1
|
Bao G, Fan S, Hu C, Li C, Ma F, Wang G, Fan H, Wang Q. CDK5-mediated rearrangement of vimentin during Duck Tembusu virus infection inhibits viral replication. Vet Microbiol 2024; 292:110071. [PMID: 38574695 DOI: 10.1016/j.vetmic.2024.110071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
Duck Tembusu virus (DTMUV) is a newly emerging pathogen that causes massive economic losses to the poultry industry in China and neighbouring countries. Vimentin, an intermediate filament protein, has been demonstrated to be involved in viral replication during infection. However, the specific role of vimentin in DTMUV replication has not been determined. In this study, we found that overexpression of vimentin in BHK-21 cells can inhibit DTMUV replication. Moreover, DTMUV replication was enhanced after vimentin expression was reduced in BHK-21 cells via small interfering RNA (siRNA). Further research indicated that DTMUV infection had no effect on the transcription or expression of vimentin. However, we found that DTMUV infection induced vimentin rearrangement, and the rearrangement of vimentin was subsequently confirmed to negatively modulate viral replication through the use of a vimentin network disrupting agent. Vimentin rearrangement is closely associated with its phosphorylation. Our experiments revealed that the phosphorylation of vimentin at Ser56 was promoted in the early stage of DTMUV infection. In addition, by inhibiting the phosphorylation of vimentin at Ser56 with a CDK5 inhibitor, vimentin rearrangement was suppressed, and DTMUV replication was significantly enhanced. These results indicated that DTMUV infection induced vimentin phosphorylation and rearrangement through CDK5, resulting in the inhibition of DTMUV replication. In summary, our study reveals a role for vimentin as a negative factor in the process of DTMUV replication, which helps to elucidate the function of cellular proteins in regulating DTMUV replication.
Collapse
Affiliation(s)
- Guangbin Bao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shinuo Fan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chunyan Hu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chen Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Fei Ma
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guijun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China.
| | - Qing Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
Liu X, Yan D, Peng S, Zhang Y, Xu B, Li L, Shi X, Ma T, Li X, Teng Q, Yuan C, Liu Q, Li Z. 326K at E Protein Is Critical for Mammalian Adaption of TMUV. Viruses 2023; 15:2376. [PMID: 38140617 PMCID: PMC10747068 DOI: 10.3390/v15122376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Outbreaks of Tembusu virus (TMUV) infection have caused huge economic losses to the poultry industry in China since 2010. However, the potential threat of TMUV to mammals has not been well studied. In this study, a TMUV HB strain isolated from diseased ducks showed high virulence in BALB/c mice inoculated intranasally compared with the reference duck TMUV strain. Further studies revealed that the olfactory epithelium is one pathway for the TMUV HB strain to invade the central nervous system of mice. Genetic analysis revealed that the TMUV HB virus contains two unique residues in E and NS3 proteins (326K and 519T) compared with duck TMUV reference strains. K326E substitution weakens the neuroinvasiveness and neurovirulence of TMUV HB in mice. Remarkably, the TMUV HB strain induced significantly higher levels of IL-1β, IL-6, IL-8, and interferon (IFN)-α/β than mutant virus with K326E substitution in the brain tissue of the infected mice, which suggested that TMUV HB caused more severe inflammation in the mouse brains. Moreover, application of IFN-β to infected mouse brain exacerbated the disease, indicating that overstimulated IFN response in the brain is harmful to mice upon TMUV infection. Further studies showed that TMUV HB upregulated RIG-I and IRF7 more significantly than mutant virus containing the K326E mutation in mouse brain, which suggested that HB stimulated the IFN response through the RIG-I-IRF7 pathway. Our findings provide insights into the pathogenesis and potential risk of TMUV to mammals.
