1
|
Nguyen TL, Kim H. Designing a Multiepitope Vaccine against Eastern Equine Encephalitis Virus: Immunoinformatics and Computational Approaches. ACS OMEGA 2024; 9:1092-1105. [PMID: 38222668 PMCID: PMC10785064 DOI: 10.1021/acsomega.3c07322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 01/16/2024]
Abstract
Eastern equine encephalitis virus (EEEV) is a significant threat to human and animal populations, causing severe encephalitis, often leading to long-term neurological complications and even mortality. Despite this, no approved antiviral treatments or EEEV human vaccines currently exist. In response, we utilized immunoinformatics and computational approaches to design a multiepitope vaccine candidate for EEEV. By screening the structural polyprotein of EEEV, we predicted both T-cell and linear B-cell epitopes. These epitopes underwent comprehensive evaluations for their antigenicity, toxicity, and allergenicity. From these evaluations, we selected ten epitopes highly suitable for vaccine design, which were connected with adjuvants using a stable linker. The resulting vaccine construct demonstrated exceptional antigenic, nontoxic, nonallergenic, and physicochemical properties. Subsequently, we employed molecular docking and molecular dynamics simulations to reveal a stable interaction pattern between the vaccine candidate and Toll-like receptor 5. Besides, computational immune simulations predicted the vaccine's capability to induce robust immune responses. Our study addresses the urgent need for effective EEEV preventive strategies and offers valuable insights for EEEV vaccine development. As EEEV poses a severe threat with potential spread due to climate change, our research provides a crucial step in enhancing public health defenses against this menacing zoonotic disease.
Collapse
Affiliation(s)
- Truc Ly Nguyen
- Department
of Agricultural Biotechnology and Research Institute of Agriculture
and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Heebal Kim
- Department
of Agricultural Biotechnology and Research Institute of Agriculture
and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary
Program in Bioinformatics, Seoul National
University, Seoul 08826, Republic
of Korea
- eGnome,
Inc., Seoul 05836, Republic of Korea
| |
Collapse
|
2
|
Carnet F, Perrin-Cocon L, Paillot R, Lotteau V, Pronost S, Vidalain PO. An inventory of adjuvants used for vaccination in horses: the past, the present and the future. Vet Res 2023; 54:18. [PMID: 36864517 PMCID: PMC9983233 DOI: 10.1186/s13567-023-01151-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/27/2023] [Indexed: 03/04/2023] Open
Abstract
Vaccination is one of the most widely used strategies to protect horses against pathogens. However, available equine vaccines often have limitations, as they do not always provide effective, long-term protection and booster injections are often required. In addition, research efforts are needed to develop effective vaccines against emerging equine pathogens. In this review, we provide an inventory of approved adjuvants for equine vaccines worldwide, and discuss their composition and mode of action when available. A wide range of adjuvants are used in marketed vaccines for horses, the main families being aluminium salts, emulsions, polymers, saponins and ISCOMs. We also present veterinary adjuvants that are already used for vaccination in other species and are currently evaluated in horses to improve equine vaccination and to meet the expected level of protection against pathogens in the equine industry. Finally, we discuss new adjuvants such as liposomes, polylactic acid polymers, inulin, poly-ε-caprolactone nanoparticles and co-polymers that are in development. Our objective is to help professionals in the horse industry understand the composition of marketed equine vaccines in a context of mistrust towards vaccines. Besides, this review provides researchers with a list of adjuvants, either approved or at least evaluated in horses, that could be used either alone or in combination to develop new vaccines.
