1
|
Lin KM, Weng LF, Chen SYJ, Lin SJ, Tsai CH. Upregulation of IQGAP2 by EBV transactivator Rta and its influence on EBV life cycle. J Virol 2023; 97:e0054023. [PMID: 37504571 PMCID: PMC10506479 DOI: 10.1128/jvi.00540-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/09/2023] [Indexed: 07/29/2023] Open
Abstract
Epstein-Barr virus (EBV) is a human oncogenic γ-herpesvirus that establishes persistent infection in more than 90% of the world's population. EBV has two life cycles, latency and lytic replication. Reactivation of EBV from latency to the lytic cycle is initiated and controlled by two viral immediate-early transcription factors, Zta and Rta, encoded by BZLF1 and BRLF1, respectively. In this study, we found that IQGAP2 expression was elevated in EBV-infected B cells and identified Rta as a viral gene responsible for the IQGAP2 upregulation in both B cells and nasopharyngeal carcinoma cell lines. Mechanistically, we showed that Rta increases IQGAP2 expression through direct binding to the Rta-responsive element in the IQGAP2 promoter. We also demonstrated the direct interaction between Rta and IQGAP2 as well as their colocalization in the nucleus. Functionally, we showed that the induced IQGAP2 is required for the Rta-mediated Rta promoter activation in the EBV lytic cycle progression and may influence lymphoblastoid cell line clumping morphology through regulating E-cadherin expression. IMPORTANCE Elevated levels of antibodies against EBV lytic proteins and increased EBV DNA copy numbers in the sera have been reported in patients suffering from Burkitt's lymphoma, Hodgkin's lymphoma, and nasopharyngeal carcinoma, indicating that EBV lytic cycle progression may play an important role in the pathogenesis of EBV-associated diseases and highlighting the need for a more complete mechanistic understanding of the EBV lytic cycle. Rta acts as an essential transcriptional activator to induce lytic gene expression and thus trigger EBV reactivation. In this study, scaffolding protein IQGAP2 was found to be upregulated prominently following EBV infection via the direct binding of Rta to the RRE in the IQGAP2 promoter but not in response to other biological stimuli. Importantly, IQGAP2 was demonstrated to interact with Rta and promote the EBV lytic cycle progression. Suppression of IQGAP2 was also found to decrease E-cadherin expression and affect the clumping morphology of lymphoblastoid cell lines.
Collapse
Affiliation(s)
- Kai-Min Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Li-Fang Weng
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shi-Yo Jill Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sue-Jane Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Hwa Tsai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Rivera-Cuevas Y, Carruthers VB. The multifaceted interactions between pathogens and host ESCRT machinery. PLoS Pathog 2023; 19:e1011344. [PMID: 37141275 PMCID: PMC10159163 DOI: 10.1371/journal.ppat.1011344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The Endosomal Sorting Complex Required for Transport (ESCRT) machinery consists of multiple protein complexes that coordinate vesicle budding away from the host cytosol. ESCRTs function in many fundamental cellular processes including the biogenesis of multivesicular bodies and exosomes, membrane repair and restoration, and cell abscission during cytokinesis. Work over the past 2 decades has shown that a diverse cohort of viruses critically rely upon host ESCRT machinery for virus replication and envelopment. More recent studies reported that intracellular bacteria and the intracellular parasite Toxoplasma gondii benefit from, antagonize, or exploit host ESCRT machinery to preserve their intracellular niche, gain resources, or egress from infected cells. Here, we review how intracellular pathogens interact with the ESCRT machinery of their hosts, highlighting the variety of strategies they use to bind ESCRT complexes using short linear amino acid motifs like those used by ESCRTs to sequentially assemble on target membranes. Future work exposing new mechanisms of this molecular mimicry will yield novel insight of how pathogens exploit host ESCRT machinery and how ESCRTs facilitate key cellular processes.
Collapse
Affiliation(s)
- Yolanda Rivera-Cuevas
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
3
|
Replication Compartments-The Great Survival Strategy for Epstein-Barr Virus Lytic Replication. Microorganisms 2022; 10:microorganisms10050896. [PMID: 35630341 PMCID: PMC9144946 DOI: 10.3390/microorganisms10050896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 12/04/2022] Open
Abstract
During Epstein–Barr virus (EBV) lytic replication, viral DNA synthesis is carried out in viral replication factories called replication compartments (RCs), which are located at discrete sites in the nucleus. Viral proteins constituting the viral replication machinery are accumulated in the RCs to amplify viral genomes. Newly synthesized viral DNA is stored in a subdomain of the RC termed the BMRF1-core, matured by host factors, and finally packed into assembled viral capsids. Late (L) genes are transcribed from DNA stored in the BMRF1-core through a process that is mainly dependent on the viral pre-initiation complex (vPIC). RC formation is a well-regulated system and strongly advantageous for EBV survival because of the following aspects: (1) RCs enable the spatial separation of newly synthesized viral DNA from the cellular chromosome for protection and maturation of viral DNA; (2) EBV-coded proteins and their interaction partners are recruited to RCs, which enhances the interactions among viral proteins, cellular proteins, and viral DNA; (3) the formation of RCs benefits continuous replication, leading to L gene transcription; and (4) DNA storage and maturation leads to efficient progeny viral production. Here, we review the state of knowledge of this important viral structure and discuss its roles in EBV survival.
Collapse
|
4
|
Chua HH, Kameyama T, Mayeda A, Yeh TH. Epstein-Barr Virus Enhances Cancer-Specific Aberrant Splicing of TSG101 Pre-mRNA. Int J Mol Sci 2022; 23:ijms23052516. [PMID: 35269659 PMCID: PMC8910672 DOI: 10.3390/ijms23052516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor viruses gain control of cellular functions when they infect and transform host cells. Alternative splicing is one of the cellular processes exploited by tumor viruses to benefit viral replication and support oncogenesis. Epstein-Barr virus (EBV) participates in a number of cancers, as reported mostly in nasopharyngeal carcinoma (NPC) and Burkitt lymphoma (BL). Using RT-nested-PCR and Northern blot analysis in NPC and BL cells, here we demonstrate that EBV promotes specific alternative splicing of TSG101 pre-mRNA, which generates the TSG101∆154-1054 variant though the agency of its viral proteins, such as EBNA-1, Zta and Rta. The level of TSG101∆154-1054 is particularly enhanced upon EBV entry into the lytic cycle, increasing protein stability of TSG101 and causing the cumulative synthesis of EBV late lytic proteins, such as VCA and gp350/220. TSG101∆154-1054-mediated production of VCA and gp350/220 is blocked by the overexpression of a translational mutant of TSG101∆154-1054 or by the depletion of full-length TSG101, which is consistent with the known role of the TSG101∆154-1054 protein in stabilizing the TSG101 protein. NPC patients whose tumor tissues express TSG101∆154-1054 have high serum levels of anti-VCA antibodies and high levels of viral DNA in their tumors. Our findings highlight the functional importance of TSG101∆154-1054 in allowing full completion of the EBV lytic cycle to produce viral particles. We propose that targeting EBV-induced TSG101 alternative splicing has broad potential as a therapeutic to treat EBV-associated malignancies.
Collapse
Affiliation(s)
- Huey-Huey Chua
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100226, Taiwan;
| | - Toshiki Kameyama
- Department of Physiology, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
| | - Akila Mayeda
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Aichi, Japan
- Correspondence: (A.M.); (T.-H.Y.)
| | - Te-Huei Yeh
- Department of Otolaryngology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100225, Taiwan
- Correspondence: (A.M.); (T.-H.Y.)
| |
Collapse
|
5
|
White JT, Rives J, Tharp ME, Wrabl JO, Thompson EB, Hilser VJ. Tumor Susceptibility Gene 101 Regulates the Glucocorticoid Receptor through Disorder-Mediated Allostery. Biochemistry 2021; 60:1647-1657. [PMID: 34009973 DOI: 10.1021/acs.biochem.1c00079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tumor susceptibility gene 101 (TSG101) is involved in endosomal maturation and has been implicated in the transcriptional regulation of several steroid hormone receptors, although a detailed characterization of such regulation has yet to be conducted. Here we directly measure binding of TSG101 to one steroid hormone receptor, the glucocorticoid receptor (GR). Using biophysical and cellular assays, we show that the coiled-coil domain of TSG101 (1) binds and folds the disordered N-terminal domain of the GR, (2) upon binding improves the DNA binding of the GR in vitro, and (3) enhances the transcriptional activity of the GR in vivo. Our findings suggest that TSG101 is a bona fide transcriptional co-regulator of the GR and reveal how the underlying thermodynamics affect the function of the GR.