Collapse
Affiliation(s)
- Xingpo Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.L.); (D.Y.); (Y.Z.); (B.X.); (L.L.); (X.S.); (T.M.); (X.L.); (Q.T.); (C.Y.)
| | - Dawei Yan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.L.); (D.Y.); (Y.Z.); (B.X.); (L.L.); (X.S.); (T.M.); (X.L.); (Q.T.); (C.Y.)
| | - Shan Peng
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China;
| | - Yuee Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.L.); (D.Y.); (Y.Z.); (B.X.); (L.L.); (X.S.); (T.M.); (X.L.); (Q.T.); (C.Y.)
| | - Bangfeng Xu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.L.); (D.Y.); (Y.Z.); (B.X.); (L.L.); (X.S.); (T.M.); (X.L.); (Q.T.); (C.Y.)
| | - Luzhao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.L.); (D.Y.); (Y.Z.); (B.X.); (L.L.); (X.S.); (T.M.); (X.L.); (Q.T.); (C.Y.)
| | - Xiaona Shi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.L.); (D.Y.); (Y.Z.); (B.X.); (L.L.); (X.S.); (T.M.); (X.L.); (Q.T.); (C.Y.)
| | - Tianxin Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.L.); (D.Y.); (Y.Z.); (B.X.); (L.L.); (X.S.); (T.M.); (X.L.); (Q.T.); (C.Y.)
| | - Xuesong Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.L.); (D.Y.); (Y.Z.); (B.X.); (L.L.); (X.S.); (T.M.); (X.L.); (Q.T.); (C.Y.)
| | - Qiaoyang Teng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.L.); (D.Y.); (Y.Z.); (B.X.); (L.L.); (X.S.); (T.M.); (X.L.); (Q.T.); (C.Y.)
| | - Chunxiu Yuan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.L.); (D.Y.); (Y.Z.); (B.X.); (L.L.); (X.S.); (T.M.); (X.L.); (Q.T.); (C.Y.)
| | - Qinfang Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.L.); (D.Y.); (Y.Z.); (B.X.); (L.L.); (X.S.); (T.M.); (X.L.); (Q.T.); (C.Y.)
| | - Zejun Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.L.); (D.Y.); (Y.Z.); (B.X.); (L.L.); (X.S.); (T.M.); (X.L.); (Q.T.); (C.Y.)
| |
Collapse
|
3
|
Qu Z, Wu X, Guo X, Han H, Zhang P, Wang M, Song Y, Jiao F, He S, Lu S, Zhang X. Self-assembled nanoparticle with E protein domain III of DTMUV based on ferritin as carrier can induce a more comprehensive immune response and against DTMUV challenge in duck. Vet Microbiol 2023; 284:109820. [PMID: 37364454 DOI: 10.1016/j.vetmic.2023.109820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Duck Tembusu virus (DTMUV) causes severe reduction in egg production and neurological symptoms in ducklings. Vaccination is the primary measure used to prevent DTMUV infections. In this study, self-assembled nanoparticles with the E protein domain III of DTMUV, using ferritin as a carrier (EDⅢ-RFNp), were prepared using a prokaryotic expression system. Ducks were intramuscularly vaccinated with EDⅢ-RFNp, EDⅢ protein, an inactivated vaccine HB strain (InV-HB), and PBS. At 0, 4, and 6 weeks post-primary vaccination, the EDIII protein-specific antibody titre, IL-4, and IFN-γ concentrations in serum were determined by ELISA, and neutralising antibodies titres in sera were determined by virus neutralising assay. Peripheral blood lymphocytes proliferation was determined by CCK-8 kit. Following challenge with the virulent DTMUV strain, the clinical signals and survival rate of the vaccinated ducks were recorded, and DTMUV RNA levels in the blood and tissues of the surviving ducks were determined by real-time quantitative RT-PCR. The near-spherical EDⅢ-RFNp nanoparticles with 13.29 ± 1.43 nm diameter were observed by transmission electron microscope. At 4 and 6 weeks post-primary vaccination, special and Virus neutralisation (VN) antibodies, lymphocyte proliferation (stimulator index, SI), and concentrations of IL-4 and IFN-γ in the EDⅢ-RFNp group were significantly higher than in the EDⅢ and PBS groups. In the DTMUV virulent strain challenge test, the EDⅢ-RFNp-vaccinated ducks showed milder clinical signs and higher survival rates than EDⅢ- and PBS-vaccinated ducks. The DTMUV RNA levels in the blood and tissues of EDⅢ-RFNp-vaccinated ducks were significantly lower than those in EDⅢ- and PBS-vaccinated ducks. Additionally, the EDⅢ protein-special and VN antibodies, SI value, and concentration of IL-4 and IFN-γ in the InV-HB group was significantly higher than that of the PBS group at 4 and 6 weeks post-primary vaccination. InV-HB provided more efficient protection than PBS based on a higher survival rate, milder signals, and lower levels of the DTMUV virus in the blood and tissues. These results indicated that EDⅢ-RFNp effectively protected ducks against DTMUV challenge and could be a vaccine candidate to prevent DTMUV infection.