Collapse
Affiliation(s)
- Flora Carnet
- grid.508204.bLABÉO, 14280 Saint-Contest, France ,grid.412043.00000 0001 2186 4076BIOTARGEN, Normandie University, UNICAEN, 14280 Saint-Contest, France
| | - Laure Perrin-Cocon
- grid.462394.e0000 0004 0450 6033CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Romain Paillot
- grid.451003.30000 0004 0387 5232School of Equine and Veterinary Physiotherapy, Writtle University College, Lordship Road, Writtle, Chelmsford, CM1 3RR UK
| | - Vincent Lotteau
- grid.462394.e0000 0004 0450 6033CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Stéphane Pronost
- LABÉO, 14280, Saint-Contest, France. .,BIOTARGEN, Normandie University, UNICAEN, 14280, Saint-Contest, France.
| | - Pierre-Olivier Vidalain
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France.
| |
Collapse
|
3
|
Powers AM. Resurgence of Interest in Eastern Equine Encephalitis Virus Vaccine Development. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:20-26. [PMID: 34734632 DOI: 10.1093/jme/tjab135] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Indexed: 06/13/2023]
Abstract
Eastern equine encephalitis virus (EEEV; Family Togaviridae), is an endemic pathogen first isolated in 1933 with distribution primarily in the eastern US and Canada. The virus has caused periodic outbreaks in both humans and equines along the eastern seaboard and through the southern coastal states. While the outbreaks caused by EEEV have been sporadic and varied geographically since the discovery of the virus, it has continued to expand its range moving into the Midwest states as well. Additionally, one of the largest outbreaks was recorded in 2019 prompting concerns that outbreaks were becoming larger and more frequent. Because the virus can cause serious disease and because it is transmissible by both mosquitoes and aerosol, there has been renewed interest in identifying potential options for vaccines. Currently, there are no licensed vaccines and control relies completely on the use of personal protective measures and integrated vector control which have limited effectiveness for the EEEV vectors. Several vaccine candidates are currently being developed; this review will describe the multiple options under consideration for future development and assess their relative advantages and disadvantages.
Collapse
Affiliation(s)
- Ann M Powers
- Division of Vector-Borne Diseases, Centers for Diseases Control and Prevention, Fort Collins, CO, USA
| |
Collapse
|
4
|
Torres-Ruesta A, Chee RSL, Ng LF. Insights into Antibody-Mediated Alphavirus Immunity and Vaccine Development Landscape. Microorganisms 2021; 9:microorganisms9050899. [PMID: 33922370 PMCID: PMC8145166 DOI: 10.3390/microorganisms9050899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022] Open
Abstract
Alphaviruses are mosquito-borne pathogens distributed worldwide in tropical and temperate areas causing a wide range of symptoms ranging from inflammatory arthritis-like manifestations to the induction of encephalitis in humans. Historically, large outbreaks in susceptible populations have been recorded followed by the development of protective long-lasting antibody responses suggesting a potential advantageous role for a vaccine. Although the current understanding of alphavirus antibody-mediated immunity has been mainly gathered in natural and experimental settings of chikungunya virus (CHIKV) infection, little is known about the humoral responses triggered by other emerging alphaviruses. This knowledge is needed to improve serology-based diagnostic tests and the development of highly effective cross-protective vaccines. Here, we review the role of antibody-mediated immunity upon arthritogenic and neurotropic alphavirus infections, and the current research efforts for the development of vaccines as a tool to control future alphavirus outbreaks.
Collapse
Affiliation(s)
- Anthony Torres-Ruesta
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Rhonda Sin-Ling Chee
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
| | - Lisa F.P. Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Correspondence: ; Tel.: +65-6407-0028
| |
Collapse
|
5
|
Raabe V, Lai L, Xu Y, Huerta C, Wang D, Pouch SM, Burke CW, Piper AE, Gardner CL, Glass PJ, Mulligan MJ. The Immune Response to Eastern Equine Encephalitis Virus Acquired Through Organ Transplantation. Front Microbiol 2020; 11:561530. [PMID: 33072022 PMCID: PMC7541818 DOI: 10.3389/fmicb.2020.561530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/31/2020] [Indexed: 11/17/2022] Open
Abstract
The human immune response to eastern equine encephalitis virus (EEEV) infection is poorly characterized due to the rarity of infection. We examined the humoral and cellular immune response to EEEV acquired from an infected donor via liver transplantation. Both binding and highly neutralizing antibodies to EEEV as well as a robust EEEV-specific IgG memory B cell response were generated. Despite triple-drug immunosuppressive therapy, a virus-specific CD4+ T cell response, predominated by interferon-γ production, was generated. T cell epitopes on the E2 envelope protein were identified by interferon-γ ELISpot. Although these results are from a single person who acquired EEEV by a non-traditional mechanism, to our knowledge this work represents the first analysis of the human cellular immune response to EEEV.