Collapse
Affiliation(s)
- Jordan T White
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - James Rives
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Marla E Tharp
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - James O Wrabl
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - E Brad Thompson
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Sealy Center for Structural Biology and Molecular Biophysics and Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555, United States
| | - Vincent J Hilser
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States.,T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Why Cells and Viruses Cannot Survive without an ESCRT. Cells 2021; 10:cells10030483. [PMID: 33668191 PMCID: PMC7995964 DOI: 10.3390/cells10030483] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/15/2022] Open
Abstract
Intracellular organelles enwrapped in membranes along with a complex network of vesicles trafficking in, out and inside the cellular environment are one of the main features of eukaryotic cells. Given their central role in cell life, compartmentalization and mechanisms allowing their maintenance despite continuous crosstalk among different organelles have been deeply investigated over the past years. Here, we review the multiple functions exerted by the endosomal sorting complex required for transport (ESCRT) machinery in driving membrane remodeling and fission, as well as in repairing physiological and pathological membrane damages. In this way, ESCRT machinery enables different fundamental cellular processes, such as cell cytokinesis, biogenesis of organelles and vesicles, maintenance of nuclear–cytoplasmic compartmentalization, endolysosomal activity. Furthermore, we discuss some examples of how viruses, as obligate intracellular parasites, have evolved to hijack the ESCRT machinery or part of it to execute/optimize their replication cycle/infection. A special emphasis is given to the herpes simplex virus type 1 (HSV-1) interaction with the ESCRT proteins, considering the peculiarities of this interplay and the need for HSV-1 to cross both the nuclear-cytoplasmic and the cytoplasmic-extracellular environment compartmentalization to egress from infected cells.
Collapse
|
7
|
Yang PW, Chang YH, Wong LF, Lin CC, Huang PM, Hsieh MS, Lee JM. The genetic effect and molecular function of the SOCS5 in the prognosis of esophageal squamous cell carcinoma. J Cancer 2021; 12:2216-2229. [PMID: 33758600 PMCID: PMC7974883 DOI: 10.7150/jca.51806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/28/2021] [Indexed: 12/26/2022] Open
Abstract
Expression of cytokines and growth factors have been shown to be highly correlated with the prognosis of esophageal squamous cell carcinoma (ESCC), a deadly disease with poor prognosis. The suppressor of cytokine signaling (SOCS) family of proteins are key factors in regulating cytokines and growth factors. Yet the role of the SOCS proteins in ESCC is hardly investigated. We currently investigated the prognostic role of SOCS5 in ESCC. We analyzed the prognostic effects of 16 single nucleotide polymorphisms (SNPs) within the SOCS genes in 632 ESCC patients. We repeatedly observed that the 3 SNPs in SOCS5, SOCS5:rs3814039, SOCS5:rs3738890, and SOCS5: rs3768720, were significantly correlated with both overall (OS) and progression-free survival (PFS) of ESCC patients (rs3814039, p=0.032 for OS and p=0.009 for PFS; rs3738890, p=0.016 for OS, and p=0.008 for PFS; rs3768720, p=0.005 for OS and p=0.002 for PFS). SOCS5: rs3768720 was also significantly associated with distant metastasis (Ptrend=0.028). The luciferase assay revealed that SOCS5:rs3814039 and SOCS5: rs3768720 might influence the prognosis by regulating SOCS5 expression. Functional analysis demonstrated SOCS5 was able to regulate epidermal growth factor receptor (EGFR) expression and migration activity of ESCC cells. Furthermore, Patients with strong SOCS5 in normal tissues exhibited significantly better PFS (P=0.049) and reduced risk of distant metastasis (P=0.004) compared to those with weak SOCS5 expression. Overall, our study demonstrates the novel function of SOCS5 in ESCC prognosis. The genetic polymorphisms and expression of SOCS5 could serve as a novel therapeutic biomarker for improving the prognosis of ESCC.
Collapse
Affiliation(s)
- Pei-Wen Yang
- Department of Surgery, National Taiwan University Hospital & National Taiwan University College of Medicine
| | - Ya-Han Chang
- Department of Surgery, National Taiwan University Hospital & National Taiwan University College of Medicine
| | - Li-Fan Wong
- Department of Surgery, National Taiwan University Hospital & National Taiwan University College of Medicine
| | - Ching-Ching Lin
- Department of Surgery, National Taiwan University Hospital & National Taiwan University College of Medicine
| | - Pei-Ming Huang
- Department of Surgery, National Taiwan University Hospital & National Taiwan University College of Medicine
| | - Min-Shu Hsieh
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jang-Ming Lee
- Department of Surgery, National Taiwan University Hospital & National Taiwan University College of Medicine
| |
Collapse
|
8
|
Watanabe SM, Ehrlich LS, Strickland M, Li X, Soloveva V, Goff AJ, Stauft CB, Bhaduri-McIntosh S, Tjandra N, Carter C. Selective Targeting of Virus Replication by Proton Pump Inhibitors. Sci Rep 2020; 10:4003. [PMID: 32132561 PMCID: PMC7055211 DOI: 10.1038/s41598-020-60544-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
Two proton pump inhibitors, tenatoprazole and esomeprazole, were previously shown to inhibit HIV-1 egress by blocking the interaction between Tsg101, a member of the ESCRT-I complex, and ubiquitin. Here, we deepen our understanding of prazole budding inhibition by studying a range of viruses in the presence of tenatoprazole. Furthermore, we investigate the relationship between the chemistry of prodrug activation and HIV-1 inhibition for diverse prazoles currently on the market. We report that tenatoprazole is capable of inhibiting the replication of members of the enveloped filo, alpha, and herpes virus families but not the flavivirus group and not the non-enveloped poliovirus. Another key finding is that prazole prodrugs must be activated inside the cell, while their rate of activation in vitro correlated to their efficacy in cells. Our study lays the groundwork for future efforts to repurpose prazole-based compounds as antivirals that are both broad-spectrum and selective in nature.
Collapse
Affiliation(s)
- Susan M Watanabe
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, 11794-5222, USA
| | - Lorna S Ehrlich
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, 11794-5222, USA
| | - Madeleine Strickland
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaofan Li
- Department of Pediatrics, Division of Infectious Diseases and Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610, USA
| | - Veronica Soloveva
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD, 21702-5011, USA
| | - Arthur J Goff
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD, 21702-5011, USA
| | - Charles B Stauft
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, 11794-5222, USA
| | - Sumita Bhaduri-McIntosh
- Department of Pediatrics, Division of Infectious Diseases and Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610, USA
| | - Nico Tjandra
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Carol Carter
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, 11794-5222, USA.
| |
Collapse
|
9
|
The Novel Nuclear Targeting and BFRF1-Interacting Domains of BFLF2 Are Essential for Efficient Epstein-Barr Virus Virion Release. J Virol 2020; 94:JVI.01498-19. [PMID: 31694953 DOI: 10.1128/jvi.01498-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/27/2019] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) genomic DNA is replicated and packaged into procapsids in the nucleus to form nucleocapsids, which are then transported into the cytoplasm for tegumentation and final maturation. The process is facilitated by the coordination of the viral nuclear egress complex (NEC), which consists of BFLF2 and BFRF1. By expression alone, BFLF2 is distributed mainly in the nucleus. However, it colocalizes with BFRF1 at the nuclear rim and in cytoplasmic nuclear envelope-derived vesicles in coexpressing cells, suggesting temporal control of the interaction between BFLF2 and BFRF1 is critical for their proper function. The N-terminal sequence of BFLF2 is less conserved than that of alpha- and betaherpesvirus homologs. Here, we found that BFLF2 amino acids (aa) 2 to 102 are required for both nuclear targeting and its interaction with BFRF1. Coimmunoprecipitation and confocal analysis indicated that aa 82 to 106 of BFLF2 are important for its interaction with BFRF1. Three crucial amino acids (R47, K50, and R52) and several noncontinuous arginine and histidine residues within aa 59 to 80 function together as a noncanonical nuclear localization signal (NLS), which can be transferred onto yellow fluorescent protein (YFP)-LacZ for nuclear targeting in an importin β-dependent manner. Virion secretion is defective in 293 cells harboring a BFLF2 knockout EBV bacmid upon lytic induction and is restored by trans-complementation of wild-type BFLF2, but not NLS or BFRF1-interacting defective mutants. In addition, multiple domains of BFRF1 were found to bind BFLF2, suggesting multiple contact regions within BFRF1 and BFLF2 are required for proper nuclear egress of EBV nucleocapsids.IMPORTANCE Although Epstein-Barr virus (EBV) BFRF1 and BFLF2 are homologs of conserved viral nuclear egress complex (NEC) in all human herpesviruses, unique amino acid sequences and functions were identified in both proteins. In this study, the nuclear targeting and BFRF1-interacting domains were found within the N terminus of BFLF2. We showed that amino acids (aa) 82 to 106 are the major region required for BFLF2 to interact with BFRF1. However, the coimmunoprecipitation (Co-IP) data and glutathione transferase (GST) pulldown experiments revealed that multiple regions of both proteins contribute to reciprocal interactions. Different from the canonical nuclear localization signal (NLS) in other herpes viral homologs, BFLF2 contains a novel importin-dependent nuclear localization signal, including R47, K50, and R52 and several neighboring discontinuous arginine and histidine residues. Using a bacmid complementation system, we show that both the nuclear targeting and the novel nuclear localization signal within aa 82 to 106 of BFLF2 are required for virion secretion.