Collapse
Affiliation(s)
- Zhehui Qu
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China; Engineering and Technology Research Center for Waterfowl Resources Development and Utilization and Epidemic Disease Prevention and Control of Henan Province, Xinyang, Henan 46400, PR China; Xinyang Key Laboratory of Integrated Technology for Prevention and Control of Major Livestock and Poultry Diseases, Xinyang, Henan 46400, PR China.
| | - Xian Wu
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China; Engineering and Technology Research Center for Waterfowl Resources Development and Utilization and Epidemic Disease Prevention and Control of Henan Province, Xinyang, Henan 46400, PR China
| | - Xiaoqiu Guo
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - Han Han
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - Peipei Zhang
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - Mengxiao Wang
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - Yilin Song
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| | - Fengchao Jiao
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China; Engineering and Technology Research Center for Waterfowl Resources Development and Utilization and Epidemic Disease Prevention and Control of Henan Province, Xinyang, Henan 46400, PR China
| | - Shuhai He
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China; Engineering and Technology Research Center for Waterfowl Resources Development and Utilization and Epidemic Disease Prevention and Control of Henan Province, Xinyang, Henan 46400, PR China
| | - Shaofang Lu
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China; Engineering and Technology Research Center for Waterfowl Resources Development and Utilization and Epidemic Disease Prevention and Control of Henan Province, Xinyang, Henan 46400, PR China
| | - Xiwen Zhang
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, PR China
| |
Collapse
|
4
|
Wu X, Huang S, Wang M, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Zhang S, Huang J, Ou X, Zhang L, Liu Y, Yu Y, Gao Q, Mao S, Sun D, Tian B, Yin Z, Jing B, Cheng A, Jia R. A novel live attenuated duck Tembusu virus vaccine targeting N7 methyltransferase protects ducklings against pathogenic strains. Vet Res 2023; 54:47. [PMID: 37308988 DOI: 10.1186/s13567-023-01170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/28/2023] [Indexed: 06/14/2023] Open
Abstract
Duck Tembusu virus (DTMUV), an emerging pathogenic flavivirus, causes markedly decreased egg production in laying duck and neurological dysfunction and death in ducklings. Vaccination is currently the most effective means for prevention and control of DTMUV. In previous study, we have found that methyltransferase (MTase) defective DTMUV is attenuated and induces a higher innate immunity. However, it is not clear whether MTase-deficient DTMUV can be used as a live attenuated vaccine (LAV). In this study, we investigated the immunogenicity and immunoprotection of N7-MTase defective recombinant DTMUV K61A, K182A and E218A in ducklings. These three mutants were highly attenuated in both virulence and proliferation in ducklings but still immunogenic. Furthermore, a single-dose immunization with K61A, K182A or E218A could induce robust T cell responses and humoral immune responses, which could protect ducks from the challenge of a lethal-dose of DTMUV-CQW1. Together, this study provides an ideal strategy to design LAVs for DTMUV by targeting N7-MTase without changing the antigen composition. This attenuated strategy targeting N7-MTase may apply to other flaviviruses.
