1
|
Delgado S, Somovilla P, Ferrer-Orta C, Martínez-González B, Vázquez-Monteagudo S, Muñoz-Flores J, Soria ME, García-Crespo C, de Ávila AI, Durán-Pastor A, Gadea I, López-Galíndez C, Moran F, Lorenzo-Redondo R, Verdaguer N, Perales C, Domingo E. Incipient functional SARS-CoV-2 diversification identified through neural network haplotype maps. Proc Natl Acad Sci U S A 2024; 121:e2317851121. [PMID: 38416684 PMCID: PMC10927536 DOI: 10.1073/pnas.2317851121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/08/2024] [Indexed: 03/01/2024] Open
Abstract
Since its introduction in the human population, SARS-CoV-2 has evolved into multiple clades, but the events in its intrahost diversification are not well understood. Here, we compare three-dimensional (3D) self-organized neural haplotype maps (SOMs) of SARS-CoV-2 from thirty individual nasopharyngeal diagnostic samples obtained within a 19-day interval in Madrid (Spain), at the time of transition between clades 19 and 20. SOMs have been trained with the haplotype repertoire present in the mutant spectra of the nsp12- and spike (S)-coding regions. Each SOM consisted of a dominant neuron (displaying the maximum frequency), surrounded by a low-frequency neuron cloud. The sequence of the master (dominant) neuron was either identical to that of the reference Wuhan-Hu-1 genome or differed from it at one nucleotide position. Six different deviant haplotype sequences were identified among the master neurons. Some of the substitutions in the neural clouds affected critical sites of the nsp12-nsp8-nsp7 polymerase complex and resulted in altered kinetics of RNA synthesis in an in vitro primer extension assay. Thus, the analysis has identified mutations that are relevant to modification of viral RNA synthesis, present in the mutant clouds of SARS-CoV-2 quasispecies. These mutations most likely occurred during intrahost diversification in several COVID-19 patients, during an initial stage of the pandemic, and within a brief time period.
Collapse
Affiliation(s)
- Soledad Delgado
- Departamento de Sistemas Informáticos, Escuela Técnica Superior de Ingeniería de Sistemas Informáticos, Universidad Politécnica de Madrid, Madrid28031, Spain
| | - Pilar Somovilla
- Microbes in Health and Welfare Program, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Madrid28049, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid28049, Spain
| | - Cristina Ferrer-Orta
- Structural and Molecular Biology Department, Institut de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona08028, Spain
| | - Brenda Martínez-González
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid28049, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid28040, Spain
| | - Sergi Vázquez-Monteagudo
- Structural and Molecular Biology Department, Institut de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona08028, Spain
| | | | - María Eugenia Soria
- Microbes in Health and Welfare Program, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Madrid28049, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid28040, Spain
| | - Carlos García-Crespo
- Microbes in Health and Welfare Program, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Madrid28049, Spain
| | - Ana Isabel de Ávila
- Microbes in Health and Welfare Program, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Madrid28049, Spain
| | - Antoni Durán-Pastor
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid28049, Spain
| | - Ignacio Gadea
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid28040, Spain
| | - Cecilio López-Galíndez
- Unidad de Virología Molecular, Laboratorio de Referencia e Investigación en retrovirus, Centro Nacional de Microbiología, Instituto de salud Carlos III, Majadahonda28222, Spain
| | - Federico Moran
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, Madrid28040, Spain
| | - Ramon Lorenzo-Redondo
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL60611
| | - Nuria Verdaguer
- Structural and Molecular Biology Department, Institut de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona08028, Spain
| | - Celia Perales
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid28049, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid, Madrid28040, Spain
| | - Esteban Domingo
- Microbes in Health and Welfare Program, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Madrid28049, Spain
| |
Collapse
|
2
|
Waqqar S, Lee K, Lawley B, Bilton T, Quiñones-Mateu ME, Bostina M, Burga LN. Directed Evolution of Seneca Valley Virus in Tumorsphere and Monolayer Cell Cultures of a Small-Cell Lung Cancer Model. Cancers (Basel) 2023; 15:cancers15092541. [PMID: 37174006 PMCID: PMC10177334 DOI: 10.3390/cancers15092541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The Seneca Valley virus (SVV) is an oncolytic virus from the picornavirus family, characterized by a 7.3-kilobase RNA genome encoding for all the structural and functional viral proteins. Directed evolution by serial passaging has been employed for oncolytic virus adaptation to increase the killing efficacy towards certain types of tumors. We propagated the SVV in a small-cell lung cancer model under two culture conditions: conventional cell monolayer and tumorspheres, with the latter resembling more closely the cellular structure of the tumor of origin. We observed an increase of the virus-killing efficacy after ten passages in the tumorspheres. Deep sequencing analyses showed genomic changes in two SVV populations comprising 150 single nucleotides variants and 72 amino acid substitutions. Major differences observed in the tumorsphere-passaged virus population, compared to the cell monolayer, were identified in the conserved structural protein VP2 and in the highly variable P2 region, suggesting that the increase in the ability of the SVV to kill cells over time in the tumorspheres is acquired by capsid conservation and positively selecting mutations to counter the host innate immune responses.