Collapse
|
10
|
Chua HH, Kameyama T, Mayeda A, Yeh TH. Cancer-Specifically Re-Spliced TSG101 mRNA Promotes Invasion and Metastasis of Nasopharyngeal Carcinoma. Int J Mol Sci 2019; 20:E773. [PMID: 30759747 PMCID: PMC6387056 DOI: 10.3390/ijms20030773] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/31/2019] [Accepted: 02/03/2019] [Indexed: 12/20/2022] Open
Abstract
TSG101 (Tumor susceptibility 101) gene and its aberrantly spliced isoform, termed TSG101∆154-1054, are tightly linked to tumorigenesis in various cancers. The aberrant TSG101∆154-1054 mRNA is generated from cancer-specific re-splicing of mature TSG101 mRNA. The TSG101∆154-1054 protein protects the full-length TSG101 protein from ubiquitin-mediated degradation, implicating TSG101∆154-1054 protein in the progression of cancer. Here, we confirmed that the presence of TSG101∆154-1054 mRNA indeed caused an accumulation of the TSG101 protein in biopsies of human nasopharyngeal carcinoma (NPC), which was recapitulated by the overexpression of TSG101∆154-1054 in the NPC cell line TW01. We demonstrate the potential function of the TSG101∆154-1054 protein in the malignancy of human NPC with scratch-wound healing and transwell invasion assays. By increasing the stability of the TSG101 protein, TSG101∆154-1054 specifically enhanced TSG101-mediated TW01 cell migration and invasion, suggesting the involvement in NPC metastasis in vivo. This finding sheds light on the functional significance of TSG101∆154-1054 generation via re-splicing of TSG101 mRNA in NPC metastasis and hints at its potential importance as a therapeutic target.
Collapse
Affiliation(s)
- Huey-Huey Chua
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| | - Toshiki Kameyama
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Akila Mayeda
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Te-Huei Yeh
- Department of Otolaryngology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| |
Collapse
|
11
|
Djavadian R, Hayes M, Johannsen E. CAGE-seq analysis of Epstein-Barr virus lytic gene transcription: 3 kinetic classes from 2 mechanisms. PLoS Pathog 2018; 14:e1007114. [PMID: 29864140 PMCID: PMC6005644 DOI: 10.1371/journal.ppat.1007114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/14/2018] [Accepted: 05/21/2018] [Indexed: 01/18/2023] Open
Abstract
Epstein-Barr virus (EBV) lytic replication proceeds through an ordered cascade of gene expression that integrates lytic DNA amplification and late gene transcription. We and others previously demonstrated that 6 EBV proteins that have orthologs in β- and γ-, but not in α-herpesviruses, mediate late gene transcription in a lytic DNA replication-dependent manner. We proposed a model in which the βγ gene-encoded viral pre-initiation complex (vPIC) mediates transcription from newly replicated viral DNA. While this model explains the dependence of late gene transcription on lytic DNA replication, it does not account for this dependence in α-herpesviruses nor for recent reports that some EBV late genes are transcribed independently of vPIC. To rigorously define which transcription start sites (TSS) are dependent on viral lytic DNA replication or the βγ complex, we performed Cap Analysis of Gene Expression (CAGE)-seq on cells infected with wildtype EBV or EBV mutants defective for DNA replication, βγ function, or lacking an origin of lytic replication (OriLyt). This approach identified 16 true-late, 32 early, and 16 TSS that are active at low levels early and are further upregulated in a DNA replication-dependent manner (leaky late). Almost all late gene transcription is vPIC-dependent, with BCRF1 (vIL10), BDLF2, and BDLF3 transcripts being notable exceptions. We present evidence that leaky late transcription is not due to a distinct mechanism, but results from superimposition of the early and late transcription mechanisms at the same promoter. Our results represent the most comprehensive characterization of EBV lytic gene expression kinetics reported to date and suggest that most, but not all EBV late genes are vPIC-dependent.
Collapse
Affiliation(s)
- Reza Djavadian
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Oncology (McArdle Laboratory for Cancer Research), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Mitchell Hayes
- Department of Oncology (McArdle Laboratory for Cancer Research), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Eric Johannsen
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Oncology (McArdle Laboratory for Cancer Research), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
12
|
Nandakumar A, Uwatoko F, Yamamoto M, Tomita K, Majima HJ, Akiba S, Koriyama C. Radiation-induced Epstein-Barr virus reactivation in gastric cancer cells with latent EBV infection. Tumour Biol 2017; 39:1010428317717718. [PMID: 28675108 DOI: 10.1177/1010428317717718] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Epstein-Barr virus, a ubiquitous human herpes virus with oncogenic activity, can be found in 6%-16% of gastric carcinomas worldwide. In Epstein-Barr virus-associated gastric carcinoma, only a few latent genes of the virus are expressed. Ionizing irradiation was shown to induce lytic Epstein-Barr virus infection in lymphoblastoid cell lines with latent Epstein-Barr virus infection. In this study, we examined the effect of ionizing radiation on the Epstein-Barr virus reactivation in a gastric epithelial cancer cell line (SNU-719, an Epstein-Barr virus-associated gastric carcinoma cell line). Irradiation with X-ray (dose = 5 and 10 Gy; dose rate = 0.5398 Gy/min) killed approximately 25% and 50% of cultured SNU-719 cells, respectively, in 48 h. Ionizing radiation increased the messenger RNA expression of immediate early Epstein-Barr virus lytic genes (BZLF1 and BRLF1), determined by real-time reverse transcription polymerase chain reaction, in a dose-dependent manner at 48 h and, to a slightly lesser extent, at 72 h after irradiation. Similar findings were observed for other Epstein-Barr virus lytic genes (BMRF1, BLLF1, and BcLF1). After radiation, the expression of transforming growth factor beta 1 messenger RNA increased and reached a peak in 12-24 h, and the high-level expression of the Epstein-Barr virus immediate early genes can convert latent Epstein-Barr virus infection into the lytic form and result in the release of infectious Epstein-Barr virus. To conclude, Ionizing radiation activates lytic Epstein-Barr virus gene expression in the SNU-719 cell line mainly through nuclear factor kappaB activation. We made a brief review of literature to explore underlying mechanism involved in transforming growth factor beta-induced Epstein-Barr virus reactivation. A possible involvement of nuclear factor kappaB was hypothesized.
Collapse
Affiliation(s)
- Athira Nandakumar
- 1 Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Futoshi Uwatoko
- 1 Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Megumi Yamamoto
- 2 Department of Basic Medical Sciences, National Institute for Minamata Disease, Minamata, Japan
| | - Kazuo Tomita
- 3 Department of Dental Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hideyuki J Majima
- 3 Department of Dental Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Suminori Akiba
- 1 Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Chihaya Koriyama
- 1 Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
13
|
The SWI/SNF Chromatin Regulator BRG1 Modulates the Transcriptional Regulatory Activity of the Epstein-Barr Virus DNA Polymerase Processivity Factor BMRF1. J Virol 2017; 91:JVI.02114-16. [PMID: 28228591 DOI: 10.1128/jvi.02114-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/14/2017] [Indexed: 12/14/2022] Open
Abstract
During the lytic phase of Epstein-Barr virus (EBV), binding of the transactivator Zta to the origin of lytic replication (oriLyt) and the BHLF1 transcript, forming a stable RNA-DNA hybrid, is required to initiate viral DNA replication. EBV-encoded viral DNA replication proteins form complexes to amplify viral DNA. BMRF1, the viral DNA polymerase accessory factor, is essential for lytic DNA replication and also known as a transcriptional regulator of the expression of BHLF1 and BALF2 (single-stranded DNA [ssDNA]-binding protein). In order to determine systematically how BMRF1 regulates viral transcription, a BMRF1 knockout bacmid was generated to analyze viral gene expression using a viral DNA microarray. We found that a subset of Rta-responsive late genes, including BcLF1, BLLF1, BLLF2, and BDLF3, were downregulated in cells harboring a BMRF1 knockout EBV bacmid (p2089ΔBMRF1). In reporter assays, BMRF1 appears to transactivate a subset of viral late promoters through distinct pathways. BMRF1 activates the BDLF3 promoter in an SP1-dependent manner. Notably, BMRF1 associates with the transcriptional regulator BRG1 in EBV-reactivated cells. BMRF1-mediated transactivation activities on the BcLF1 and BLLF1 promoters were attenuated by knockdown of BRG1. In BRG1-depleted EBV-reactivated cells, BcLF1 and BLLF1 transcripts were reduced in number, resulting in reduced virion secretion. BMRF1 and BRG1 bound to the adjacent upstream regions of the BcLF1 and BLLF1 promoters, and depletion of BRG1 attenuated the recruitment of BMRF1 onto both promoters, suggesting that BRG1 is involved in BMRF1-mediated regulation of these two genes. Overall, we reveal a novel pathway by which BMRF1 can regulate viral promoters through interaction with BRG1.IMPORTANCE The cascade of viral gene expression during Epstein-Barr virus (EBV) replication is exquisitely regulated by the coordination of the viral DNA replication machinery and cellular factors. Upon lytic replication, the EBV immediate early proteins Zta and Rta turn on the expression of early proteins that assemble into viral DNA replication complexes. The DNA polymerase accessory factor, BMRF1, also is known to transactivate early gene expression through its interaction with SP1 or Zta on specific promoters. Through a global analysis, we demonstrate that BMRF1 also turns on a subset of Rta-regulated, late structural gene promoters. Searching for BMRF1-interacting cellular partners revealed that the SWI/SNF chromatin modifier BRG1 contributes to BMRF1-mediated transactivation of a subset of late promoters through protein-protein interaction and viral chromatin binding. Our findings indicate that BMRF1 regulates the expression of more viral genes than thought previously through distinct viral DNA replication-independent mechanisms.