Collapse
Affiliation(s)
- Vanessa Raabe
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Lilin Lai
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Yong Xu
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Chris Huerta
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Dongli Wang
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Stephanie M Pouch
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Crystal W Burke
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Ashley E Piper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Christina L Gardner
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Pamela J Glass
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Mark J Mulligan
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
6
|
Bantle CM, Phillips AT, Smeyne RJ, Rocha SM, Olson KE, Tjalkens RB. Infection with mosquito-borne alphavirus induces selective loss of dopaminergic neurons, neuroinflammation and widespread protein aggregation. NPJ PARKINSONS DISEASE 2019; 5:20. [PMID: 31531390 PMCID: PMC6744428 DOI: 10.1038/s41531-019-0090-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 08/12/2019] [Indexed: 12/28/2022]
Abstract
Neuroinvasive infections with mosquito-borne alphaviruses such as Western equine encephalitis virus (WEEV) can cause post-encephalitic parkinsonism. To understand the mechanisms underlying these neurological effects, we examined the capacity of WEEV to induce progressive neurodegeneration in outbred CD-1 mice following non-lethal encephalitic infection. Animals were experientally infected with recombinant WEEV expressing firefly luciferase or dsRed (RFP) reporters and the extent of viral replication was controlled using passive immunotherapy. WEEV spread along the neuronal axis from the olfactory bulb to the entorhinal cortex, hippocampus and basal midbrain by 4 days post infection (DPI). Infection caused activation of microglia and astrocytes, selective loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and neurobehavioral abnormalities. After 8 weeks, surviving mice displayed continued loss of dopamine neurons in the SNpc, lingering glial cell activation and gene expression profiles consistent with a neurodegenerative phenotype. Strikingly, prominent proteinase K-resistant protein aggregates were present in the the entorhinal cortex, hippocampus and basal midbrain that stained positively for phospho-serine129 α-synuclein (SNCA). These results indicate that WEEV may cause lasting neurological deficits through a severe neuroinflammatory response promoting both neuronal injury and protein aggregation in surviving individuals.
Collapse
Affiliation(s)
- Collin M Bantle
- 1Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Aaron T Phillips
- 1Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523 USA.,2Arthropod-Borne and Infectious Disease Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523 USA
| | - Richard J Smeyne
- 3Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Savannah M Rocha
- 2Arthropod-Borne and Infectious Disease Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523 USA
| | - Ken E Olson
- 2Arthropod-Borne and Infectious Disease Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523 USA
| | - Ronald B Tjalkens
- 1Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523 USA
| |
Collapse
|
7
|
Burke CW, Froude JW, Miethe S, Hülseweh B, Hust M, Glass PJ. Human-Like Neutralizing Antibodies Protect Mice from Aerosol Exposure with Western Equine Encephalitis Virus. Viruses 2018; 10:v10040147. [PMID: 29587363 PMCID: PMC5923441 DOI: 10.3390/v10040147] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/14/2018] [Accepted: 03/22/2018] [Indexed: 02/07/2023] Open
Abstract
Western equine encephalitis virus (WEEV) causes symptoms in humans ranging from mild febrile illness to life-threatening encephalitis, and no human medical countermeasures are licensed. A previous study demonstrated that immune serum from vaccinated mice protected against lethal WEEV infection, suggesting the utility of antibodies for pre- and post-exposure treatment. Here, three neutralizing and one binding human-like monoclonal antibodies were evaluated against WEEV aerosol challenge. Dose-dependent protection was observed with two antibodies administered individually, ToR69-3A2 and ToR68-2C3. In vitro neutralization was not a critical factor for protection in this murine model, as ToR69-3A2 is a strong neutralizing antibody, and ToR68-2C3 is a non-neutralizing antibody. This result highlights the importance of both neutralizing and non-neutralizing antibodies in the protection of mice from WEEV lethality.