Collapse
Affiliation(s)
- Shakeel Waqqar
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Kai Lee
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Blair Lawley
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Timothy Bilton
- Invermay Agricultural Centre, AgResearch, Mosgiel 9092, New Zealand
| | | | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Laura N Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
3
|
Hadj Hassine I, Ben M’hadheb M, Menéndez-Arias L. Lethal Mutagenesis of RNA Viruses and Approved Drugs with Antiviral Mutagenic Activity. Viruses 2022; 14:841. [PMID: 35458571 PMCID: PMC9024455 DOI: 10.3390/v14040841] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/11/2022] Open
Abstract
In RNA viruses, a small increase in their mutation rates can be sufficient to exceed their threshold of viability. Lethal mutagenesis is a therapeutic strategy based on the use of mutagens, driving viral populations to extinction. Extinction catastrophe can be experimentally induced by promutagenic nucleosides in cell culture models. The loss of HIV infectivity has been observed after passage in 5-hydroxydeoxycytidine or 5,6-dihydro-5-aza-2'-deoxycytidine while producing a two-fold increase in the viral mutation frequency. Among approved nucleoside analogs, experiments with polioviruses and other RNA viruses suggested that ribavirin can be mutagenic, although its mechanism of action is not clear. Favipiravir and molnupiravir exert an antiviral effect through lethal mutagenesis. Both drugs are broad-spectrum antiviral agents active against RNA viruses. Favipiravir incorporates into viral RNA, affecting the G→A and C→U transition rates. Molnupiravir (a prodrug of β-d-N4-hydroxycytidine) has been recently approved for the treatment of SARS-CoV-2 infection. Its triphosphate derivative can be incorporated into viral RNA and extended by the coronavirus RNA polymerase. Incorrect base pairing and inefficient extension by the polymerase promote mutagenesis by increasing the G→A and C→U transition frequencies. Despite having remarkable antiviral action and resilience to drug resistance, carcinogenic risks and genotoxicity are important concerns limiting their extended use in antiviral therapy.
Collapse
Affiliation(s)
- Ikbel Hadj Hassine
- Unité de Recherche UR17ES30 “Génomique, Biotechnologie et Stratégies Antivirales”, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir 5000, Tunisia; (I.H.H.); (M.B.M.)
| | - Manel Ben M’hadheb
- Unité de Recherche UR17ES30 “Génomique, Biotechnologie et Stratégies Antivirales”, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir 5000, Tunisia; (I.H.H.); (M.B.M.)
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), 28049 Madrid, Spain
| |
Collapse
|
4
|
O’Donoghue SI, Schafferhans A, Sikta N, Stolte C, Kaur S, Ho BK, Anderson S, Procter JB, Dallago C, Bordin N, Adcock M, Rost B. SARS-CoV-2 structural coverage map reveals viral protein assembly, mimicry, and hijacking mechanisms. Mol Syst Biol 2021; 17:e10079. [PMID: 34519429 PMCID: PMC8438690 DOI: 10.15252/msb.202010079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/18/2023] Open
Abstract
We modeled 3D structures of all SARS-CoV-2 proteins, generating 2,060 models that span 69% of the viral proteome and provide details not available elsewhere. We found that ˜6% of the proteome mimicked human proteins, while ˜7% was implicated in hijacking mechanisms that reverse post-translational modifications, block host translation, and disable host defenses; a further ˜29% self-assembled into heteromeric states that provided insight into how the viral replication and translation complex forms. To make these 3D models more accessible, we devised a structural coverage map, a novel visualization method to show what is-and is not-known about the 3D structure of the viral proteome. We integrated the coverage map into an accompanying online resource (https://aquaria.ws/covid) that can be used to find and explore models corresponding to the 79 structural states identified in this work. The resulting Aquaria-COVID resource helps scientists use emerging structural data to understand the mechanisms underlying coronavirus infection and draws attention to the 31% of the viral proteome that remains structurally unknown or dark.
Collapse
MESH Headings
- Amino Acid Transport Systems, Neutral/chemistry
- Amino Acid Transport Systems, Neutral/genetics
- Amino Acid Transport Systems, Neutral/metabolism
- Angiotensin-Converting Enzyme 2/chemistry
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/metabolism
- Binding Sites
- COVID-19/genetics
- COVID-19/metabolism
- COVID-19/virology
- Computational Biology/methods
- Coronavirus Envelope Proteins/chemistry
- Coronavirus Envelope Proteins/genetics
- Coronavirus Envelope Proteins/metabolism
- Coronavirus Nucleocapsid Proteins/chemistry
- Coronavirus Nucleocapsid Proteins/genetics
- Coronavirus Nucleocapsid Proteins/metabolism
- Host-Pathogen Interactions/genetics
- Humans
- Mitochondrial Membrane Transport Proteins/chemistry
- Mitochondrial Membrane Transport Proteins/genetics
- Mitochondrial Membrane Transport Proteins/metabolism
- Mitochondrial Precursor Protein Import Complex Proteins
- Models, Molecular
- Molecular Mimicry
- Neuropilin-1/chemistry
- Neuropilin-1/genetics
- Neuropilin-1/metabolism
- Phosphoproteins/chemistry
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Interaction Mapping/methods
- Protein Multimerization
- Protein Processing, Post-Translational
- SARS-CoV-2/chemistry
- SARS-CoV-2/genetics
- SARS-CoV-2/metabolism
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/metabolism
- Viral Matrix Proteins/chemistry
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/metabolism
- Viroporin Proteins/chemistry
- Viroporin Proteins/genetics
- Viroporin Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Seán I O’Donoghue
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
- CSIRO Data61CanberraACTAustralia
- School of Biotechnology and Biomolecular Sciences (UNSW)KensingtonNSWAustralia
| | - Andrea Schafferhans
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
- Department of Bioengineering SciencesWeihenstephan‐Tr. University of Applied SciencesFreisingGermany
- Department of InformaticsBioinformatics & Computational BiologyTechnical University of MunichMunichGermany
| | - Neblina Sikta
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
| | | | - Sandeep Kaur
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
- School of Biotechnology and Biomolecular Sciences (UNSW)KensingtonNSWAustralia
| | - Bosco K Ho
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
| | | | | | - Christian Dallago
- Department of InformaticsBioinformatics & Computational BiologyTechnical University of MunichMunichGermany
| | - Nicola Bordin
- Institute of Structural and Molecular BiologyUniversity College LondonLondonUK
| | | | - Burkhard Rost
- Department of InformaticsBioinformatics & Computational BiologyTechnical University of MunichMunichGermany
| |
Collapse
|
5
|
Maheden K, Todd B, Gordon CJ, Tchesnokov EP, Götte M. Inhibition of viral RNA-dependent RNA polymerases with clinically relevant nucleotide analogs. Enzymes 2021; 49:315-354. [PMID: 34696837 PMCID: PMC8517576 DOI: 10.1016/bs.enz.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The treatment of viral infections remains challenging, in particular in the face of emerging pathogens. Broad-spectrum antiviral drugs could potentially be used as a first line of defense. The RNA-dependent RNA polymerase (RdRp) of RNA viruses serves as a logical target for drug discovery and development efforts. Herein we discuss compounds that target RdRp of poliovirus, hepatitis C virus, influenza viruses, respiratory syncytial virus, and the growing data on coronaviruses. We focus on nucleotide analogs and mechanisms of action and resistance.