Collapse
|
14
|
TSGΔ154-1054 splice variant increases TSG101 oncogenicity by inhibiting its E3-ligase-mediated proteasomal degradation. Oncotarget 2016; 7:8240-52. [PMID: 26811492 PMCID: PMC4884989 DOI: 10.18632/oncotarget.6973] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/12/2016] [Indexed: 01/01/2023] Open
Abstract
Tumor susceptibility gene 101 (TSG101) elicits an array of cellular functions, including promoting cytokinesis, cell cycle progression and proliferation, as well as facilitating endosomal trafficking and viral budding. TSG101 protein is highly and aberrantly expressed in various human cancers. Specifically, a TSG101 splicing variant missing nucleotides 154 to 1054 (TSGΔ154-1054), which is linked to progressive tumor-stage and metastasis, has puzzled investigators for more than a decade. TSG101-associated E3 ligase (Tal)- and MDM2-mediated proteasomal degradation are the two major routes for posttranslational regulation of the total amount of TSG101. We reveal that overabundance of TSG101 results from TSGΔ154-1054 stabilizing the TSG101 protein by competitively binding to Tal, but not MDM2, thereby perturbing the Tal interaction with TSG101 and impeding subsequent polyubiquitination and proteasomal degradation of TSG101. TSGΔ154-1054 therefore specifically enhances TSG101-stimulated cell proliferation, clonogenicity, and tumor growth in nude mice. This finding shows the functional significance of TSGΔ154-1054 in preventing the ubiquitin-proteasome proteolysis of TSG101, which increases tumor malignancy and hints at its potential as a therapeutic target in cancer treatment.
Collapse
|
15
|
McKenzie J, Lopez-Giraldez F, Delecluse HJ, Walsh A, El-Guindy A. The Epstein-Barr Virus Immunoevasins BCRF1 and BPLF1 Are Expressed by a Mechanism Independent of the Canonical Late Pre-initiation Complex. PLoS Pathog 2016; 12:e1006008. [PMID: 27855219 PMCID: PMC5113994 DOI: 10.1371/journal.ppat.1006008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022] Open
Abstract
Subversion of host immune surveillance is a crucial step in viral pathogenesis. Epstein-Barr virus (EBV) encodes two immune evasion gene products, BCRF1 (viral IL-10) and BPLF1 (deubiquitinase/deneddylase); both proteins suppress antiviral immune responses during primary infection. The BCRF1 and BPLF1 genes are expressed during the late phase of the lytic cycle, an essential but poorly understood phase of viral gene expression. Several late gene regulators recently identified in beta and gamma herpesviruses form a viral pre-initiation complex for transcription. Whether each of these late gene regulators is necessary for transcription of all late genes is not known. Here, studying viral gene expression in the absence and presence of siRNAs to individual components of the viral pre-initiation complex, we identified two distinct groups of late genes. One group includes late genes encoding the two immunoevasins, BCRF1 and BPLF1, and is transcribed independently of the viral pre-initiation complex. The second group primarily encodes viral structural proteins and is dependent on the viral pre-initiation complex. The protein kinase BGLF4 is the only known late gene regulator necessary for expression of both groups of late genes. ChIP-seq analysis showed that the transcription activator Rta associates with the promoters of eight late genes including genes encoding the viral immunoevasins. Our results demonstrate that late genes encoding immunomodulatory proteins are transcribed by a mechanism distinct from late genes encoding viral structural proteins. Understanding the mechanisms that specifically regulate expression of the late immunomodulatory proteins could aid the development of antiviral drugs that impair immune evasion by the oncogenic EB virus. Late proteins are expressed during the productive cycle of Epstein-Barr virus (EBV) after the onset of viral DNA replication. Many late proteins serve structural functions; they form the capsid shell around the viral genome or mediate attachment and fusion of the virus to the host cell. EBV also encodes two late proteins that suppress the immune system during primary infection. The current model suggests that transcription of all late genes is regulated by a common mechanism involving seven late gene regulators. Here, we demonstrate that late genes encoding two viral immune suppressants are transcribed by a mechanism different from that regulating late genes encoding structural proteins. Abolishing expression of the late immunomodulators without disrupting expression of the antigenic viral structural proteins could serve as an approach to block EBV de novo infection and its associated malignancies.
Collapse
Affiliation(s)
- Jessica McKenzie
- Department of Pediatrics Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Francesc Lopez-Giraldez
- Yale Center for Genome Analysis (YCGA), Yale University, West Haven, Connecticut, United States of America
| | - Henri-Jacques Delecluse
- Department of Tumor Virology, German Cancer Research Center, Im Neuenheimer Feld, Heidelberg, Germany
| | - Ann Walsh
- Department of Pediatrics Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ayman El-Guindy
- Department of Pediatrics Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
16
|
Gruffat H, Marchione R, Manet E. Herpesvirus Late Gene Expression: A Viral-Specific Pre-initiation Complex Is Key. Front Microbiol 2016; 7:869. [PMID: 27375590 PMCID: PMC4893493 DOI: 10.3389/fmicb.2016.00869] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/23/2016] [Indexed: 12/20/2022] Open
Abstract
During their productive cycle, herpesviruses exhibit a strictly regulated temporal cascade of gene expression that can be divided into three general stages: immediate-early (IE), early (E), and late (L). This expression program is the result of a complex interplay between viral and cellular factors at both the transcriptional and post-transcriptional levels, as well as structural differences within the promoter architecture for each of the three gene classes. Since the cellular enzyme RNA polymerase II (RNAP-II) is responsible for the transcription of herpesvirus genes, most viral promoters contain DNA motifs that are common with those of cellular genes, although promoter complexity decreases from immediate-early to late genes. Immediate-early and early promoters contain numerous cellular and viral cis-regulating sequences upstream of a TATA box, whereas late promoters differ significantly in that they lack cis-acting sequences upstream of the transcription start site (TSS). Moreover, in the case of the β- and γ-herpesviruses, a TATT box motif is frequently found in the position where the consensus TATA box of eukaryotic promoters usually localizes. The mechanisms of transcriptional regulation of the late viral gene promoters appear to be different between α-herpesviruses and the two other herpesvirus subfamilies (β and γ). In this review, we will compare the mechanisms of late gene transcriptional regulation between HSV-1, for which the viral IE transcription factors – especially ICP4 – play an essential role, and the two other subfamilies of herpesviruses, with a particular emphasis on EBV, which has recently been found to code for its own specific TATT-binding protein.