Collapse
MESH Headings
- Aerosols
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/administration & dosage
- Antibodies, Viral/immunology
- Disease Models, Animal
- Encephalitis Virus, Western Equine/immunology
- Encephalomyelitis, Equine/immunology
- Encephalomyelitis, Equine/mortality
- Encephalomyelitis, Equine/prevention & control
- Encephalomyelitis, Equine/virology
- Immunization
- Mice
- Morbidity
- Mortality
Collapse
Affiliation(s)
- Crystal W Burke
- United States Army Medical Research Institute for Infectious Diseases, Fort Detrick, MD 21702, USA.
| | - Jeffrey W Froude
- United States Army Medical Research Institute for Infectious Diseases, Fort Detrick, MD 21702, USA.
| | - Sebastian Miethe
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Spielmannstr.7, 38106 Braunschweig, Germany.
| | - Birgit Hülseweh
- Wehrwissenschaftliches Institut für Schutztechnologien (WIS)-ABC-Schutz, Humboldtstr. 1, 29623 Munster, Germany.
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Spielmannstr.7, 38106 Braunschweig, Germany.
- YUMAB GmbH, Science Campus Braunschweig Süd, Inhoffenstr.7, 38124 Braunschweig, Germany.
| | - Pamela J Glass
- United States Army Medical Research Institute for Infectious Diseases, Fort Detrick, MD 21702, USA.
| |
Collapse
|
8
|
Herath TK, Ashby AJ, Jayasuriya NS, Bron JE, Taylor JF, Adams A, Richards RH, Weidmann M, Ferguson HW, Taggart JB, Migaud H, Fordyce MJ, Thompson KD. Impact of Salmonid alphavirus infection in diploid and triploid Atlantic salmon (Salmo salar L.) fry. PLoS One 2017; 12:e0179192. [PMID: 28949966 PMCID: PMC5614425 DOI: 10.1371/journal.pone.0179192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 05/25/2017] [Indexed: 11/26/2022] Open
Abstract
With increasing interest in the use of triploid salmon in commercial aquaculture, gaining an understanding of how economically important pathogens affect triploid stocks is important. To compare the susceptibility of diploid and triploid Atlantic salmon (Salmo salar L.) to viral pathogens, fry were experimentally infected with Salmonid alphavirus sub-type 1 (SAV1), the aetiological agent of pancreas disease (PD) affecting Atlantic salmon aquaculture in Europe. Three groups of fry were exposed to the virus via different routes of infection: intraperitoneal injection (IP), bath immersion, or cohabitation (co-hab) and untreated fry were used as a control group. Mortalities commenced in the co-hab challenged diploid and triploid fish from 11 days post infection (dpi), and the experiment was terminated at 17 dpi. Both diploid and triploid IP challenged groups had similar levels of cumulative mortality at the end of the experimental period (41.1% and 38.9% respectively), and these were significantly higher (p < 0.01) than for the other challenge routes. A TaqMan-based quantitative PCR was used to assess SAV load in the heart, a main target organ of the virus, and also liver, which does not normally display any pathological changes during clinical infections, but exhibited severe degenerative lesions in the present study. The median viral RNA copy number was higher in diploid fish compared to triploid fish in both the heart and the liver of all three challenged groups. However, a significant statistical difference (p < 0.05) was only apparent in the liver of the co-hab groups. Diploid fry also displayed significantly higher levels of pancreatic and myocardial degeneration than triploids. This study showed that both diploid and triploid fry are susceptible to experimental SAV1 infection. The lower virus load seen in the triploids compared to the diploids may possibly be related to differences in cell metabolism between the two groups, however, further investigation is necessary to confirm this and also to assess the outcome of PD outbreaks in other developmental stages of the fish when maintained in commercial production systems.