Collapse
Affiliation(s)
- Xuedong Wu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shanzhi Huang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingshu Wang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Shun Chen
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Mafeng Liu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Dekang Zhu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Xinxin Zhao
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Ying Wu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Qiao Yang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Shaqiu Zhang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Juan Huang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Xumin Ou
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Ling Zhang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yunya Liu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanling Yu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qun Gao
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sai Mao
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Di Sun
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bin Tian
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Anchun Cheng
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China.
| | - Renyong Jia
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China.
| |
Collapse
|
5
|
van Bree JW, Visser I, Duyvestyn JM, Aguilar-Bretones M, Marshall EM, van Hemert MJ, Pijlman GP, van Nierop GP, Kikkert M, Rockx BH, Miesen P, Fros JJ. Novel approaches for the rapid development of rationally designed arbovirus vaccines. One Health 2023; 16:100565. [PMID: 37363258 PMCID: PMC10288159 DOI: 10.1016/j.onehlt.2023.100565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
Vector-borne diseases, including those transmitted by mosquitoes, account for more than 17% of infectious diseases worldwide. This number is expected to rise with an increased spread of vector mosquitoes and viruses due to climate change and man-made alterations to ecosystems. Among the most common, medically relevant mosquito-borne infections are those caused by arthropod-borne viruses (arboviruses), especially members of the genera Flavivirus and Alphavirus. Arbovirus infections can cause severe disease in humans, livestock and wildlife. Severe consequences from infections include congenital malformations as well as arthritogenic, haemorrhagic or neuroinvasive disease. Inactivated or live-attenuated vaccines (LAVs) are available for a small number of arboviruses; however there are no licensed vaccines for the majority of these infections. Here we discuss recent developments in pan-arbovirus LAV approaches, from site-directed attenuation strategies targeting conserved determinants of virulence to universal strategies that utilize genome-wide re-coding of viral genomes. In addition to these approaches, we discuss novel strategies targeting mosquito saliva proteins that play an important role in virus transmission and pathogenesis in vertebrate hosts. For rapid pre-clinical evaluations of novel arbovirus vaccine candidates, representative in vitro and in vivo experimental systems are required to assess the desired specific immune responses. Here we discuss promising models to study attenuation of neuroinvasion, neurovirulence and virus transmission, as well as antibody induction and potential for cross-reactivity. Investigating broadly applicable vaccination strategies to target the direct interface of the vertebrate host, the mosquito vector and the viral pathogen is a prime example of a One Health strategy to tackle human and animal diseases.
Collapse
Affiliation(s)
- Joyce W.M. van Bree
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Imke Visser
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jo M. Duyvestyn
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Eleanor M. Marshall
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Martijn J. van Hemert
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Barry H.G. Rockx
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500, HB, Nijmegen, the Netherlands
| | - Jelke J. Fros
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
6
|
Hu D, Wu C, Wang R, Yao X, Nie K, Lv Q, Fu S, Yin Q, Su W, Li F, Xu S, He Y, Liang G, Li X, Wang H. Persistence of Tembusu Virus in Culex tritaeniorhynchus in Yunnan Province, China. Pathogens 2023; 12:490. [PMID: 36986412 PMCID: PMC10058924 DOI: 10.3390/pathogens12030490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The Tembusu virus (TMUV), a member of the Flaviviridae family, can be transmitted via mosquitoes and cause poultry disease. In 2020, a strain of TMUV (YN2020-20) was isolated from mosquito samples collected in Yunnan province, China. In vitro experiments showed that TMUV-YN2020-20 produced a significant cytopathic effect (CPE) in BHK, DF-1, and VERO cells, while the CPE in C6/36 cells was not significant. Phylogenetic analysis revealed that the strain belonged to Cluster 3.2 and was closely related to the Yunnan mosquito-derived isolates obtained in 2012 and the Shandong avian-derived isolate obtained in 2014. Notably, TMUV-YN2020-20 developed five novel mutations (E-V358I, NS1-Y/F/I113L, NS4A-T/A89V, NS4B-D/E/N/C22S, and NS5-E638G) at loci that were relatively conserved previously. The results of this study demonstrate the continuous circulation and unique evolution of TMUV in mosquitoes in Yunnan province and suggest that appropriate surveillance should be taken.