Collapse
Affiliation(s)
- Kieran Maheden
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Brendan Todd
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology at University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
6
|
Feasibility of Known RNA Polymerase Inhibitors as Anti-SARS-CoV-2 Drugs. Pathogens 2020; 9:pathogens9050320. [PMID: 32357471 PMCID: PMC7281371 DOI: 10.3390/pathogens9050320] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Coronaviruses (CoVs) are positive-stranded RNA viruses that infect humans and animals. Infection by CoVs such as HCoV-229E, -NL63, -OC43 and -HKU1 leads to the common cold, short lasting rhinitis, cough, sore throat and fever. However, CoVs such as Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and the newest SARS-CoV-2 (the causative agent of COVID-19) lead to severe and deadly diseases with mortality rates ranging between ~1 to 35% depending on factors such as age and pre-existing conditions. Despite continuous global health threats to humans, there are no approved vaccines or drugs targeting human CoVs, and the recent outbreak of COVID-19 emphasizes an urgent need for therapeutic interventions. Using computational and bioinformatics tools, here we present the feasibility of reported broad-spectrum RNA polymerase inhibitors as anti- SARS-CoV-2 drugs targeting its main RNA polymerase, suggesting that investigational and approved nucleoside RNA polymerase inhibitors have potential as anti-SARS-CoV-2 drugs. However, we note that it is also possible for SARS-CoV-2 to evolve and acquire drug resistance mutations against these nucleoside inhibitors.
Collapse
|
7
|
|
8
|
Tomar S, Mahajan S, Kumar R. Advances in structure-assisted antiviral discovery for animal viral diseases. GENOMICS AND BIOTECHNOLOGICAL ADVANCES IN VETERINARY, POULTRY, AND FISHERIES 2020. [PMCID: PMC7149589 DOI: 10.1016/b978-0-12-816352-8.00019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
de la Higuera I, Ferrer-Orta C, Moreno E, de Ávila AI, Soria ME, Singh K, Caridi F, Sobrino F, Sarafianos SG, Perales C, Verdaguer N, Domingo E. Contribution of a Multifunctional Polymerase Region of Foot-and-Mouth Disease Virus to Lethal Mutagenesis. J Virol 2018; 92:e01119-18. [PMID: 30068642 PMCID: PMC6158410 DOI: 10.1128/jvi.01119-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/23/2018] [Indexed: 01/01/2023] Open
Abstract
Viral RNA-dependent RNA polymerases (RdRps) are major determinants of high mutation rates and generation of mutant spectra that mediate RNA virus adaptability. The RdRp of the picornavirus foot-and-mouth disease virus (FMDV), termed 3D, is a multifunctional protein that includes a nuclear localization signal (NLS) in its N-terminal region. Previous studies documented that some amino acid substitutions within the NLS altered nucleotide recognition and enhanced the incorporation of the mutagenic purine analogue ribavirin in viral RNA, but the mutants tested were not viable and their response to lethal mutagenesis could not be studied. Here we demonstrate that NLS amino acid substitution M16A of FMDV serotype C does not affect infectious virus production but accelerates ribavirin-mediated virus extinction. The mutant 3D displays polymerase activity, RNA binding, and copying processivity that are similar to those of the wild-type enzyme but shows increased ribavirin-triphosphate incorporation. Crystal structures of the mutant 3D in the apo and RNA-bound forms reveal an expansion of the template entry channel due to the replacement of the bulky Met by Ala. This is a major difference with other 3D mutants with altered nucleotide analogue recognition. Remarkably, two distinct loop β9-α11 conformations distinguish 3Ds that exhibit higher or lower ribavirin incorporation than the wild-type enzyme. This difference identifies a specific molecular determinant of ribavirin sensitivity of FMDV. Comparison of several polymerase mutants indicates that different domains of the molecule can modify nucleotide recognition and response to lethal mutagenesis. The connection of this observation with current views on quasispecies adaptability is discussed.IMPORTANCE The nuclear localization signal (NLS) of the foot-and-mouth disease virus (FMDV) polymerase includes residues that modulate the sensitivity to mutagenic agents. Here we have described a viable NLS mutant with an amino acid replacement that facilitates virus extinction by ribavirin. The corresponding polymerase shows increased incorporation of ribavirin triphosphate and local structural modifications that implicate the template entry channel. Specifically, comparison of the structures of ribavirin-sensitive and ribavirin-resistant FMDV polymerases has identified loop β9-α11 conformation as a determinant of sensitivity to ribavirin mutagenesis.
Collapse
Affiliation(s)
| | - Cristina Ferrer-Orta
- Structural Biology Unit, Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Elena Moreno
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Ana Isabel de Ávila
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - María Eugenia Soria
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Kamalendra Singh
- Christopher S. Bond Life Sciences Center and Department of Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Flavia Caridi
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Francisco Sobrino
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Stefan G Sarafianos
- Christopher S. Bond Life Sciences Center and Department of Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Celia Perales
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d'Hebron Institut de Recerca-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nuria Verdaguer
- Structural Biology Unit, Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| |
Collapse
|
10
|
Selisko B, Papageorgiou N, Ferron F, Canard B. Structural and Functional Basis of the Fidelity of Nucleotide Selection by Flavivirus RNA-Dependent RNA Polymerases. Viruses 2018; 10:v10020059. [PMID: 29385764 PMCID: PMC5850366 DOI: 10.3390/v10020059] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/25/2018] [Accepted: 01/27/2018] [Indexed: 12/22/2022] Open
Abstract
Viral RNA-dependent RNA polymerases (RdRps) play a central role not only in viral replication, but also in the genetic evolution of viral RNAs. After binding to an RNA template and selecting 5'-triphosphate ribonucleosides, viral RdRps synthesize an RNA copy according to Watson-Crick base-pairing rules. The copy process sometimes deviates from both the base-pairing rules specified by the template and the natural ribose selectivity and, thus, the process is error-prone due to the intrinsic (in)fidelity of viral RdRps. These enzymes share a number of conserved amino-acid sequence strings, called motifs A-G, which can be defined from a structural and functional point-of-view. A co-relation is gradually emerging between mutations in these motifs and viral genome evolution or observed mutation rates. Here, we review our current knowledge on these motifs and their role on the structural and mechanistic basis of the fidelity of nucleotide selection and RNA synthesis by Flavivirus RdRps.
