1
|
Che B, Zhang W, Xu S, Yin J, He J, Huang T, Li W, Yu Y, Tang K. Prostate Microbiota and Prostate Cancer: A New Trend in Treatment. Front Oncol 2021; 11:805459. [PMID: 34956913 PMCID: PMC8702560 DOI: 10.3389/fonc.2021.805459] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023] Open
Abstract
Although the incidence and mortality of prostate cancer have gradually begun to decline in the past few years, it is still one of the leading causes of death from malignant tumors in the world. The occurrence and development of prostate cancer are affected by race, family history, microenvironment, and other factors. In recent decades, more and more studies have confirmed that prostate microflora in the tumor microenvironment may play an important role in the occurrence, development, and prognosis of prostate cancer. Microorganisms or their metabolites may affect the occurrence and metastasis of cancer cells or regulate anti-cancer immune surveillance. In addition, the use of tumor microenvironment bacteria in interventional targeting therapy of tumors also shows a unique advantage. In this review, we introduce the pathway of microbiota into prostate cancer, focusing on the mechanism of microorganisms in tumorigenesis and development, as well as the prospect and significance of microorganisms as tumor biomarkers and tumor prevention and treatment.
Collapse
Affiliation(s)
- Bangwei Che
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wenjun Zhang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shenghan Xu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jingju Yin
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jun He
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Huang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Li
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ying Yu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kaifa Tang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Institute of Medical Science of Guizhou Medical University, Guiyang, China
| |
Collapse
|
2
|
Roccabianca P, Avallone G, Rodriguez A, Crippa L, Lepri E, Giudice C, Caniatti M, Moore PF, Affolter VK. Cutaneous Lymphoma at Injection Sites. Vet Pathol 2016; 53:823-32. [DOI: 10.1177/0300985815623620] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Feline primary cutaneous lymphomas (FPCLs) account for 0.2% to 3% of all lymphomas in cats and are more frequently dermal nonepitheliotropic small T-cell tumors. Emergence of FPCL seems unrelated to feline leukemia virus (FeLV) serological positivity or to skin inflammation. A total of 17 cutaneous lymphomas with a history of vaccine injection at the site of tumor development were selected from 47 FPCLs. Clinical presentation, histology, immunophenotype, FeLV p27 and gp70 expression, and clonality were assessed. A majority of male (12/17), domestic short-haired (13/17) cats with a mean age of 11.3 years was reported. Postinjection time of development ranged from 15 days to approximately 9 years in 5 cats. At diagnosis, 11 of 17 cats had no evidence of internal disease. Lymphomas developed in interscapular (8/17), thoracic (8/17), and flank (1/17) cutaneous regions; lacked epitheliotropism; and were characterized by necrosis (16/17), angiocentricity (13/17), angioinvasion (9/17), angiodestruction (8/17), and peripheral inflammation composed of lymphoid aggregates (14/17). FeLV gp70 and/or p27 proteins were expressed in 10 of 17 tumors. By means of World Health Organization classification, immunophenotype, and clonality, the lesions were categorized as large B-cell lymphoma (11/17), anaplastic large T-cell lymphoma (3/17), natural killer cell–like (1/17) lymphoma, or peripheral T-cell lymphoma (1/17). Lineage remained uncertain in 1 case. Cutaneous lymphomas at injection sites (CLIS) shared some clinical and pathological features with feline injection site sarcomas and with lymphomas developing in the setting of subacute to chronic inflammation reported in human beings. Persistent inflammation induced by the injection and by reactivation of FeLV expression may have contributed to emergence of CLIS.