Collapse
Affiliation(s)
- Tharangani K. Herath
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
- Department of Animal Production, Welfare and Veterinary Sciences, Harper Adams University, Newport, Shropshire, United Kingdom
- * E-mail:
| | - Angela J. Ashby
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
- Fish Vet Group, Inverness, Scotland, United Kingdom
| | | | - James E. Bron
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - John F. Taylor
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Alexandra Adams
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | | | - Manfred Weidmann
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Hugh W. Ferguson
- Marine Medicine Programme, School of Veterinary Medicine, St. George’s University, Grenada, West Indies
| | - John B. Taggart
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Herve Migaud
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | | | - Kim D. Thompson
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
- Moredun Research Institute, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Phelps AL, O'Brien LM, Eastaugh LS, Davies C, Lever MS, Ennis J, Zeitlin L, Nunez A, Ulaeto DO. Susceptibility and Lethality of Western Equine Encephalitis Virus in Balb/c Mice When Infected by the Aerosol Route. Viruses 2017; 9:v9070163. [PMID: 28654007 PMCID: PMC5537655 DOI: 10.3390/v9070163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/09/2017] [Accepted: 06/20/2017] [Indexed: 12/25/2022] Open
Abstract
Western equine encephalitis virus (WEEV) naturally cycles between mosquitos and birds or rodents, with a case fatality rate of up to 15% in humans during epizootic outbreaks. There are no medical countermeasures to treat WEEV infection, and accidental aerosol exposure increases the case fatality rate up to 40%. Understanding the pathogenesis of infection is required to develop and assess medical countermeasures. This study describes the clinical and pathological findings of mice infected with WEEV by the aerosol route, and use as a model for WEEV infection in humans. Balb/c mice were infected by the aerosol route with a dose range of high-virulence WEEV strain Fleming to establish the median lethal dose (MLD). The disease course was acute, culminating in severe clinical signs, neuroinvasion, and dose-dependent mortality. Further groups of mice were exposed by the aerosol route, periodically sacrificed, and tissues excised for histopathological examination and virology. Viral titres peaked four days post-challenge in the brain and lungs, corresponding with severe bilateral lesions in rostroventral regions of the encephalon, especially in the olfactory bulb and piriform cortex. Recapitulation of the most serious clinical presentations of human WEEV disease in mice may prove a useful tool in the evaluation of medical countermeasures.
Collapse
Affiliation(s)
- Amanda L Phelps
- CBR Division, Defence Science and Technology Laboratory (Dstl), Room 201, Building 7a, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK.
| | - Lyn M O'Brien
- CBR Division, Defence Science and Technology Laboratory (Dstl), Room 201, Building 7a, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK.
| | - Lin S Eastaugh
- CBR Division, Defence Science and Technology Laboratory (Dstl), Room 201, Building 7a, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK.
| | - Carwyn Davies
- CBR Division, Defence Science and Technology Laboratory (Dstl), Room 201, Building 7a, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK.
| | - Mark S Lever
- CBR Division, Defence Science and Technology Laboratory (Dstl), Room 201, Building 7a, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK.
| | - Jane Ennis
- Mapp Biopharmaceutical Inc., 6160 Lusk Blvd. #C105, San Diego, CA 92121, USA.
| | - Larry Zeitlin
- Mapp Biopharmaceutical Inc., 6160 Lusk Blvd. #C105, San Diego, CA 92121, USA.
| | - Alejandro Nunez
- Pathology Department, Animal and Plant Health Agency, Weybrige, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK.