Collapse
Affiliation(s)
- Henri Gruffat
- International Center for Infectiology Research, Oncogenic Herpesviruses Team, Université de Lyon, LyonFrance; Inserm, U1111, LyonFrance.; Ecole Normale Supérieure de Lyon, LyonFrance; CNRS, UMR5308, LyonFrance; Université Lyon 1, LyonFrance
| | - Roberta Marchione
- International Center for Infectiology Research, Oncogenic Herpesviruses Team, Université de Lyon, LyonFrance; Inserm, U1111, LyonFrance.; Ecole Normale Supérieure de Lyon, LyonFrance; CNRS, UMR5308, LyonFrance; Université Lyon 1, LyonFrance
| | - Evelyne Manet
- International Center for Infectiology Research, Oncogenic Herpesviruses Team, Université de Lyon, LyonFrance; Inserm, U1111, LyonFrance.; Ecole Normale Supérieure de Lyon, LyonFrance; CNRS, UMR5308, LyonFrance; Université Lyon 1, LyonFrance
| |
Collapse
|
17
|
Zhang W, Zhang ZZ, Tang LY, Lin Y, Su FX, Xie XM, Su XF, Ren ZF. Genetic variants in EBV reactivation-related genes and the risk and survival of breast cancer. Tumour Biol 2016; 37:8337-47. [PMID: 26729199 DOI: 10.1007/s13277-015-4562-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/01/2015] [Indexed: 12/27/2022] Open
Abstract
Tumor susceptibility gene 101 (TSG101) and activating transcription factor 2 (ATF2) have been suggested to involve in the reactivation of EBV which has implications in the development and progression of breast cancer. Therefore, the polymorphisms of TSG101 and ATF2 may associate with breast cancer risk and prognosis. A case-control study with 1551 breast cancer cases and 1605 age-matched controls were conducted in Guangzhou, China. We have also successfully followed up 1168 cases until December 31, 2014. The variant allele of TSG101 rs2292179 was associated with a non-significant reduced risk of breast cancer, particularly among women with BMI < 24 (kg/m(2)) (P for interaction <0.05). For ATF2 rs3845744, the variant allele was also associated with a significantly reduced breast cancer risk [odds ratio (OR) (95 % confidence interval (CI)) 0.86 (0.74∼1.00)], and the association occurred among only postmenopausal women [OR (95 % CI) 0.69 (0.54∼0.88)] (P for interaction <0.05). Breast cancer risk was further reduced with the increasing numbers of the variant G alleles of the two polymorphisms (P for trend <0.05). We did not find an overall association of the two loci with breast cancer prognosis, while the hazard ratios of the two loci (AG/GG vs. AA) were significantly higher among postmenopausal women than premenopausal women (P = 0.046, 0.016 for TSG101 rs2292179 and ATF2 rs3845744, respectively). In summary, the variant alleles of TSG101 rs2292179 and ATF2 rs3845744 were associated with a reduced risk of breast cancer, particularly for subjects with BMI <24 (kg/m(2)) and postmenopausal women, respectively. The two SNPs and menopausal status may have a significant interaction on breast cancer progression.
Collapse
Affiliation(s)
- Wei Zhang
- The School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zheng-Zheng Zhang
- The School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
- Aviation Hygiene Management Division, China Southern Airlines Company Limited, 9/F, Kangda Building, 278 Airport Road, Guangzhou, China
| | - Lu-Ying Tang
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Ying Lin
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Feng-Xi Su
- The Second Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiao-Ming Xie
- The Sun Yat-Sen University Cancer Center, Guangzhou, 510080, China
| | - Xue-Fen Su
- School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Ze-Fang Ren
- The School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
- Department of Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Rd, Guangzhou, 510080, China.
| |
Collapse
|
18
|
Calistri A, Munegato D, Toffoletto M, Celestino M, Franchin E, Comin A, Sartori E, Salata C, Parolin C, Palù G. Functional Interaction Between the ESCRT-I Component TSG101 and the HSV-1 Tegument Ubiquitin Specific Protease. J Cell Physiol 2015; 230:1794-806. [PMID: 25510868 DOI: 10.1002/jcp.24890] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 12/11/2014] [Indexed: 02/01/2023]
Abstract
Similar to phosphorylation, transient conjugation of ubiquitin to target proteins (ubiquitination) mediated by the concerted action of ubiquitin ligases and de-ubiquitinating enzymes (DUBs) can affect substrate function. As obligate intracellular parasites, viruses rely on different cellular pathways for their own replication and the well conserved ubiquitin conjugating/de-conjugating system is not an exception. Viruses not only usurp the host proteins involved in the ubiquitination/de-ubiquitination process, but they also encode their own ubiquitin ligases and DUBs. Here we report that an N-terminal variant of the herpes simplex virus (HSV) type-1 large tegument protein VP1/2 (VP1/2(1-767)), encompassing an active DUB domain (herpesvirus tegument ubiquitin specific protease, htUSP), and TSG101, a component of the endosomal sorting complex required for transport (ESCRT)-I, functionally interact. In particular, VP1/2(1-767) modulates TSG101 ubiquitination and influences its intracellular distribution. Given the role played by the ESCRT machinery in crucial steps of both cellular pathways and viral life cycle, the identification of TSG101 as a cellular target for the HSV-1 specific de-ubiquitinating enzyme contributes to the clarification of the still under debate function of viral encoded DUBs highly conserved throughout the Herpesviridae family.
Collapse
Affiliation(s)
- A Calistri
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hau PM, Deng W, Jia L, Yang J, Tsurumi T, Chiang AKS, Huen MSY, Tsao SW. Role of ATM in the formation of the replication compartment during lytic replication of Epstein-Barr virus in nasopharyngeal epithelial cells. J Virol 2015; 89:652-68. [PMID: 25355892 PMCID: PMC4301132 DOI: 10.1128/jvi.01437-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 10/10/2014] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV), a type of oncogenic herpesvirus, is associated with human malignancies. Previous studies have shown that lytic reactivation of EBV in latently infected cells induces an ATM-dependent DNA damage response (DDR). The involvement of ATM activation has been implicated in inducing viral lytic gene transcription to promote lytic reactivation. Its contribution to the formation of a replication compartment during lytic reactivation of EBV remains poorly defined. In this study, the role of ATM in viral DNA replication was investigated in EBV-infected nasopharyngeal epithelial cells. We observed that induction of lytic infection of EBV triggers ATM activation and localization of DDR proteins at the viral replication compartments. Suppression of ATM activity using a small interfering RNA (siRNA) approach or a specific chemical inhibitor profoundly suppressed replication of EBV DNA and production of infectious virions in EBV-infected cells induced to undergo lytic reactivation. We further showed that phosphorylation of Sp1 at the serine-101 residue is essential in promoting the accretion of EBV replication proteins at the replication compartment, which is crucial for replication of viral DNA. Knockdown of Sp1 expression by siRNA effectively suppressed the replication of viral DNA and localization of EBV replication proteins to the replication compartments. Our study supports an important role of ATM activation in lytic reactivation of EBV in epithelial cells, and phosphorylation of Sp1 is an essential process downstream of ATM activation involved in the formation of viral replication compartments. Our study revealed an essential role of the ATM-dependent DDR pathway in lytic reactivation of EBV, suggesting a potential antiviral replication strategy using specific DDR inhibitors. IMPORTANCE Epstein-Barr virus (EBV) is closely associated with human malignancies, including undifferentiated nasopharyngeal carcinoma (NPC), which has a high prevalence in southern China. EBV can establish either latent or lytic infection depending on the cellular context of infected host cells. Recent studies have highlighted the importance of the DNA damage response (DDR), a surveillance mechanism that evolves to maintain genome integrity, in regulating lytic EBV replication. However, the underlying molecular events are largely undefined. ATM is consistently activated in EBV-infected epithelial cells when they are induced to undergo lytic reactivation. Suppression of ATM inhibits replication of viral DNA. Furthermore, we observed that phosphorylation of Sp1 at the serine-101 residue, a downstream event of ATM activation, plays an essential role in the formation of viral replication compartments for replication of virus DNA. Our study provides new insights into the mechanism through which EBV utilizes the host cell machinery to promote replication of viral DNA upon lytic reactivation.
Collapse
Affiliation(s)
- Pok Man Hau
- Department of Anatomy and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Wen Deng
- Department of Anatomy and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Lin Jia
- Department of Anatomy and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Jie Yang
- Department of Anatomy and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Tatsuya Tsurumi
- Division of Virology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Alan Kwok Shing Chiang
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Michael Shing-Yan Huen
- Genome Stability Research Laboratory, Department of Anatomy and Centre for Cancer Research, The University of Hong Kong, Hong Kong SAR
| | - Sai Wah Tsao
- Department of Anatomy and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
20
|
A locus encompassing the Epstein-Barr virus bglf4 kinase regulates expression of genes encoding viral structural proteins. PLoS Pathog 2014; 10:e1004307. [PMID: 25166506 PMCID: PMC4148442 DOI: 10.1371/journal.ppat.1004307] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 07/01/2014] [Indexed: 12/17/2022] Open
Abstract
The mechanism regulating expression of late genes, encoding viral structural components, is an unresolved problem in the biology of DNA tumor viruses. Here we show that BGLF4, the only protein kinase encoded by Epstein-Barr virus (EBV), controls expression of late genes independent of its effect on viral DNA replication. Ectopic expression of BGLF4 in cells lacking the kinase gene stimulated the transcript levels of six late genes by 8- to 10-fold. Introduction of a BGLF4 mutant that eliminated its kinase activity did not stimulate late gene expression. In cells infected with wild-type EBV, siRNA to BGLF4 (siG4) markedly reduced late gene expression without compromising viral DNA replication. Synthesis of late products was restored upon expression of a form of BGLF4 resistant to the siRNA. Studying the EBV transcriptome using mRNA-seq during the late phase of the lytic cycle in the absence and presence of siG4 showed that BGLF4 controlled expression of 31 late genes. Analysis of the EBV transcriptome identified BGLF3 as a gene whose expression was reduced as a result of silencing BGLF4. Knockdown of BGLF3 markedly reduced late gene expression but had no effect on viral DNA replication or expression of BGLF4. Our findings reveal the presence of a late control locus encompassing BGLF3 and BGLF4 in the EBV genome, and provide evidence for the importance of both proteins in post-replication events that are necessary for expression of late genes.