Collapse
Affiliation(s)
- P. Roccabianca
- DIVET: Dipartimento di Scienze Veterinarie e Sanità Pubblica, University of Milano, Italy
| | - G. Avallone
- DIMEVET: Dipartimento di Scienze Mediche Veterinarie, University of Bologna, Italy
| | | | - L. Crippa
- ISTOVET, via W. Tobagi, 15-20842 Besana in Brianza (MB), Italy
| | - E. Lepri
- Dipartimento di Medicina Veterinaria, University of Perugia, Italy
| | - C. Giudice
- DIVET: Dipartimento di Scienze Veterinarie e Sanità Pubblica, University of Milano, Italy
| | - M. Caniatti
- DIVET: Dipartimento di Scienze Veterinarie e Sanità Pubblica, University of Milano, Italy
| | - P. F. Moore
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, Davis, CA, USA
| | - V. K. Affolter
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, Davis, CA, USA
| |
Collapse
|
3
|
Qiu W, Zhang S, Chen YG, Wang PH, Xu XP, Li CZ, Chen YH, Fan WZ, Yan H, Weng SP, FrancisChan S, He JG. Litopenaeus vannamei NF-κB is required for WSSV replication. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:156-162. [PMID: 24607287 DOI: 10.1016/j.dci.2014.02.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 06/03/2023]
Abstract
Many viruses can hijack the host cell NF-κB as part of their life cycle, diverting NF-κB immune regulatory functions to favor their replications. There were several reports on the functions of Litopenaeus vannamei NF-κB (LvNF-κB) in White spot syndrome virus (WSSV) replication in vitro. Here, we studied the relationship between LvNF-κB family protein Dorsal (LvDorsal) and Relish (LvRelish) with WSSV replication in vivo. The expressions of LvDorsal and LvRelish were significantly upregulated by WSSV challenge. Virus loads and expression of viral envelope protein VP28 in LvDorsal or LvRelish silencing shrimps were significantly lower than the control shrimps injected with EGFP-dsRNA or PBS after challenge with 1×10(5) copies WSSV/shrimp. In addition to the LvDorsal activation of WSV069 (ie1) and WSV303 promoter that we have reported, LvRelish can also activate WSV069 (ie1) and WSV303 promoter by dual luciferase reporter assays through screening 40 WSSV gene promoters that have putative multiple NF-κB binding sites. The promoter activity of the WSV069 (ie1) by LvDorsal activation was significantly higher than that by LvRelish activation. WSSV replication in LvDorsal, LvRelish or WSV303 silencing shrimps were significantly inhibited. These results indicate that the L. vannamei NF-κB family proteins LvDorsal and LvRelish expressions are significantly activated by WSSV challenge and WSSV replication partially relied on the activations of LvDorsal and LvRelish in vivo.
Collapse
Affiliation(s)
- Wei Qiu
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Shuang Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Yong-Gui Chen
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Pei-Hui Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Xiao-Peng Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Chao-zheng Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Yi-Hong Chen
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Wen-Zhou Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Hui Yan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Shao-Ping Weng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | | | - Jian-Guo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
4
|
Laurent F, Tchénio T, Buckle M, Hazan U, Bury-Moné S. XMRV low level of expression in human cells delays superinfection interference and allows proviral copies to accumulate. Virology 2014; 456-457:28-38. [PMID: 24889222 DOI: 10.1016/j.virol.2014.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/19/2014] [Accepted: 03/07/2014] [Indexed: 10/25/2022]
Abstract
Xenotropic Murine leukemia virus-Related Virus (XMRV) directly arose from genetic recombinations between two endogenous murine retroviruses that occurred during human xenografts in laboratory mice. Studies on XMRV could thus bring clues on how a new retrovirus could circumvent barrier species. We observed that XMRV exhibits a weak promoter activity in human cells, similar to the transcription level of a Tat-defective HIV-1. Despite this low fitness, XMRV can efficiently propagate through the huge accumulation of viral copies (≈40 copies per cell) that compensates for the low expression level of individual proviruses. We further demonstrate that there is an inverse relationship between the maximum number of viral copies per infected cell and the level of viral expression, which is explained by viral envelope interference mechanisms. Low viral expression compensation by viral copy accumulation through delayed interference could a priori contribute to the propagation of others viruses following species jumps.
Collapse
Affiliation(s)
- Fanny Laurent
- LBPA, UMR 8113 CNRS, Ecole Normale Supérieure de Cachan, 61 avenue du Président Wilson, 94235 Cachan, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| | - Thierry Tchénio
- LBPA, UMR 8113 CNRS, Ecole Normale Supérieure de Cachan, 61 avenue du Président Wilson, 94235 Cachan, France.
| | - Malcolm Buckle
- LBPA, UMR 8113 CNRS, Ecole Normale Supérieure de Cachan, 61 avenue du Président Wilson, 94235 Cachan, France.
| | - Uriel Hazan
- LBPA, UMR 8113 CNRS, Ecole Normale Supérieure de Cachan, 61 avenue du Président Wilson, 94235 Cachan, France.
| | - Stéphanie Bury-Moné
- LBPA, UMR 8113 CNRS, Ecole Normale Supérieure de Cachan, 61 avenue du Président Wilson, 94235 Cachan, France.