| | - David O Ulaeto
- CBR Division, Defence Science and Technology Laboratory (Dstl), Room 201, Building 7a, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK.
| |
Collapse
|
10
|
Rico AB, Phillips AT, Schountz T, Jarvis DL, Tjalkens RB, Powers AM, Olson KE. Venezuelan and western equine encephalitis virus E1 liposome antigen nucleic acid complexes protect mice from lethal challenge with multiple alphaviruses. Virology 2016; 499:30-39. [PMID: 27632563 DOI: 10.1016/j.virol.2016.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 10/21/2022]
Abstract
Eastern, Venezuelan and western equine encephalitis viruses (EEEV, VEEV, and WEEV) are mosquito-borne viruses that cause substantial disease in humans and other vertebrates. Vaccines are limited and current treatment options have not proven successful. In this report, we vaccinated outbred mice with lipid-antigen-nucleic acid-complexes (LANACs) containing VEEV E1+WEEV E1 antigen and characterized protective efficacy against lethal EEEV, VEEV, and WEEV challenge. Vaccination resulted in complete protection against EEEV, VEEV, and WEEV in CD-1 mice. Measurements of bioluminescence and plaque reduction neutralization tests (PRNTs) indicate that LANAC VEEV E1+WEEV E1 vaccination is sterilizing against VEEV and WEEV challenge; whereas immunity to EEEV is not sterilizing. Passive transfer of rabbit VEEV E1+WEEV E1 immune serum to naive mice extended the mean time to death (MTD) of EEEV challenged mice and provided significant protection from lethal VEEV and WEEV challenge.
Collapse
Affiliation(s)
- Amber B Rico
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA.
| | - Aaron T Phillips
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Tony Schountz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Donald L Jarvis
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Ronald B Tjalkens
- Department of Environmental & Radiological Health Sciences, CSU, Fort Collins, CO, USA
| | - Ann M Powers
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Ken E Olson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
11
|
Abstract
Vaccines for neuroinfectious diseases are becoming an ever-increasing global health priority, as neurologic manifestations and sequelae from existing and emerging central nervous system infections account for significant worldwide morbidity and mortality. The prevention of neurotropic infections can be achieved through globally coordinated vaccination campaigns, which have successfully eradicated nonzoonotic agents such as the variola viruses and, hopefully soon, poliovirus. This review discusses vaccines that are currently available or under development for zoonotic flaviviruses and alphaviruses, including Japanese and tick-borne encephalitis, yellow fever, West Nile, dengue, Zika, encephalitic equine viruses, and chikungunya. Also discussed are nonzoonotic agents, including measles and human herpesviruses, as well as select bacterial, fungal, and protozoal pathogens. While therapeutic vaccines will be required to treat a multitude of ongoing infections of the nervous system, the ideal vaccination strategy is pre-exposure vaccination, with the ultimate goals of minimizing disease associated with zoonotic viruses and the total eradication of nonzoonotic agents.