Collapse
Affiliation(s)
- Barbara Selisko
- CNRS, Aix-Marseille Université, AFMB, UMR 7257, 163 Avenue de Luminy, 13288 Marseille, France.
| | - Nicolas Papageorgiou
- CNRS, Aix-Marseille Université, AFMB, UMR 7257, 163 Avenue de Luminy, 13288 Marseille, France.
| | - François Ferron
- CNRS, Aix-Marseille Université, AFMB, UMR 7257, 163 Avenue de Luminy, 13288 Marseille, France.
| | - Bruno Canard
- CNRS, Aix-Marseille Université, AFMB, UMR 7257, 163 Avenue de Luminy, 13288 Marseille, France.
| |
Collapse
|
11
|
β-d- N 4-Hydroxycytidine Is a Potent Anti-alphavirus Compound That Induces a High Level of Mutations in the Viral Genome. J Virol 2018; 92:JVI.01965-17. [PMID: 29167335 DOI: 10.1128/jvi.01965-17] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 11/20/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a representative member of the New World alphaviruses. It is transmitted by mosquito vectors and causes highly debilitating disease in humans, equids, and other vertebrate hosts. Despite a continuous public health threat, very few compounds with anti-VEEV activity in cell culture and in mouse models have been identified to date, and rapid development of virus resistance to some of them has been recorded. In this study, we investigated the possibility of using a modified nucleoside analog, β-d-N 4-hydroxycytidine (NHC), as an anti-VEEV agent and defined the mechanism of its anti-VEEV activity. The results demonstrate that NHC is a very potent antiviral agent. It affects both the release of genome RNA-containing VEE virions and their infectivity. Both of these antiviral activities are determined by the NHC-induced accumulation of mutations in virus-specific RNAs. The antiviral effect is most prominent when NHC is applied early in the infectious process, during the amplification of negative- and positive-strand RNAs in infected cells. Most importantly, only a low-level resistance of VEEV to NHC can be developed, and it requires acquisition and cooperative function of more than one mutation in nsP4. These adaptive mutations are closely located in the same segment of nsP4. Our data suggest that NHC is more potent than ribavirin as an anti-VEEV agent and likely can be used to treat other alphavirus infections.IMPORTANCE Venezuelan equine encephalitis virus (VEEV) can cause widespread epidemics among humans and domestic animals. VEEV infections result in severe meningoencephalitis and long-term sequelae. No approved therapeutics exist for treatment of VEEV infections. Our study demonstrates that β-d-N 4-hydroxycytidine (NHC) is a very potent anti-VEEV compound, with the 50% effective concentration being below 1 μM. The mechanism of NHC antiviral activity is based on induction of high mutation rates in the viral genome. Accordingly, NHC treatment affects both the rates of particle release and the particle infectivity. Most importantly, in contrast to most of the anti-alphavirus drugs that are under development, resistance of VEEV to NHC develops very inefficiently. Even low levels of resistance require acquisition of multiple mutations in the gene of the VEEV-specific RNA-dependent RNA polymerase nsP4.
Collapse
|
12
|
Extinction of West Nile Virus by Favipiravir through Lethal Mutagenesis. Antimicrob Agents Chemother 2017; 61:AAC.01400-17. [PMID: 28848019 DOI: 10.1128/aac.01400-17] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/24/2017] [Indexed: 01/12/2023] Open
Abstract
Favipiravir is an antiviral agent effective against several RNA viruses. The drug has been shown to protect mice against experimental infection with a lethal dose of West Nile virus (WNV), a mosquito-borne flavivirus responsible for outbreaks of meningitis and encephalitis for which no antiviral therapy has been licensed; however, the mechanism of action of the drug is still not well understood. Here, we describe the potent in vitro antiviral activity of favipiravir against WNV, showing that it decreases virus-specific infectivity and drives the virus to extinction. Two passages of WNV in the presence of 1 mM favipiravir-a concentration that is more than 10-fold lower than its 50% cytotoxic concentration (CC50)-resulted in a significant increase in mutation frequency in the mutant spectrum and in a bias toward A→G and G→A transitions relative to the population passaged in the absence of the drug. These data, together with the fact that the drug is already licensed in Japan against influenza virus and in a clinical trial against Ebola virus, point to favipiravir as a promising antiviral agent to fight medically relevant flaviviral infections, such as that caused by WNV.
