of fundamental importance for cells and tissues to prevent protein aggregation, inclusion body formation, and ultimately cell death. We here review the current understanding of the pivotal role of the ubiquitin proteasome system (UPS) in this proteostasis network. The proteolytic capacity of the UPS can be adjusted by differential gene expression, the incorporation and maturation kinetics of alternative active sites, and the attachment of different regulators. Dysregulation of this fine-tuning is likely to induce cell death but seen more often to promote inflammation as well. The link between proteostasis impairment and inflammation may play a crucial role in autoinflammation as well as in age-related diseases and currently uncharacterized diseases. Recent studies on proteasome-associated autoinflammatory syndromes (PRAAS) discovered that IFN signaling drives the inflammation caused by reduction of degradation capacity. Elucidation of these syndromes will reveal further insights in the understanding of inadequate immune responses. Knowledge related to the diversity of this degradation system will raise the awareness of potential pitfalls in the molecular diagnostics of autoinflammatory syndromes and may help to identify novel drug targets.
Collapse
|