Collapse
Affiliation(s)
- Danhe Hu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Chao Wu
- Yunnan Institute of Parasitic Diseases, Pu’er 665000, China
| | - Ruichen Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiaohui Yao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Kai Nie
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Quan Lv
- Yunnan Institute of Parasitic Diseases, Pu’er 665000, China
| | - Shihong Fu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qikai Yin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Wenzhe Su
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Fan Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Songtao Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ying He
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Guodong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiangdong Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar 843399, China
| | - Huanyu Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
7
|
Yang B, Meng R, Feng C, Huang J, Li Q, Wang X, Zhang D. An Antibody Neutralization Determinant on Domain III and the First α-Helical Domain in the Stem-Anchor Region of Tembusu Virus Envelope Protein. THE JOURNAL OF IMMUNOLOGY 2022; 209:684-695. [DOI: 10.4049/jimmunol.2200226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/06/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Previous studies identified three neutralizing epitopes on domains I, II, and III of the Tembusu virus (TMUV) envelope (E). More evidence is needed to understand the molecular basis of Ab-mediated neutralization and protection against TMUV. In this study, we observed a neutralizing mAb, 6C8, that neutralized TMUV infection primarily by inhibiting cell attachment. In immunofluorescence assays, 6C8 recognized the premembrane and E proteins coexpressed in HEK-293T cells, but failed to react with premembrane or E expressed individually. Epitope mapping identified nine E protein residues positioned on BC/EF loops and F/G strands in domain III and the first α-helical domain in the stem region. Further investigation with mutant viruses showed that 6C8 pressure resulted in mutations at residues 330 of BC loop and 409 of the first α-helical domain, although 6C8 only exhibited a moderate neutralizing activity in BHK-21 cells and a weak protective activity in BALB/c mice and Shaoxing duck models. Mutations A330S and T409M conferred high- and low-level 6C8 resistance, respectively, whereas the combination of A330S and T409M mutations conferred moderate-level 6C8 resistance. As a result, a quasispecies comprising three groups of antigenic variants appeared in BHK-21 cell–derived viral stocks after repeated passages of TMUV strain Y in the presence of 6C8 treatment. Taken together, these findings have raised a concern about Ab-induced antigenic variations in vivo, and they have revealed information concerning the conformational structure of the 6C8 epitope and its role in constraint on antigenic variations. The present work contributes to a better understanding of the complexity of the TMUV immunogen.
Collapse
Affiliation(s)
- Baolin Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Runze Meng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chonglun Feng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingjing Huang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qiong Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoyan Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dabing Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Meng R, Yang B, Feng C, Huang J, Wang X, Zhang D. The difference in CD4+ T cell immunity between high- and low-virulence Tembusu viruses is mainly related to residues 151 and 304 in the envelope protein. Front Immunol 2022; 13:890263. [PMID: 36016955 PMCID: PMC9395619 DOI: 10.3389/fimmu.2022.890263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
Tembusu virus (TMUV) can result in a severe disease affecting domestic ducks. The role of T cells in protection from TMUV infection and the molecular basis of T cell-mediated protection against TMUV remain largely uncharacterized. Here, we used the high-virulence TMUV strain Y and the low-virulence TMUV strain PS to investigate the protective role for TMUV-specific CD4+ and CD8+ T cells. When tested in a 5-day-old Pekin duck model, Y and PS induced comparable levels of neutralizing antibody, whereas Y elicited significantly stronger cellular immune response relative to PS. Using a duck adoptive transfer model, we showed that both CD4+ and CD8+ T cells provided significant protection from TMUV-related disease, with CD8+ T cell conferring more robust protection to recipient ducklings. For TMUV, CD4+ T cells mainly provided help for neutralizing antibody response, whereas CD8+ T cells mainly mediated viral clearance from infected tissues. The difference in T cell immunity between Y and PS was primarily attributed to CD4+ T cells; adoptive transfer of Y-specific CD4+ T cells resulted in significantly enhanced protective ability, neutralizing antibody response, and viral clearance from the brain relative to PS-specific CD4+ T cells. Further investigations with chimeric viruses, mutant viruses, and their parental viruses identified two mutations (T151A and R304M) in the envelope (E) protein that contributed significantly to TMUV-specific CD4+ T cell-mediated protective ability and neutralizing antibody response, with more beneficial effects being conferred by R304M. These data indicate T cell-mediated immunity is important for protection from disease, for viral clearance from tissues, and for the production of neutralizing antibodies, and that the difference in CD4+T cell immunity between high- and low-virulence TMUV strains is primarily related to residues 151 and 304 in the E protein.