Collapse
|
13
|
de la Higuera I, Ferrer-Orta C, de Ávila AI, Perales C, Sierra M, Singh K, Sarafianos SG, Dehouck Y, Bastolla U, Verdaguer N, Domingo E. Molecular and Functional Bases of Selection against a Mutation Bias in an RNA Virus. Genome Biol Evol 2017; 9:1212-1228. [PMID: 28460010 PMCID: PMC5433387 DOI: 10.1093/gbe/evx075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 12/12/2022] Open
Abstract
The selective pressures acting on viruses that replicate under enhanced mutation rates are largely unknown. Here, we describe resistance of foot-and-mouth disease virus to the mutagen 5-fluorouracil (FU) through a single polymerase substitution that prevents an excess of A to G and U to C transitions evoked by FU on the wild-type foot-and-mouth disease virus, while maintaining the same level of mutant spectrum complexity. The polymerase substitution inflicts upon the virus a fitness loss during replication in absence of FU but confers a fitness gain in presence of FU. The compensation of mutational bias was documented by in vitro nucleotide incorporation assays, and it was associated with structural modifications at the N-terminal region and motif B of the viral polymerase. Predictions of the effect of mutations that increase the frequency of G and C in the viral genome and encoded polymerase suggest multiple points in the virus life cycle where the mutational bias in favor of G and C may be detrimental. Application of predictive algorithms suggests adverse effects of the FU-directed mutational bias on protein stability. The results reinforce modulation of nucleotide incorporation as a lethal mutagenesis-escape mechanism (that permits eluding virus extinction despite replication in the presence of a mutagenic agent) and suggest that mutational bias can be a target of selection during virus replication.
Collapse
Affiliation(s)
- Ignacio de la Higuera
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain.,Christopher S. Bond Life Sciences Center and Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, Missouri
| | - Cristina Ferrer-Orta
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Ana I de Ávila
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.,Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d'Hebron Institut de Recerca-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Macarena Sierra
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Kamalendra Singh
- Christopher S. Bond Life Sciences Center and Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, Missouri
| | - Stefan G Sarafianos
- Christopher S. Bond Life Sciences Center and Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, Missouri
| | - Yves Dehouck
- Machine Learning Group, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ugo Bastolla
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Nuria Verdaguer
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| |
Collapse
|
14
|
Daikoku T, Mizuguchi M, Obita T, Yokoyama T, Yoshida Y, Takemoto M, Shiraki K. Characterization of susceptibility variants of poliovirus grown in the presence of favipiravir. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 51:581-586. [PMID: 28709841 DOI: 10.1016/j.jmii.2017.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/01/2017] [Accepted: 03/13/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND T-705 (favipiravir) is a potent inhibitor of RNA-dependent RNA polymerases of influenza viruses and no favipiravir-resistant virus has been isolated. Poliovirus RNA polymerase has been well characterized and isolation of resistant virus was examined in poliovirus. METHODS Susceptibility variants of poliovirus I (Sabin strain) were isolated during passages in the presence of favipiravir and characterized for their susceptibility and the sequence of RNA polymerase. RESULTS Five variants with 0.47-1.88 times the 50% inhibitory concentration for plaque formation of the parent poliovirus had amino acid variations in the 3D gene of the RNA polymerase. The distribution of amino acid variations was not related to ribavirin resistance, and two amino acid variation sites were found near the finger domain. CONCLUSION Favipiravir as a chain terminator would not be incorporated and replicate to cause lethal mutagenesis as a mutagen like ribavirin, and resistant mutants were not isolated. A high replication level would generate mutations leading to favipiravir resistance as ribavirin resistance was generated, but generated mutations would be lethal to the RNA polymerase function.
Collapse
Affiliation(s)
- Tohru Daikoku
- Department of Virology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; Department of Microbiology, Faculty of Pharmaceutical Sciences, Hokuriku University, 1-1 Taiyogaoka, Kanazawa 920-1180, Japan
| | - Mineyuki Mizuguchi
- Laboratory of Structural Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Takayuki Obita
- Laboratory of Structural Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Takeshi Yokoyama
- Laboratory of Structural Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yoshihiro Yoshida
- Department of Virology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Masaya Takemoto
- Department of Virology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; Department of Microbiology, Faculty of Pharmaceutical Sciences, Hokuriku University, 1-1 Taiyogaoka, Kanazawa 920-1180, Japan
| | - Kimiyasu Shiraki
- Department of Virology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
15
|
Peersen OB. Picornaviral polymerase structure, function, and fidelity modulation. Virus Res 2017; 234:4-20. [PMID: 28163093 PMCID: PMC5476519 DOI: 10.1016/j.virusres.2017.01.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/27/2017] [Indexed: 12/17/2022]
Abstract
Like all positive strand RNA viruses, the picornaviruses replicate their genomes using a virally encoded RNA-dependent RNA polymerase enzyme known as 3Dpol. Over the past decade we have made tremendous advances in our understanding of 3Dpol structure and function, including the discovery of a novel mechanism for closing the active site that allows these viruses to easily fine tune replication fidelity and quasispecies distributions. This review summarizes current knowledge of picornaviral polymerase structure and how the enzyme interacts with RNA and other viral proteins to form stable and processive elongation complexes. The picornaviral RdRPs are among the smallest viral polymerases, but their fundamental molecular mechanism for catalysis appears to be generally applicable as a common feature of all positive strand RNA virus polymerases.
Collapse
Affiliation(s)
- Olve B Peersen
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, United States.
| |
Collapse
|
16
|
Both cis and trans Activities of Foot-and-Mouth Disease Virus 3D Polymerase Are Essential for Viral RNA Replication. J Virol 2016; 90:6864-6883. [PMID: 27194768 PMCID: PMC4944275 DOI: 10.1128/jvi.00469-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/11/2016] [Indexed: 11/20/2022] Open
Abstract
The Picornaviridae is a large family of positive-sense RNA viruses that contains numerous human and animal pathogens, including foot-and-mouth disease virus (FMDV). The picornavirus replication complex comprises a coordinated network of protein-protein and protein-RNA interactions involving multiple viral and host-cellular factors. Many of the proteins within the complex possess multiple roles in viral RNA replication, some of which can be provided in trans (i.e., via expression from a separate RNA molecule), while others are required in cis (i.e., expressed from the template RNA molecule). In vitro studies have suggested that multiple copies of the RNA-dependent RNA polymerase (RdRp) 3D are involved in the viral replication complex. However, it is not clear whether all these molecules are catalytically active or what other function(s) they provide. In this study, we aimed to distinguish between catalytically active 3D molecules and those that build a replication complex. We report a novel nonenzymatic cis-acting function of 3D that is essential for viral-genome replication. Using an FMDV replicon in complementation experiments, our data demonstrate that this cis-acting role of 3D is distinct from the catalytic activity, which is predominantly trans acting. Immunofluorescence studies suggest that both cis- and trans-acting 3D molecules localize to the same cellular compartment. However, our genetic and structural data suggest that 3D interacts in cis with RNA stem-loops that are essential for viral RNA replication. This study identifies a previously undescribed aspect of picornavirus replication complex structure-function and an important methodology for probing such interactions further. IMPORTANCE Foot-and-mouth disease virus (FMDV) is an important animal pathogen responsible for foot-and-mouth disease. The disease is endemic in many parts of the world with outbreaks within livestock resulting in major economic losses. Propagation of the viral genome occurs within replication complexes, and understanding this process can facilitate the development of novel therapeutic strategies. Many of the nonstructural proteins involved in replication possess multiple functions in the viral life cycle, some of which can be supplied to the replication complex from a separate genome (i.e., in trans) while others must originate from the template (i.e., in cis). Here, we present an analysis of cis and trans activities of the RNA-dependent RNA polymerase 3D. We demonstrate a novel cis-acting role of 3D in replication. Our data suggest that this role is distinct from its enzymatic functions and requires interaction with the viral genome. Our data further the understanding of genome replication of this important pathogen.