Collapse
|
21
|
Garg H, Lee RTC, Tek NO, Maurer-Stroh S, Joshi A. Identification of conserved motifs in the West Nile virus envelope essential for particle secretion. BMC Microbiol 2013; 13:197. [PMID: 24007503 PMCID: PMC3766686 DOI: 10.1186/1471-2180-13-197] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/27/2013] [Indexed: 12/31/2022] Open
Abstract
Background Enveloped viruses utilize cellular membranes to bud from infected cells. The process of virion assembly and budding is often facilitated by the presence of certain conserved motifs within viral proteins in conjunction with cellular factors. We hence examined the West Nile Virus (WNV) Envelope protein for the presence of any such motifs and their functional characterization. Results We identified conserved 461PXAP464 and 349YCYL352 motifs in the WNV envelope glycoprotein bearing resemblance to retroviral late domains. Disruptive mutations of PXAP to LAAL and of the highly conserved Cys350 in the YCYL motif, led to a severe reduction in WNV particle production. Similar motifs in case of retroviruses are known to interact with components of host sorting machinery like PXAP with Tsg101 and YXXL with Alix. However, in the case of WNV, siRNA mediated depletion of Alix or Tsg101 did not have an effect on WNV release. Molecular modeling suggested that while the 461PXAP464 motif is surface accessible and could potentially interact with cellular proteins required for WNV assembly, the 349YCYL352 motif was found to be internal with Cys350 important for protein folding via disulphide bonding. Conclusions The conserved 461PXAP464 and 349YCYL352 motifs in the WNV envelope are indispensable for WNV particle production. Although these motifs bear sequence similarity to retroviral late domains and are essential for WNV assembly, they are functionally distinct suggesting that they are not the typical late domain like motifs of retroviruses and may play a role other than Alix/Tsg101 utilization/dependence.
Collapse
Affiliation(s)
- Himanshu Garg
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, 5001 El Paso Dr, MSB-1 Annex, El Paso, TX 79905, USA.
| | | | | | | | | |
Collapse
|
22
|
Yang YC, Chang LK. Role of TAF4 in transcriptional activation by Rta of Epstein-Barr Virus. PLoS One 2013; 8:e54075. [PMID: 23326574 PMCID: PMC3542328 DOI: 10.1371/journal.pone.0054075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 12/06/2012] [Indexed: 11/23/2022] Open
Abstract
Epstein-Barr virus (EBV) expresses an immediate-early protein, Rta, to activate the transcription of EBV lytic genes. This protein usually binds to Rta-response elements or interacts with Sp1 or Zta via a mediator protein, MCAF1, to activate transcription. Rta is also known to interact with TBP and TFIIB to activate transcription. This study finds that Rta interacts with TAF4, a component of TFIID complex, in vitro and in vivo, and on the TATA sequence in the BcLF1 promoter. Rta also interacts with TAF4 and Sp1 on Sp1-binding sequences on TATA-less promoters, including those of BNLF1, BALF5, and the human androgen receptor. These interactions are important to the transcriptional activation of these genes by Rta since introducing TAF4 shRNA substantially reduces the ability of Rta to activate these promoters. This investigation reveals how Rta interacts with TFIID to stimulate transcription.
Collapse
Affiliation(s)
- Ya-Chun Yang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
23
|
Lee CP, Liu PT, Kung HN, Su MT, Chua HH, Chang YH, Chang CW, Tsai CH, Liu FT, Chen MR. The ESCRT machinery is recruited by the viral BFRF1 protein to the nucleus-associated membrane for the maturation of Epstein-Barr Virus. PLoS Pathog 2012; 8:e1002904. [PMID: 22969426 PMCID: PMC3435242 DOI: 10.1371/journal.ppat.1002904] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/30/2012] [Indexed: 12/11/2022] Open
Abstract
The cellular endosomal sorting complex required for transport (ESCRT) machinery participates in membrane scission and cytoplasmic budding of many RNA viruses. Here, we found that expression of dominant negative ESCRT proteins caused a blockade of Epstein-Barr virus (EBV) release and retention of viral BFRF1 at the nuclear envelope. The ESCRT adaptor protein Alix was redistributed and partially colocalized with BFRF1 at the nuclear rim of virus replicating cells. Following transient transfection, BFRF1 associated with ESCRT proteins, reorganized the nuclear membrane and induced perinuclear vesicle formation. Multiple domains within BFRF1 mediated vesicle formation and Alix recruitment, whereas both Bro and PRR domains of Alix interacted with BFRF1. Inhibition of ESCRT machinery abolished BFRF1-induced vesicle formation, leading to the accumulation of viral DNA and capsid proteins in the nucleus of EBV-replicating cells. Overall, data here suggest that BFRF1 recruits the ESCRT components to modulate nuclear envelope for the nuclear egress of EBV.
Collapse
Affiliation(s)
- Chung-Pei Lee
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Center of General Education, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Po-Ting Liu
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiu-Ni Kung
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Tzu Su
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Huey-Huey Chua
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsin Chang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chou-Wei Chang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Hwa Tsai
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Dermatology, School of Medicine, University of California, Davis, California, United States of America
| | - Mei-Ru Chen
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
24
|
Epstein-Barr virus BGLF4 kinase downregulates NF-κB transactivation through phosphorylation of coactivator UXT. J Virol 2012; 86:12176-86. [PMID: 22933289 DOI: 10.1128/jvi.01918-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) BGLF4 is a member of the conserved herpesvirus kinases that regulate multiple cellular and viral substrates and play an important role in the viral lytic cycles. BGLF4 has been found to phosphorylate several cellular and viral transcription factors, modulate their activities, and regulate downstream events. In this study, we identify an NF-κB coactivator, UXT, as a substrate of BGLF4. BGLF4 downregulates not only NF-κB transactivation in reporter assays in response to tumor necrosis factor alpha (TNF-α) and poly(I·C) stimulation, but also NF-κB-regulated cellular gene expression. Furthermore, BGLF4 attenuates NF-κB-mediated repression of the EBV lytic transactivators, Zta and Rta. In EBV-positive NA cells, knockdown of BGLF4 during lytic progression elevates NF-κB activity and downregulates the activity of the EBV oriLyt BHLF1 promoter, which is the first promoter activated upon lytic switch. We show that BGLF4 phosphorylates UXT at the Thr3 residue. This modification interferes with the interaction between UXT and NF-κB. The data also indicate that BGLF4 reduces the interaction between UXT and NF-κB and attenuates NF-κB enhanceosome activity. Upon infection with short hairpin RNA (shRNA) lentivirus to knock down UXT, a spontaneous lytic cycle was observed in NA cells, suggesting UXT is required for maintenance of EBV latency. Overexpression of wild-type, but not phosphorylation-deficient, UXT enhances the expression of lytic proteins both in control and UXT knockdown cells. Taking the data together, transcription involving UXT may also be important for EBV lytic protein expression, whereas BGLF4-mediated phosphorylation of UXT at Thr3 plays a critical role in promoting the lytic cycle.
Collapse
|
25
|
Requirement for LMP1-induced RON receptor tyrosine kinase in Epstein-Barr virus-mediated B-cell proliferation. Blood 2011; 118:1340-9. [PMID: 21659546 DOI: 10.1182/blood-2011-02-335448] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
EBV, an oncogenic human herpesvirus, can transform primary B lymphocytes into immortalized lymphoblastoid cell lines (LCLs) through multiple regulatory mechanisms. However, the involvement of protein tyrosine kinases in the infinite proliferation of B cells is not clear. In this study, we performed kinase display assays to investigate this subject and identified a specific cellular target, Recepteur d'Origine Nantais (RON) tyrosine kinase, expressed in LCLs but not in primary B cells. Furthermore, we found that latent membrane protein 1 (LMP1), an important EBV oncogenic protein, enhanced RON expression through its C-terminal activation region-1 (CTAR1) by promoting NF-κB binding to the RON promoter. RON knockdown decreased the proliferation of LCLs, and transfection with RON compensated for the growth inhibition caused by knockdown of LMP1. Immunohistochemical analysis revealed a correlation between LMP1 and RON expression in biopsies from posttransplantation lymphoproliferative disorder (PTLD), suggesting that LMP1-induced RON expression not only is essential for the growth of LCLs but also may contribute to the pathogenesis of EBV-associated PTLD. Our study is the first to reveal the impact of RON on the proliferation of transformed B cells and to suggest that RON may be a novel therapeutic target for EBV-associated lymphoproliferative diseases.