Collapse
|
9
|
Li Q, Feng C, Yang B, Meng R, Wang X, Zhang D. Antibody prophylaxis against Tembusu virus-associated disease. Arch Virol 2022; 167:1687-1691. [PMID: 35639191 DOI: 10.1007/s00705-022-05460-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/24/2022] [Indexed: 11/27/2022]
Abstract
Earlier studies have shown that Tembusu virus (TMUV) can elicit high levels of neutralizing antibodies, but the ability of antibodies to protect against TMUV-associated disease and to inhibit replication of TMUV in vivo remains to be investigated. Here, we tested the prophylactic efficacy of TMUV immune serum directly using a 2-day-old Pekin duck model. Passive administration of the immune serum prior to challenge protected ducklings against morbidity and mortality, substantially reduced TMUV-caused tissue injury, and significantly decreased TMUV levels in the periphery and central nervous system. These findings demonstrate that antibodies play a dominant protective role in controlling TMUV-associated disease.
Collapse
Affiliation(s)
- Qiong Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Chonglun Feng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Baolin Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Runze Meng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Xiaoyan Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Dabing Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
10
|
Assembly-defective Tembusu virus ectopically expressing capsid protein is an approach for live-attenuated flavivirus vaccine development. NPJ Vaccines 2022; 7:51. [PMID: 35550523 PMCID: PMC9098475 DOI: 10.1038/s41541-022-00468-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/17/2022] [Indexed: 11/08/2022] Open
Abstract
Live-attenuated vaccines (LAVs) represent a promising approach for flavivirus vaccine development. In the present study, we demonstrated a method for generating flavivirus LAVs based on breaking spatially and temporally regulated C-prM cleavage to disturb the viral assembly process, using an avian flavivirus (Tembusu virus) as the model. Using reverse genetics technology, we successfully generated two recombinant viruses (CQW1-IRES-mC and CQW1-MINI-mC) with bicistronic genomic RNA in which native capsid genes were deleted and instead expressed in the 3'UTR under the control of an internal ribosome entry site (IRES) or minimum IRES. Both viruses showed a significantly attenuated phenotype in vitro due to impaired viral assembly, and the engineered mutations were genetically stable in vitro within ten passages. Importantly, their virulence was also highly attenuated in ducklings and suckling mice and did not cause any overt clinical symptoms or mortality. In addition, a single dose of immunization with any of these mutant viruses could completely protect ducklings from a lethal challenge, and no viremia was detected after immunization and challenge, even though the viruses induced a relatively moderate immune response in terms of the T-lymphocytes proliferative response and the level of neutralization antibodies compared with that obtained with the wild-type virus. Besides, a recombinant virus ectopically expressing the prM-E protein was also generated in the present study, but this virus was too attenuated with severely decreased proliferation. Our results indicated that the use of a recombinant flavivirus that ectopically expresses structural proteins could be an effective and universal method for flavivirus LAVs development.