Collapse
|
17
|
Abstract
By now, it is well established that the error rate of the RNA-dependent RNA polymerase (RdRp) that replicates RNA virus genomes is a primary driver of the mutation frequencies observed in RNA virus populations-the basis for the RNA quasispecies. Over the last 10 years, a considerable amount of work has uncovered the molecular determinants of replication fidelity in this enzyme. The isolation of high- and low-fidelity variants for several RNA viruses, in an expanding number of viral families, provides evidence that nature has optimized the fidelity to facilitate genetic diversity and adaptation, while maintaining genetic integrity and infectivity. This chapter will provide an overview of what fidelity variants tell us about RNA virus biology and how they may be used in antiviral approaches.
Collapse
Affiliation(s)
- Esteban Domingo
- Campus de Cantoblanco, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Peter Schuster
- The Santa Fe Institute, Santa Fe, NM, USA and Institut f. Theoretische Chemie, Universität Wien, Vienna, Austria
| |
Collapse
|
18
|
Agudo R, de la Higuera I, Arias A, Grande-Pérez A, Domingo E. Involvement of a joker mutation in a polymerase-independent lethal mutagenesis escape mechanism. Virology 2016; 494:257-66. [PMID: 27136067 PMCID: PMC7111656 DOI: 10.1016/j.virol.2016.04.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 02/05/2023]
Abstract
We previously characterized a foot-and-mouth disease virus (FMDV) with three amino acid replacements in its polymerase (3D) that conferred resistance to the mutagenic nucleoside analogue ribavirin. Here we show that passage of this mutant in the presence of high ribavirin concentrations resulted in selection of viruses with the additional replacement I248T in 2C. This 2C substitution alone (even in the absence of replacements in 3D) increased FMDV fitness mainly in the presence of ribavirin, prevented an incorporation bias in favor of A and U associated with ribavirin mutagenesis, and conferred the ATPase activity of 2C decreased sensitivity to ribavirin-triphosphate. Since in previous studies we described that 2C with I248T was selected under different selective pressures, this replacement qualifies as a joker substitution in FMDV evolution. The results have identified a role of 2C in nucleotide incorporation, and have unveiled a new polymerase-independent mechanism of virus escape to lethal mutagenesis. A replacement in FMDV protein 2C confers reduced sensitivity to the mutagen ribavirin. The effect of the replacement is to prevent a mutational bias evoked by ribavirin. 2C has an effect in nucleotide incorporation by the FMDV polymerase. We describe a new molecular mechanism of escape to ribavirin-mediated extinction.
Collapse
Affiliation(s)
- Rubén Agudo
- Centro de Biologia Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain
| | - Ignacio de la Higuera
- Centro de Biologia Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain
| | - Armando Arias
- Centro de Biologia Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain
| | - Ana Grande-Pérez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas, (IHSM-UMA-CSIC) Área de Genética, Campus de Teatinos, 29071 Málaga, Spain
| | - Esteban Domingo
- Centro de Biologia Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.
| |
Collapse
|
19
|
Trends in Antiviral Strategies. VIRUS AS POPULATIONS 2016. [PMCID: PMC7149557 DOI: 10.1016/b978-0-12-800837-9.00009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Viral populations are true moving targets regarding the genomic sequences to be targeted in antiviral designs. Experts from different fields have expressed the need of new paradigms for antiviral interventions and viral disease control. This chapter reviews several strategies that aim at counteracting the adaptive capacity of viral quasispecies. The proposed designs are based on combinations of different antiviral drugs and immune modulators, or in the administration of virus-specific mutagenic agents, in an approach termed lethal mutagenesis of viruses. It consists of decreasing viral fitness by an excess of mutations that render viral proteins sub-optimal or non-functional. Viral extinction by lethal mutagenesis involves several sequential, overlapping steps that recapitulate the major concepts of intra-population interactions and genetic information stability discussed in preceding chapters. Despite the magnitude of the challenge, the chapter closes with some optimistic prospects for an effective control of viruses displaying error-prone replication, based on the combined targeting of replication fidelity and the induction of the innate immune response.
Collapse
|
20
|
RNA-Dependent RNA Polymerases of Picornaviruses: From the Structure to Regulatory Mechanisms. Viruses 2015; 7:4438-60. [PMID: 26258787 PMCID: PMC4576190 DOI: 10.3390/v7082829] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/24/2015] [Accepted: 07/29/2015] [Indexed: 12/25/2022] Open
Abstract
RNA viruses typically encode their own RNA-dependent RNA polymerase (RdRP) to ensure genome replication within the infected cells. RdRP function is critical not only for the virus life cycle but also for its adaptive potential. The combination of low fidelity of replication and the absence of proofreading and excision activities within the RdRPs result in high mutation frequencies that allow these viruses a rapid adaptation to changing environments. In this review, we summarize the current knowledge about structural and functional aspects on RdRP catalytic complexes, focused mainly in the Picornaviridae family. The structural data currently available from these viruses provided high-resolution snapshots for a range of conformational states associated to RNA template-primer binding, rNTP recognition, catalysis and chain translocation. As these enzymes are major targets for the development of antiviral compounds, such structural information is essential for the design of new therapies.