Collapse
Affiliation(s)
- Emily C Leibovitch
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Institute for Biomedical Sciences, The George Washington University School of Medicine, Washington, DC, 20037, USA
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
12
|
Entry Sites of Venezuelan and Western Equine Encephalitis Viruses in the Mouse Central Nervous System following Peripheral Infection. J Virol 2016; 90:5785-96. [PMID: 27053560 DOI: 10.1128/jvi.03219-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/03/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Venezuelan and western equine encephalitis viruses (VEEV and WEEV; Alphavirus; Togaviridae) are mosquito-borne pathogens causing central nervous system (CNS) disease in humans and equids. Adult CD-1 mice also develop CNS disease after infection with VEEV and WEEV. Adult CD-1 mice infected by the intranasal (i.n.) route, showed that VEEV and WEEV enter the brain through olfactory sensory neurons (OSNs). In this study, we injected the mouse footpad with recombinant WEEV (McMillan) or VEEV (subtype IC strain 3908) expressing firefly luciferase (fLUC) to simulate mosquito infection and examined alphavirus entry in the CNS. Luciferase expression served as a marker of infection detected as bioluminescence (BLM) by in vivo and ex vivo imaging. BLM imaging detected WEEV and VEEV at 12 h postinoculation (hpi) at the injection site (footpad) and as early as 72 hpi in the brain. BLM from WEEV.McM-fLUC and VEEV.3908-fLUC injections was initially detected in the brain's circumventricular organs (CVOs). No BLM activity was detected in the olfactory neuroepithelium or OSNs. Mice were also injected in the footpad with WEEV.McM expressing DsRed (Discosoma sp.) and imaged by confocal fluorescence microscopy. DsRed imaging supported our BLM findings by detecting WEEV in the CVOs prior to spreading along the neuronal axis to other brain regions. Taken together, these findings support our hypothesis that peripherally injected alphaviruses enter the CNS by hematogenous seeding of the CVOs followed by centripetal spread along the neuronal axis. IMPORTANCE VEEV and WEEV are mosquito-borne viruses causing sporadic epidemics in the Americas. Both viruses are associated with CNS disease in horses, humans, and mouse infection models. In this study, we injected VEEV or WEEV, engineered to express bioluminescent or fluorescent reporters (fLUC and DsRed, respectively), into the footpads of outbred CD-1 mice to simulate transmission by a mosquito. Reporter expression serves as detectable bioluminescent and fluorescent markers of VEEV and WEEV replication and infection. Bioluminescence imaging, histological examination, and confocal fluorescence microscopy were used to identify early entry sites of these alphaviruses in the CNS. We observed that specific areas of the brain (circumventricular organs [CVOs]) consistently showed the earliest signs of infection with VEEV and WEEV. Histological examination supported VEEV and WEEV entering the brain of mice at specific sites where the blood-brain barrier is naturally absent.
Collapse
|
13
|
Abstract
Mosquito-borne diseases affect horses worldwide. Mosquito-borne diseases generally cause encephalomyelitis in the horse and can be difficult to diagnose antemortem. In addition to general disease, and diagnostic and treatment aspects, this review article summarizes the latest information on these diseases, covering approximately the past 5 years, with a focus on new equine disease encroachments, diagnostic and vaccination aspects, and possible therapeutics on the horizon.
Collapse
|
14
|
Schwendener RA. Liposomes as vaccine delivery systems: a review of the recent advances. THERAPEUTIC ADVANCES IN VACCINES 2014; 2:159-82. [PMID: 25364509 DOI: 10.1177/2051013614541440] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Liposomes and liposome-derived nanovesicles such as archaeosomes and virosomes have become important carrier systems in vaccine development and the interest for liposome-based vaccines has markedly increased. A key advantage of liposomes, archaeosomes and virosomes in general, and liposome-based vaccine delivery systems in particular, is their versatility and plasticity. Liposome composition and preparation can be chosen to achieve desired features such as selection of lipid, charge, size, size distribution, entrapment and location of antigens or adjuvants. Depending on the chemical properties, water-soluble antigens (proteins, peptides, nucleic acids, carbohydrates, haptens) are entrapped within the aqueous inner space of liposomes, whereas lipophilic compounds (lipopeptides, antigens, adjuvants, linker molecules) are intercalated into the lipid bilayer and antigens or adjuvants can be attached to the liposome surface either by adsorption or stable chemical linking. Coformulations containing different types of antigens or adjuvants can be combined with the parameters mentioned to tailor liposomal vaccines for individual applications. Special emphasis is given in this review to cationic adjuvant liposome vaccine formulations. Examples of vaccines made with CAF01, an adjuvant composed of the synthetic immune-stimulating mycobacterial cordfactor glycolipid trehalose dibehenate as immunomodulator and the cationic membrane forming molecule dimethyl dioctadecylammonium are presented. Other vaccines such as cationic liposome-DNA complexes (CLDCs) and other adjuvants like muramyl dipeptide, monophosphoryl lipid A and listeriolysin O are mentioned as well. The field of liposomes and liposome-based vaccines is vast. Therefore, this review concentrates on recent and relevant studies emphasizing current reports dealing with the most studied antigens and adjuvants, and pertinent examples of vaccines. Studies on liposome-based veterinary vaccines and experimental therapeutic cancer vaccines are also summarized.