Collapse
|
11
|
Attenuation of Getah Virus by a Single Amino Acid Substitution at Residue 253 of the E2 Protein that Might Be Part of a New Heparan Sulfate Binding Site on Alphaviruses. J Virol 2022; 96:e0175121. [PMID: 34986000 DOI: 10.1128/jvi.01751-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The emergence of new epidemic variants of alphaviruses poses a public health risk. It is associated with adaptive mutations that often cause increased pathogenicity. Getah virus (GETV), a neglected and re-emerging mosquito-borne alphavirus, poses threat to many domestic animals and probably even humans. At present, the underlying mechanisms of GETV pathogenesis are not well defined. We identified a residue in the E2 glycoprotein that is critical for viral adsorption to cultured cells and pathogenesis in vivo. Viruses containing an arginine instead of a lysine at residue 253 displayed enhanced infectivity in mammalian cells and diminished virulence in a mouse model of GETV disease. Experiments in cell culture show that heparan sulfate (HS) is a new attachment factor for GETV, and the exchange Lys253Arg improves virus attachment by enhancing binding to HS. The mutation also results in more effective binding to glycosaminoglycan (GAG), linked to low virulence due to rapid virus clearance from the circulation. Localization of residue 253 in the three-dimensional structure of the spike revealed several other basic residues in E2 and E1 in close vicinity that might constitute an HS-binding site different from sites previously identified in other alphaviruses. Overall, our study reveals that HS acts as the attachment factor of GETV and provides convincing evidence for an HS-binding determinant at residue 253 in the E2 glycoprotein of GETV, which contributes to infectivity and virulence. IMPORTANCE Due to decades of inadequate monitoring and lack of vaccines and specific treatment, a large number of people have been infected with alphaviruses. GETV is a re-emerging alphavirus that has the potential to infect humans. This specificity of the GETV disease, particularly its propensity for chronic musculoskeletal manifestations, underscores the need to identify the genetic determinants that govern GETV virulence in the host. Using a mouse model, we show that a single amino acid substitution at residue 253 in the E2 glycoprotein causes attenuation of the virus. Residue 253 might be part of a binding site for HS, a ubiquitous attachment factor on the cell surface. The substitution of Lys by Arg improves cell attachment of the virus in vitro and virus clearance from the blood in vivo by enhancing binding to HS. In summary, we have identified HS as a new attachment factor for GETV and the corresponding binding site in the E2 protein for the first time. Our research potentially improved understanding of the pathogenic mechanism of GETV and provided a potential target for the development of new attenuated vaccines and antiviral drugs.
Collapse
|
12
|
Yang L, Liang T, Lv J, Qu S, Meng R, Yang B, Feng C, Li Q, Wang X, Zhang D. A quasispecies in a BHK-21 cell-derived virulent Tembusu virus strain contains three groups of variants with distinct virulence phenotypes. Vet Microbiol 2021; 263:109252. [PMID: 34673357 DOI: 10.1016/j.vetmic.2021.109252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/10/2021] [Indexed: 11/19/2022]
Abstract
Previous studies resulted in the isolation of a low-virulence plaque-purified variant from the third passage (P3) in BHK-21 cells of a Tembusu virus (TMUV) isolate, suggesting the presence of viral quasispecies in the P3 culture. To confirm this notion, the fourth passage virus (P4) was prepared by infecting BHK-21 cells with P3 for isolation of more variants. We isolated 10 plaque-purified viruses. Comparative genome sequence analysis identified six of the 10 viruses as genetically different variants, which harbored a total of eight amino acid differences in the envelope, NS1, NS3, and NS5 proteins. When tested in a 2-day-old Pekin duck model, P4 caused 80 % mortality, belonging to a high-virulence TMUV strain. Out of the six genetically different variants, two presented high-virulence, one exhibited moderate-virulence, and three displayed low-virulence, causing 60 %-70 %, 40 %, and 10 % mortalities, respectively. These results demonstrate that P4 contains at least three groups of variants with distinct virulence phenotypes. Analysis of links between the eight residues and virulence of the six variants identified NS1 protein residue 183 and NS5 protein residues 275 and/or 287 as novel determinants of TMUV virulence. The analysis also provided a new clue for future studies on the molecular basis of TMUV virulence in terms of genetic interaction of different proteins. Overall, our study provides direct evidence to suggest that TMUV exists in in vitro culture of a virulent isolate as a quasispecies, which may enhance our understanding of molecular mechanism of TMUV virulence.