Collapse
|
21
|
Multifunctionality of a picornavirus polymerase domain: nuclear localization signal and nucleotide recognition. J Virol 2015; 89:6848-59. [PMID: 25903341 DOI: 10.1128/jvi.03283-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/13/2015] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED The N-terminal region of the foot-and-mouth disease virus (FMDV) 3D polymerase contains the sequence MRKTKLAPT (residues 16 to 24) that acts as a nuclear localization signal. A previous study showed that substitutions K18E and K20E diminished the transport to the nucleus of 3D and 3CD and severely impaired virus infectivity. These residues have also been implicated in template binding, as seen in the crystal structures of different 3D-RNA elongation complexes. Here, we report the biochemical and structural characterization of different mutant polymerases harboring substitutions at residues 18 and 20, in particular, K18E, K18A, K20E, K20A, and the double mutant K18A K20A (KAKA). All mutant enzymes exhibit low RNA binding activity, low processivity, and alterations in nucleotide recognition, including increased incorporation of ribavirin monophosphate (RMP) relative to the incorporation of cognate nucleotides compared with the wild-type enzyme. The structural analysis shows an unprecedented flexibility of the 3D mutant polymerases, including both global rearrangements of the closed-hand architecture and local conformational changes at loop β9-α11 (within the polymerase motif B) and at the template-binding channel. Specifically, in 3D bound to RNA, both K18E and K20E induced the opening of new pockets in the template channel where the downstream templating nucleotide at position +2 binds. The comparisons of free and RNA-bound enzymes suggest that the structural rearrangements may occur in a concerted mode to regulate RNA replication, processivity, and fidelity. Thus, the N-terminal region of FMDV 3D that acts as a nuclear localization signal (NLS) and in template binding is also involved in nucleotide recognition and can affect the incorporation of nucleotide analogues. IMPORTANCE The study documents multifunctionality of a nuclear localization signal (NLS) located at the N-terminal region of the foot-and-mouth disease viral polymerase (3D). Amino acid substitutions at this polymerase region can impair the transport of 3D to the nucleus, reduce 3D binding to RNA, and alter the relative incorporation of standard nucleoside monophosphate versus ribavirin monophosphate. Structural data reveal that the conformational changes in this region, forming part of the template channel entry, would be involved in nucleotide discrimination. The results have implications for the understanding of viral polymerase function and for lethal mutagenesis mechanisms.
Collapse
|
22
|
Vivet-Boudou V, Isel C, El Safadi Y, Smyth RP, Laumond G, Moog C, Paillart JC, Marquet R. Evaluation of anti-HIV-1 mutagenic nucleoside analogues. J Biol Chem 2014; 290:371-83. [PMID: 25398876 DOI: 10.1074/jbc.m114.616383] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Because of their high mutation rates, RNA viruses and retroviruses replicate close to the threshold of viability. Their existence as quasi-species has pioneered the concept of "lethal mutagenesis" that prompted us to synthesize pyrimidine nucleoside analogues with antiviral activity in cell culture consistent with an accumulation of deleterious mutations in the HIV-1 genome. However, testing all potentially mutagenic compounds in cell-based assays is tedious and costly. Here, we describe two simple in vitro biophysical/biochemical assays that allow prediction of the mutagenic potential of deoxyribonucleoside analogues. The first assay compares the thermal stabilities of matched and mismatched base pairs in DNA duplexes containing or not the nucleoside analogues as follows. A promising candidate should display a small destabilization of the matched base pair compared with the natural nucleoside and the smallest gap possible between the stabilities of the matched and mismatched base pairs. From this assay, we predicted that two of our compounds, 5-hydroxymethyl-2'-deoxyuridine and 5-hydroxymethyl-2'-deoxycytidine, should be mutagenic. The second in vitro reverse transcription assay assesses DNA synthesis opposite nucleoside analogues inserted into a template strand and subsequent extension of the newly synthesized base pairs. Once again, only 5-hydroxymethyl-2'-deoxyuridine and 5-hydroxymethyl-2'-deoxycytidine are predicted to be efficient mutagens. The predictive potential of our fast and easy first line screens was confirmed by detailed analysis of the mutation spectrum induced by the compounds in cell culture because only compounds 5-hydroxymethyl-2'-deoxyuridine and 5-hydroxymethyl-2'-deoxycytidine were found to increase the mutation frequency by 3.1- and 3.4-fold, respectively.
Collapse
Affiliation(s)
- Valérie Vivet-Boudou
- From the Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg Cedex and
| | - Catherine Isel
- From the Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg Cedex and
| | - Yazan El Safadi
- From the Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg Cedex and
| | - Redmond P Smyth
- From the Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg Cedex and
| | - Géraldine Laumond
- the Unité INSERM 748, Université de Strasbourg, Institut de Virologie, 67000 Strasbourg, France
| | - Christiane Moog
- the Unité INSERM 748, Université de Strasbourg, Institut de Virologie, 67000 Strasbourg, France
| | - Jean-Christophe Paillart
- From the Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg Cedex and
| | - Roland Marquet
- From the Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg Cedex and
| |
Collapse
|
23
|
Han SC, Guo HC, Sun SQ. Three-dimensional structure of foot-and-mouth disease virus and its biological functions. Arch Virol 2014; 160:1-16. [PMID: 25377637 DOI: 10.1007/s00705-014-2278-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/31/2014] [Indexed: 11/26/2022]
Abstract
Foot-and-mouth disease (FMD), an acute, violent, infectious disease of cloven-hoofed animals, remains widespread in most parts of the world. It can lead to a major plague of livestock and an economical catastrophe. Structural studies of FMD virus (FMDV) have greatly contributed to our understanding of the virus life cycle and provided new horizons for the control and eradication of FMDV. To examine host-FMDV interactions and viral pathogenesis from a structural perspective, the structures of viral structural and non-structural proteins are reviewed in the context of their relevance for virus assembly and dissociation, formation of capsid-like particles and virus-receptor complexes, and viral penetration and uncoating. Moreover, possibilities for devising novel antiviral treatments are discussed.