| |
Collapse
|
5
|
Prevention of contamination by xenotropic murine leukemia virus-related virus: susceptibility to alcohol-based disinfectants and environmental stability. Appl Environ Microbiol 2014; 80:2617-22. [PMID: 24532072 DOI: 10.1128/aem.04064-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xenotropic murine leukemia virus-related virus (XMRV) represents a novel γ-retrovirus that is capable of infecting human cells and has been classified as a biosafety level 2 (BSL-2) organism. Hence, XMRV represents a potential risk for personnel in laboratories worldwide. Here, we measured the stability of XMRV and its susceptibility to alcohol-based disinfectants. To this end, we exposed an infectious XMRV reporter virus encoding a secretable luciferase to different temperatures, pH values, and disinfectants and infected XMRV-permissive Raji B cells to measure residual viral infectivity. We found that 1 min treatment of XMRV particles at 60°C is sufficient to reduce infectivity by 99.9%. XMRV infectivity was maximal at a neutral pH but was reduced by 86% at pH 4 and 99.9% at pH 10. The common hand and surface disinfectants ethanol and isopropanol as well as the cell fixation reagent paraformaldehyde abrogated XMRV infectivity entirely, as indicated by a reduction of infectivity exceeding 99.99%. Our findings provide evidence of specific means to inactivate XMRV. Their application will help to prevent unintended XMRV contamination of cell cultures in laboratories and minimize the risk for laboratory personnel and health care workers to become infected with this biosafety level 2 organism.
Collapse
|
6
|
Sakakibara S, Espigol-Frigole G, Gasperini P, Uldrick TS, Yarchoan R, Tosato G. A20/TNFAIP3 inhibits NF-κB activation induced by the Kaposi's sarcoma-associated herpesvirus vFLIP oncoprotein. Oncogene 2013; 32:1223-32. [PMID: 22525270 PMCID: PMC3594048 DOI: 10.1038/onc.2012.145] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 03/02/2012] [Accepted: 03/05/2012] [Indexed: 12/29/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) K13/vFLIP (viral Flice-inhibitory protein) induces transcription of numerous genes through NF-κB activation, including pro-inflammatory cytokines, which contribute to the pathogenesis of Kaposi's sarcoma (KS). In this study, we report that KSHV vFLIP induces the expression of the NF-κB regulatory proteins A20, ABIN-1 and ABIN-3 (A20-binding NF-κB inhibitors) in primary human endothelial cells, and that KS spindle cells express A20 in KS tissue. In reporter assays, A20 strongly impaired vFLIP-induced NF-κB activation in 293T cells, but ABIN-1 and ABIN-3 did not. Mutational analysis established that the C-terminal domain (residues 427-790) is critical for A20 modulation of NF-κB, but the ubiquitin-editing OTU (ovarian tumor) domain is not. In functional assays, A20 inhibited vFLIP-induced expression of the chemokine IP-10, reduced vFLIP-induced cell proliferation and increased IKK1 protein levels. Thus, we demonstrate that A20 negatively regulates NF-κB activation directly induced by KSHV vFLIP. By attenuating excessive and prolonged vFLIP-induced NF-κB activation that could be harmful to KSHV-infected cells, A20 likely has an important role in the pathogenesis of KSHV-associated diseases, in which vFLIP is expressed.
Collapse
Affiliation(s)
- S Sakakibara
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - G Espigol-Frigole
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - P Gasperini
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - TS Uldrick
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - R Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - G Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Stürzel CM, Palesch D, Khalid M, Wissing S, Fischer N, Münch J. Utilization of replication-competent XMRV reporter-viruses reveals severe viral restriction in primary human cells. PLoS One 2013; 8:e74427. [PMID: 24058563 PMCID: PMC3772927 DOI: 10.1371/journal.pone.0074427] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 08/01/2013] [Indexed: 11/20/2022] Open
Abstract
The gammaretrovirus termed xenotropic murine leukemia virus-related virus (XMRV) was described to be isolated from prostate cancer tissue biopsies and from blood of patients suffering from chronic fatigue syndrome. However, many studies failed to detect XMRV and to verify these disease associations. Data suggesting the contamination of specimens in particular by PCR-based methods and recent reports demonstrating XMRV generation via recombination of two murine leukemia virus precursors raised serious doubts about XMRV being a genuine human pathogen. To elucidate cell tropism of XMRV, we generated replication competent XMRV reporter viruses encoding a green fluorescent protein or a secretable luciferase as tools to analyze virus infection of human cell lines or primary human cells. Transfection of proviral DNAs into LNCaP prostate cancer cells resulted in readily detectably reporter gene expression and production of progeny virus. Inoculation of known XMRV susceptible target cells revealed that these virions were infectious and expressed the reporter gene, allowing for a fast and highly sensitive quantification of XMRV infection. Both reporter viruses were capable of establishing a spreading infection in LNCaP and Raji B cells and could be easily passaged. However, after inoculation of primary human blood cells such as CD4 T cells, macrophages or dendritic cells, infection rates were very low, and a spreading infection was never established. In line with these results we found that supernatants derived from these XMRV infected primary cell types did not contain infectious virus. Thus, although XMRV efficiently replicated in some human cell lines, all tested primary cells were largely refractory to XMRV infection and did not support viral spread. Our results provide further evidence that XMRV is not a human pathogen.