Collapse
Affiliation(s)
- Lixin Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Te Liang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Junfeng Lv
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Shenghua Qu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Runze Meng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Baolin Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Chonglun Feng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Qiong Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Xiaoyan Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.
| | - Dabing Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.
| |
Collapse
|
13
|
New Insights into the Biology of the Emerging Tembusu Virus. Pathogens 2021; 10:pathogens10081010. [PMID: 34451474 PMCID: PMC8398659 DOI: 10.3390/pathogens10081010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/20/2022] Open
Abstract
Reported for the first time in 1955 in Malaysia, Tembusu virus (TMUV) remained, for a long time, in the shadow of flaviviruses with human health importance such as dengue virus or Japanese encephalitis virus. However, since 2010 and the first large epidemic in duck farms in China, the threat of its emergence on a large scale in Asia or even its spillover into the human population is becoming more and more significant. This review aims to report current knowledge on TMUV from viral particle organization to the development of specific vaccines and therapeutics, with a particular focus on host-virus interactions.
Collapse
|
14
|
Hu T, Wu Z, Wu S, Chen S, Cheng A. The key amino acids of E protein involved in early flavivirus infection: viral entry. Virol J 2021; 18:136. [PMID: 34217298 PMCID: PMC8254458 DOI: 10.1186/s12985-021-01611-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/29/2021] [Indexed: 02/11/2023] Open
Abstract
Flaviviruses are enveloped viruses that infect multiple hosts. Envelope proteins are the outermost proteins in the structure of flaviviruses and mediate viral infection. Studies indicate that flaviviruses mainly use envelope proteins to bind to cell attachment receptors and endocytic receptors for the entry step. Here, we present current findings regarding key envelope protein amino acids that participate in the flavivirus early infection process. Among these sites, most are located in special positions of the protein structure, such as the α-helix in the stem region and the hinge region between domains I and II, motifs that potentially affect the interaction between different domains. Some of these sites are located in positions involved in conformational changes in envelope proteins. In summary, we summarize and discuss the key envelope protein residues that affect the entry process of flaviviruses, including the process of their discovery and the mechanisms that affect early infection.
Collapse
Affiliation(s)
- Tao Hu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Zhen Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Shaoxiong Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China. .,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan, China.
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China. .,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
15
|
Hu T, Wu Z, Wu S, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Mao S, Ou X, Gao Q, Sun D, Liu Y, Zhang L, Yu Y, Chen S, Cheng A. Substitutions at Loop Regions of TMUV E Protein Domain III Differentially Impair Viral Entry and Assembly. Front Microbiol 2021; 12:688172. [PMID: 34262547 PMCID: PMC8273266 DOI: 10.3389/fmicb.2021.688172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Flavivirus envelope protein (E) plays an important role in cellular infection, especially in virulence and antigenicity. E domain III of Tembusu virus (TMUV) is highly conserved among flaviviruses and contains four loop regions. However, the functions of the loop regions of TMUV E domain III in the viral life cycle have not yet been discovered. In this study, using a reverse genetics system, we performed site-directed mutagenesis on loops I, II, III, and IV of TMUV E domain III. Mutant 6 (S388A.G389A.K390A) showed better proliferation than the wild-type virus, while mutants 1-5 exhibited decreased in vitro infectivity, as determined by immunofluorescence assay (IFA). Based on a TMUV replicon system, the mutations exhibited no apparent effect on TMUV RNA replication. Subcellular fractionation assays and packaging system assays indicated that mutations in loops II-IV (T332A, T332S, S365A.S366A.T367A, and S388A.G389A.K390A, respectively) disrupted virion assembly. Moreover, loops I-IV played an important role in virus binding and entry, while mutant 6 (S388A.G389A.K390A) exhibited robust activity in virus entry. Taken together, our findings indicated the critical role of the loop regions in TMUV E domain III in the virus entry and assembly process.
Collapse
Affiliation(s)
- Tao Hu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaoxiong Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Sai Mao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Yunya Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - YanLing Yu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|