Collapse
|
26
|
Interplay between PKCδ and Sp1 on histone deacetylase inhibitor-mediated Epstein-Barr virus reactivation. J Virol 2010; 85:2373-85. [PMID: 21159880 DOI: 10.1128/jvi.01602-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Epstein-Barr virus (EBV) undergoes latent and lytic replication cycles, and its reactivation from latency to lytic replication is initiated by expression of the two viral immediate-early transactivators, Zta and Rta. In vitro, reactivation of EBV can be induced by anti-immunoglobulin, tetradecanoyl phorbol acetate, and histone deacetylase inhibitor (HDACi). We have discovered that protein kinase C delta (PKCδ) is required specifically for EBV reactivation by HDACi. Overexpression of PKCδ is sufficient to induce the activity of the Zta promoter (Zp) but not of the Rta promoter (Rp). Deletion analysis revealed that the ZID element of Zp is important for PKCδ activation. Moreover, the Sp1 putative sequence on ZID is essential for PKCδ-induced Zp activity, and the physiological binding of Sp1 on ZID has been confirmed. After HDACi treatment, activated PKCδ can phosphorylate Sp1 at serine residues and might result in dissociation of the HDAC2 repressor from ZID. HDACi-mediated HDAC2-Sp1 dissociation can be inhibited by the PKCδ inhibitor, Rotterlin. Furthermore, overexpression of HDAC2 can suppress the HDACi-induced Zp activity. Consequently, we hypothesize that HDACi induces PKCδ activation, causing phosphorylation of Sp1, and that the interplay between PKCδ and Sp1 results in the release of HDAC2 repressor from Zp and initiation of Zta expression.
Collapse
|
27
|
Chang LK, Chuang JY, Nakao M, Liu ST. MCAF1 and synergistic activation of the transcription of Epstein-Barr virus lytic genes by Rta and Zta. Nucleic Acids Res 2010; 38:4687-700. [PMID: 20385599 PMCID: PMC2919728 DOI: 10.1093/nar/gkq243] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Epstein–Barr virus (EBV) expresses two transcription factors, Rta and Zta, during the immediate-early stage of the lytic cycle. The two proteins often collaborate to activate the transcription of EBV lytic genes synergistically. This study demonstrates that Rta and Zta form a complex via an intermediary protein, MCAF1, on Zta response element (ZRE) in vitro. The interaction among these three proteins in P3HR1 cells is also verified via coimmunoprecipitation, CHIP analysis and confocal microscopy. The interaction between Rta and Zta in vitro depends on the region between amino acid 562 and 816 in MCAF1. In addition, overexpressing MCAF1 enhances and introducing MCAF1 siRNA into the cells markedly reduces the level of the synergistic activation in 293T cells. Moreover, the fact that the synergistic activation depends on ZRE but not on Rta response element (RRE) originates from the fact that Rta and Zta are capable of activating the BMRF1 promoter synergistically after an RRE but not ZREs in the promoter are mutated. The binding of Rta–MCAF1–Zta complex to ZRE but not RRE also explains why Rta and Zta do not use RRE to activate transcription synergistically. Importantly, this study elucidates the mechanism underlying synergistic activation, which is important to the lytic development of EBV.
Collapse
Affiliation(s)
- Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
28
|
Chen PW, Lin SJ, Tsai SC, Lin JH, Chen MR, Wang JT, Lee CP, Tsai CH. Regulation of microtubule dynamics through phosphorylation on stathmin by Epstein-Barr virus kinase BGLF4. J Biol Chem 2010; 285:10053-10063. [PMID: 20110360 DOI: 10.1074/jbc.m109.044420] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stathmin is an important microtubule (MT)-destabilizing protein, and its activity is differently attenuated by phosphorylation at one or more of its four phosphorylatable serine residues (Ser-16, Ser-25, Ser-38, and Ser-63). This phosphorylation of stathmin plays important roles in mitotic spindle formation. We observed increasing levels of phosphorylated stathmin in Epstein-Barr virus (EBV)-harboring lymphoblastoid cell lines (LCLs) and nasopharyngeal carcinoma (NPC) cell lines during the EBV lytic cycle. These suggest that EBV lytic products may be involved in the regulation of stathmin phosphorylation. BGLF4 is an EBV-encoded kinase and has similar kinase activity to cdc2, an important kinase that phosphorylates serine residues 25 and 38 of stathmin during mitosis. Using an siRNA approach, we demonstrated that BGLF4 contributes to the phosphorylation of stathmin in EBV-harboring NPC. Moreover, we confirmed that BGLF4 interacts with and phosphorylates stathmin using an in vitro kinase assay and an in vivo two-dimensional electrophoresis assay. Interestingly, unlike cdc2, BGLF4 was shown to phosphorylate non-proline directed serine residues of stathmin (Ser-16) and it mediated phosphorylation of stathmin predominantly at serines 16, 25, and 38, indicating that BGLF4 can down-regulate the activity of stathmin. Finally, we demonstrated that the pattern of MT organization was changed in BGLF4-expressing cells, possibly through phosphorylation of stathmin. In conclusion, we have shown that a viral Ser/Thr kinase can directly modulate the activity of stathmin and this contributes to alteration of cellular MT dynamics and then may modulate the associated cellular processes.
Collapse
Affiliation(s)
- Po-Wen Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Sue-Jane Lin
- Research Center for Emerging Viral Infections and Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan 333, Taiwan
| | - Shu-Chun Tsai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Jiun-Han Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Mei-Ru Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Jiin-Tarng Wang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chung-Pei Lee
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Ching-Hwa Tsai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| |
Collapse
|
29
|
Pyrzynska B, Pilecka I, Miaczynska M. Endocytic proteins in the regulation of nuclear signaling, transcription and tumorigenesis. Mol Oncol 2009; 3:321-38. [PMID: 19577966 DOI: 10.1016/j.molonc.2009.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 06/01/2009] [Accepted: 06/02/2009] [Indexed: 01/14/2023] Open
Abstract
Accumulating evidence argues that many proteins governing membrane sorting during endocytosis participate also in nuclear signaling and transcriptional regulation, mostly by modulating the activity of various nuclear factors. Some adaptors and accessory proteins acting in clathrin-mediated internalization, as well as endosomal sorting proteins can undergo nuclear translocation and affect gene expression directly, while for others the effects may be more indirect. Although it is often unclear to what extent the endocytic and nuclear functions are interrelated, several of such proteins are implicated in the regulation of cell proliferation and tumorigenesis, arguing that their dual-function nature may be of physiological importance.
Collapse
Affiliation(s)
- Beata Pyrzynska
- International Institute of Molecular and Cell Biology, Laboratory of Cell Biology, 02-109 Warsaw, Poland
| | | | | |
Collapse
|
30
|
EBV Zta protein induces the expression of interleukin-13, promoting the proliferation of EBV-infected B cells and lymphoblastoid cell lines. Blood 2009; 114:109-18. [PMID: 19417211 DOI: 10.1182/blood-2008-12-193375] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) infection can modify the cytokine expression profiles of host cells and determine the fate of those cells. Of note, expression of interleukin-13 (IL-13) may be detected in EBV-associated Hodgkin lymphoma and the natural killer (NK) cells of chronic active EBV-infected patients, but its biologic role and regulatory mechanisms are not understood. Using cytokine antibody arrays, we found that IL-13 production is induced in B cells early during EBV infection. Furthermore, the EBV lytic protein, Zta (also known as the BZLF-1 product), which is a transcriptional activator, was found to induce IL-13 expression following transfection. Mechanistically, induction of IL-13 expression by Zta is mediated directly through its binding to the IL-13 promoter, via a consensus AP-1 binding site. Blockade of IL-13 by antibody neutralization showed that IL-13 is required at an early stage of EBV-induced proliferation and for long-term maintenance of the growth of EBV immortalized lymphoblastoid cell lines (LCLs). Thus, Zta-induced IL-13 production facilitates B-cell proliferation and may contribute to the pathogenesis of EBV-associated lymphoproliferative disorders, such as posttransplantation lymphoproliferative disease (PTLD) and Hodgkin lymphoma.
Collapse
|
31
|
Chen LW, Raghavan V, Chang PJ, Shedd D, Heston L, Delecluse HJ, Miller G. Two phenylalanines in the C-terminus of Epstein-Barr virus Rta protein reciprocally modulate its DNA binding and transactivation function. Virology 2009; 386:448-61. [PMID: 19232420 DOI: 10.1016/j.virol.2009.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 01/08/2009] [Accepted: 01/15/2009] [Indexed: 12/12/2022]
Abstract
The Rta (R transactivator) protein plays an essential role in the Epstein-Barr viral (EBV) lytic cascade. Rta activates viral gene expression by several mechanisms including direct and indirect binding to target viral promoters, synergy with EBV ZEBRA protein, and stimulation of cellular signaling pathways. We previously found that Rta proteins with C-terminal truncations of 30 aa were markedly enhanced in their capacity to bind DNA (Chen, L.W., Chang, P.J., Delecluse, H.J., and Miller, G., (2005). Marked variation in response of consensus binding elements for the Rta protein of Epstein-Barr virus. J. Virol. 79(15), 9635-9650.). Here we show that two phenylalanines (F600 and F605) in the C-terminus of Rta play a crucial role in mediating this DNA binding inhibitory function. Amino acids 555 to 605 of Rta constitute a functional DNA binding inhibitory sequence (DBIS) that markedly decreased DNA binding when transferred to a minimal DNA binding domain of Rta (aa 1-350). Alanine substitution mutants, F600A/F605A, abolished activity of the DBIS. F600 and F605 are located in the transcriptional activation domain of Rta. Alanine substitutions, F600A/F605A, decreased transcriptional activation by Rta protein, whereas aromatic substitutions, such as F600Y/F605Y or F600W/F605W, partially restored transcriptional activation. Full-length Rta protein with F600A/F605A mutations were enhanced in DNA binding compared to wild-type, whereas Rta proteins with F600Y/F605Y or F600W/F605W substitutions were, like wild-type Rta, relatively poor DNA binders. GAL4 (1-147)/Rta (416-605) fusion proteins with F600A/F605A mutations were diminished in transcriptional activation, relative to GAL4/Rta chimeras without such mutations. The results suggest that, in the context of a larger DBIS, F600 and F605 play a role in the reciprocal regulation of DNA binding and transcriptional activation by Rta. Regulation of DNA binding by Rta is likely to be important in controlling its different modes of action.