Collapse
Affiliation(s)
| | - David Palesch
- Institute of Molecular Virology, Ulm University Medical Centre, Ulm, Germany
| | - Mohammad Khalid
- Institute of Molecular Virology, Ulm University Medical Centre, Ulm, Germany
| | - Silke Wissing
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Centre, Ulm, Germany
- * E-mail:
| |
Collapse
|
8
|
Wang PH, Gu ZH, Wan DH, Zhang MY, Weng SP, Yu XQ, He JG. The shrimp NF-κB pathway is activated by white spot syndrome virus (WSSV) 449 to facilitate the expression of WSSV069 (ie1), WSSV303 and WSSV371. PLoS One 2011; 6:e24773. [PMID: 21931849 PMCID: PMC3171479 DOI: 10.1371/journal.pone.0024773] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/17/2011] [Indexed: 12/20/2022] Open
Abstract
The Toll-like receptor (TLR)-mediated NF-κB pathway is essential for defending against viruses in insects and mammals. Viruses also develop strategies to utilize this pathway to benefit their infection and replication in mammal hosts. In invertebrates, the TLR-mediated NF-κB pathway has only been well-studied in insects and has been demonstrated to be important in antiviral responses. However, there are few reports of interactions between viruses and the TLR-mediated NF-κB pathway in invertebrate hosts. Here, we studied Litopenaeus vannamei Pelle, which is the central regulator of the Toll pathway, and proposed that a similar TLR/MyD88/Tube/Pelle/TRAF6/NF-κB cascade may exist in shrimp for immune gene regulation. After performing genome-wild analysis of white spot syndrome virus (WSSV) encoded proteins, we found that WSSV449 shows 15.7-19.4% identity to Tube, which is an important component of the insect Toll pathway. We further found that WSSV449 activated promoters of Toll pathway-controlled antimicrobial peptide genes, indicating WSSV449 has a similar function to host Tube in activating the NF-κB pathway. We suspected that WSSV449 activated the Toll-mediated NF-κB pathway for regulating viral gene expression. To test this hypothesis, we analyzed the promoters of viral genes and found 40 promoters that possess NF-κB binding sites. A promoter screen showed that the promoter activities of WSSV069 (ie1), WSSV303 and WSSV371 can be highly induced by the shrimp NF-κB family protein LvDorsal. WSSV449 also induced these three viral promoter activities by activating the NF-κB pathway. To our knowledge, this is the first report of a virus that encodes a protein similar to the Toll pathway component Tube to upregulate gene expression in the invertebrate host.
Collapse
Affiliation(s)
- Pei-Hui Wang
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Zhi-Hua Gu
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Ding-Hui Wan
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Ming-Yan Zhang
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Shao-Ping Weng
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Xiao-Qiang Yu
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Jian-Guo He
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- * E-mail:
| |
Collapse
|
9
|
Abstract
The potential association between xenotropic murine leukaemia virus-related gammaretrovirus (XMRV) and prostate cancer (PCa) has been documented since 2006. It is important for furthering our understanding of the biological mechanisms of PCa to ascertain whether this association is causal. To summarize the available information on the epidemiological and laboratory findings of the association, we conducted a literature search of the PubMed electronic database (from March 2006 to February 2011) to identify relevant published studies that examined the association between XMRV and PCa. Although several studies showed the positive association between XMRV and PCa, more recent studies did not support this conclusion. The positive findings might be due to contamination of human samples. Further studies are needed to clarify this association.
Collapse
|
10
|
XMRV Discovery and Prostate Cancer-Related Research. Adv Virol 2011; 2011:432837. [PMID: 22312343 PMCID: PMC3265305 DOI: 10.1155/2011/432837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/25/2011] [Indexed: 11/21/2022] Open
Abstract
Xenotropic murine leukemia virus-related virus (XMRV) was first reported in 2006 in a study of human prostate cancer patients with genetic variants of the antiviral enzyme, RNase L. Subsequent investigations in North America, Europe, Asia, and Africa have either observed or failed to detect XMRV in patients (prostate cancer, chronic fatigue syndrome-myalgic encephalomyelitis (CFS-ME), and immunosuppressed with respiratory tract infections) or normal, healthy, control individuals. The principal confounding factors are the near ubiquitous presence of mouse-derived reagents, antibodies and cells, and often XMRV itself, in laboratories. XMRV infects and replicates well in many human cell lines, but especially in certain prostate cancer cell lines. XMRV also traffics to prostate in a nonhuman primate model of infection. Here, we will review the discovery of XMRV and then focus on prostate cancer-related research involving this intriguing virus.
Collapse
|