Collapse
Affiliation(s)
- Reto A Schwendener
- Institute of Molecular Cancer Research, Laboratory of Liposome Research, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| |
Collapse
|
15
|
Blakely PK, Delekta PC, Miller DJ, Irani DN. Manipulation of host factors optimizes the pathogenesis of western equine encephalitis virus infections in mice for antiviral drug development. J Neurovirol 2014; 21:43-55. [PMID: 25361697 DOI: 10.1007/s13365-014-0297-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/18/2014] [Accepted: 09/24/2014] [Indexed: 11/25/2022]
Abstract
While alphaviruses spread naturally via mosquito vectors, some can also be transmitted as aerosols making them potential bioterrorism agents. One such pathogen, western equine encephalitis virus (WEEV), causes fatal human encephalitis via multiple routes of infection and thus presumably via multiple mechanisms. Although WEEV also produces acute encephalitis in non-human primates, a small animal model that recapitulates features of human disease would be useful for both pathogenesis studies and to evaluate candidate antiviral therapies. We have optimized conditions to infect mice with a low passage isolate of WEEV, thereby allowing detailed investigation of virus tropism, replication, neuroinvasion, and neurovirulence. We find that host factors strongly influence disease outcome, and in particular, that age, gender, and genetic background all have significant effects on disease susceptibility independent of virus tropism or replication within the central nervous system. Our data show that experimental variables can be adjusted in mice to recapitulate disease features known to occur in both non-human primates and humans, thus aiding further study of WEEV pathogenesis and providing a realistic therapeutic window for antiviral drug delivery.
Collapse
MESH Headings
- Administration, Intranasal
- Alphavirus Infections/pathology
- Alphavirus Infections/virology
- Animals
- Behavior, Animal
- Cognition
- Disease Models, Animal
- Encephalitis Virus, Western Equine/pathogenicity
- Encephalitis Virus, Western Equine/physiology
- Host Specificity
- Injections, Intraperitoneal
- Injections, Subcutaneous
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred DBA
- RNA, Viral/blood
- Seizures/pathology
- Seizures/virology
- Species Specificity
- Viral Load
- Virus Replication
Collapse
Affiliation(s)
- Pennelope K Blakely
- Department of Neurology, University of Michigan Medical School, 4007 Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | | | | | | |
Collapse
|
16
|
Taylor A, Herrero LJ, Rudd PA, Mahalingam S. Mouse models of alphavirus-induced inflammatory disease. J Gen Virol 2014; 96:221-238. [PMID: 25351726 DOI: 10.1099/vir.0.071282-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Part of the Togaviridae family, alphaviruses are arthropod-borne viruses that are widely distributed throughout the globe. Alphaviruses are able to infect a variety of vertebrate hosts, but in humans, infection can result in extensive morbidity and mortality. Symptomatic infection can manifest as fever, an erythematous rash and/or significant inflammatory pathologies such as arthritis and encephalitis. Recent overwhelming outbreaks of alphaviral disease have highlighted the void in our understanding of alphavirus pathogenesis and the re-emergence of alphaviruses has given new impetus to anti-alphaviral drug design. In this review, the development of viable mouse models of Old Word and New World alphaviruses is examined. How mouse models that best replicate human disease have been used to elucidate the immunopathology of alphavirus pathogenesis and trial novel therapeutic discoveries is also discussed.
Collapse
Affiliation(s)
- Adam Taylor
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Lara J Herrero
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Penny A Rudd
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Suresh Mahalingam
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| |
Collapse
|