Collapse
Affiliation(s)
- Lee-Wen Chen
- Department of Respiratory Care, Chang Gung Institute of Technology, Chaiyi, Taiwan
| | | | | | | | | | | | | |
Collapse
|
32
|
Li B, Wang X, Zhou F, Saunders NA, Frazer IH, Zhao KN. Up-regulated expression of Sp1 protein coincident with a viral protein in human and mouse differentiating keratinocytes may act as a cell differentiation marker. Differentiation 2008; 76:1068-80. [DOI: 10.1111/j.1432-0436.2008.00300.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
33
|
Epstein-Barr virus BGLF4 kinase induces disassembly of the nuclear lamina to facilitate virion production. J Virol 2008; 82:11913-26. [PMID: 18815303 DOI: 10.1128/jvi.01100-08] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA viruses adopt various strategies to modulate the cellular environment for efficient genome replication and virion production. Previously, we demonstrated that the BGLF4 kinase of Epstein-Barr virus (EBV) induces premature chromosome condensation through the activation of condensin and topoisomerase IIalpha (C. P. Lee, J. Y. Chen, J. T. Wang, K. Kimura, A. Takemoto, C. C. Lu, and M. R. Chen, J. Virol. 81:5166-5180, 2007). In this study, we show that BGLF4 interacts with lamin A/C and phosphorylates lamin A protein in vitro. Using a green fluorescent protein (GFP)-lamin A system, we found that Ser-22, Ser-390, and Ser-392 of lamin A are important for the BGLF4-induced disassembly of the nuclear lamina and the EBV reactivation-mediated redistribution of nuclear lamin. Virion production and protein levels of two EBV primary envelope proteins, BFRF1 and BFLF2, were reduced significantly by the expression of GFP-lamin A(5A), which has five Ser residues replaced by Ala at amino acids 22, 390, 392, 652, and 657 of lamin A. Our data indicate that BGLF4 kinase phosphorylates lamin A/C to promote the reorganization of the nuclear lamina, which then may facilitate the interaction of BFRF1 and BFLF2s and subsequent virion maturation. UL kinases of alpha- and betaherpesviruses also induce the disassembly of the nuclear lamina through similar sites on lamin A/C, suggesting a conserved mechanism for the nuclear egress of herpesviruses.
Collapse
|
34
|
Lee HH, Chang SS, Lin SJ, Chua HH, Tsai TJ, Tsai K, Lo YC, Chen HC, Tsai CH. Essential role of PKCdelta in histone deacetylase inhibitor-induced Epstein-Barr virus reactivation in nasopharyngeal carcinoma cells. J Gen Virol 2008; 89:878-883. [PMID: 18343827 DOI: 10.1099/vir.0.83533-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histone deactylase inhibitors (HDACi) are common chemotherapeutic agents that stimulate Epstein-Barr virus (EBV) reactivation; the detailed mechanism remains obscure. In this study, it is demonstrated that PKCdelta is required for induction of the EBV lytic cycle by HDACi. Inhibition of PKCdelta abrogates HDACi-mediated transcriptional activation of the Zta promoter and downstream lytic gene expression. Nuclear translocation of PKCdelta is observed following HDACi stimulation and its overexpression leads to progression of the EBV lytic cycle. Our study suggests that PKCdelta is a crucial mediator of EBV reactivation and provides a novel insight to study the regulation of the EBV lytic cycle.
Collapse
Affiliation(s)
- Heng-Huan Lee
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, ROC
| | - Shih-Shin Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, ROC
| | - Sue-Jane Lin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Huey-Huey Chua
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, ROC
| | - Tze-Jiun Tsai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, ROC
| | - Kevin Tsai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, ROC
| | - You-Chang Lo
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, ROC
| | - Hong-Chen Chen
- Department of Life Science and Graduate Institute of Biomedical Sciences, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, ROC
| | - Ching-Hwa Tsai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, ROC
| |
Collapse
|
35
|
Enhancement of transactivation activity of Rta of Epstein-Barr virus by RanBPM. J Mol Biol 2008; 379:231-42. [PMID: 18455188 DOI: 10.1016/j.jmb.2008.04.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 04/01/2008] [Accepted: 04/01/2008] [Indexed: 12/16/2022]
Abstract
Epstein-Barr virus (EBV) expresses the immediate-early protein Rta to activate the transcription of EBV lytic genes and the lytic cycle. We show that RanBPM acts as a binding partner of Rta in yeast two-hybrid analysis. The binding was confirmed by glutathione-S-transferase pull-down assay. A coimmunoprecipitation experiment and confocal microscopy revealed that RanBPM and Rta interact in vivo and colocalize in the nucleus. The interaction appears to involve the SPRY domain in RanBPM and the region between amino acid residues 416 to 476 in Rta. The interaction promotes the transactivation activity of Rta in activating the transcription of BMLF1 and p21 in transient transfection assays. Additionally, RanBPM interacts with SUMO-E2 (Ubc9) to promote sumoylation of Rta by SUMO-1. This fact explains why the expression of RanBPM enhances the transactivation activity of Rta. Taken together, the present results indicate a new role of RanBPM in regulating a viral protein that is critical to EBV lytic activation.
Collapse
|
36
|
Chen BJ, Lamb RA. Mechanisms for enveloped virus budding: can some viruses do without an ESCRT? Virology 2007; 372:221-32. [PMID: 18063004 DOI: 10.1016/j.virol.2007.11.008] [Citation(s) in RCA: 242] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 10/01/2007] [Accepted: 11/05/2007] [Indexed: 01/11/2023]
Abstract
Many enveloped viruses complete their replication cycle by forming vesicles that bud from the plasma membrane. Some viruses encode "late" (L) domain motifs that are able to hijack host proteins involved in the vacuolar protein sorting (VPS) pathway, a cellular budding process that gives rise to multivesicular bodies and that is topologically equivalent to virus budding. Although many enveloped viruses share this mechanism, examples of viruses that require additional viral factors and viruses that appear to be independent of the VPS pathway have been identified. Alternative mechanisms for virus budding could involve other topologically similar process such as cell abscission, which occurs following cytokinesis, or virus budding could proceed spontaneously as a result of lipid microdomain accumulation of viral proteins. Further examination of novel virus-host protein interactions and characterization of other enveloped viruses for which budding requirements are currently unknown will lead to a better understanding of the cellular processes involved in virus assembly and budding.
Collapse
Affiliation(s)
- Benjamin J Chen
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | |
Collapse
|
37
|
Pilecka I, Banach-Orlowska M, Miaczynska M. Nuclear functions of endocytic proteins. Eur J Cell Biol 2007; 86:533-47. [PMID: 17583371 DOI: 10.1016/j.ejcb.2007.04.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 04/19/2007] [Accepted: 04/19/2007] [Indexed: 01/14/2023] Open
Abstract
An increasing number of proteins appear to perform multiple, sometimes unrelated functions in the cell. Such moonlighting properties have been recently demonstrated for proteins involved in clathrin-mediated endocytosis. Some clathrin adaptors and endosomal proteins can undergo nucleocytoplasmic shuttling, which is often based on intrinsic sequence motifs and requires active transport mechanisms. Endocytic proteins can associate with nuclear molecules, changing their localization and/or activity and may modulate the levels and specificity of gene transcription. It is not clear how the nuclear and cytoplasmic pools of endocytic proteins are interconnected, or whether these molecules act as nuclear second messengers upon extracellular stimuli, but alike in endocytosis, they seem to form multi-component scaffolding platforms in the nucleus. Added to their endocytic functions, the nuclear roles of Eps15, Epsin1, CALM, HIP1, Dab1/2, beta-arrestins, APPL1/2 and the components of ESCRTs clearly increase the complexity of signaling networks affecting cellular growth, proliferation and homeostasis.
Collapse
Affiliation(s)
- Iwona Pilecka
- International Institute of Molecular and Cell Biology, Laboratory of Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | | | | |
Collapse
|