Collapse
Affiliation(s)
- Shi-Chong Han
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | | | | |
Collapse
|
24
|
Novella IS, Presloid JB, Taylor RT. RNA replication errors and the evolution of virus pathogenicity and virulence. Curr Opin Virol 2014; 9:143-7. [PMID: 25462446 DOI: 10.1016/j.coviro.2014.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/04/2014] [Accepted: 09/09/2014] [Indexed: 12/30/2022]
Abstract
RNA viruses of plants and animals have polymerases that are error-prone and produce complex populations of related, but non-identical, genomes called quasispecies. While there are vast variations in mutation rates among these viruses, selection has optimized the exact error rate of each species to provide maximum speed of replication and amount of variation without losing the ability to replicate because of excessive mutation. High mutation rates result in the selection of populations increasingly robust, which means they are increasingly resistant to show phenotypic changes after mutation. It is possible to manipulate the mutation rate, either by the use of mutagens or by selection (or genetic manipulation) of fidelity mutants. These polymerases usually, but not always, perform as well as wild type (wt) during cell infection, but show major phenotypic changes during in vivo infection. Both high and low fidelity variants are attenuated when the wt virus is virulent in the host. Alternatively when wt infection is non-apparent, the variants show major restrictions to spread in the infected host. Manipulation of mutation rates may become a new strategy to develop attenuated vaccines for humans and animals.
Collapse
Affiliation(s)
- Isabel S Novella
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo, USA.
| | - John B Presloid
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo, USA
| | - R Travis Taylor
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo, USA
| |
Collapse
|
25
|
Cabanillas L, Sanjuán R, Lázaro E. Changes in protein domains outside the catalytic site of the bacteriophage Qβ replicase reduce the mutagenic effect of 5-azacytidine. J Virol 2014; 88:10480-7. [PMID: 24965463 PMCID: PMC4178890 DOI: 10.1128/jvi.00979-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/19/2014] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The high genetic heterogeneity and great adaptability of RNA viruses are ultimately caused by the low replication fidelity of their polymerases. However, single amino acid substitutions that modify replication fidelity can evolve in response to mutagenic treatments with nucleoside analogues. Here, we investigated how two independent mutants of the bacteriophage Qβ replicase (Thr210Ala and Tyr410His) reduce sensitivity to the nucleoside analogue 5-azacytidine (AZC). Despite being located outside the catalytic site, both mutants reduced the mutation frequency in the presence of the drug. However, they did not modify the type of AZC-induced substitutions, which was mediated mainly by ambiguous base pairing of the analogue with purines. Furthermore, the Thr210Ala and Tyr410His substitutions had little or no effect on replication fidelity in untreated viruses. Also, both substitutions were costly in the absence of AZC or when the action of the drug was suppressed by adding an excess of natural pyrimidines (uridine or cytosine). Overall, the phenotypic properties of these two mutants were highly convergent, despite the mutations being located in different domains of the Qβ replicase. This suggests that treatment with a given nucleoside analogue tends to select for a unique functional response in the viral replicase. IMPORTANCE In the last years, artificial increase of the replication error rate has been proposed as an antiviral therapy. In this study, we investigated the mechanisms by which two substitutions in the Qβ replicase confer partial resistance to the mutagenic nucleoside analogue AZC. As opposed to previous work with animal viruses, where different mutations selected sequentially conferred nucleoside analogue resistance through different mechanisms, our results suggest that there are few or no alternative AZC resistance phenotypes in Qβ. Also, despite resistance mutations being highly costly in the absence of the drug, there was no sequential fixation of secondary mutations. Bacteriophage Qβ is the virus with the highest reported mutation rate, which should make it particularly sensitive to nucleoside analogue treatments, probably favoring resistance mutations even if they incur high costs. The results are also relevant for understanding the possible pathways by which fidelity of the replication machinery can be modified.
Collapse
Affiliation(s)
| | - Rafael Sanjuán
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Valencia, Spain
| | - Ester Lázaro
- Centro de Astrobiología, INTA-CSIC, Madrid, Spain
| |
Collapse
|
26
|
Beaucourt S, Vignuzzi M. Ribavirin: a drug active against many viruses with multiple effects on virus replication and propagation. Molecular basis of ribavirin resistance. Curr Opin Virol 2014; 8:10-5. [PMID: 24846716 PMCID: PMC7102760 DOI: 10.1016/j.coviro.2014.04.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 04/24/2014] [Accepted: 04/28/2014] [Indexed: 12/14/2022]
Abstract
Ribavirin has proven to be effective against several viruses in the clinical setting and a multitude of viruses in vitro. With up to five different proposed mechanisms of action, recent advances have begun to discern the hierarchy of antiviral effects at play depending on the virus and the host conditions under scrutiny. Studies reveal that for many viruses, antiviral mechanisms may differ depending on cell type in vitro and in vivo. Further analyses are thus required to accurately identify mechanisms to more optimally determine clinical treatments. In recent years, a growing number of ribavirin resistant and sensitive variants have been identified. These variants not only inform on the specific mechanisms by which ribavirin enfeebles the virus, but also can themselves be tools to identify new antiviral compounds.
Collapse
Affiliation(s)
- Stéphanie Beaucourt
- Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, 28 rue du Dr Roux, Paris cedex 15, 75724, France
| | - Marco Vignuzzi
- Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique UMR 3569, 28 rue du Dr Roux, Paris cedex 15, 75724, France.
| |
Collapse
|
27
|
The crystal structure of a cardiovirus RNA-dependent RNA polymerase reveals an unusual conformation of the polymerase active site. J Virol 2014; 88:5595-607. [PMID: 24600002 DOI: 10.1128/jvi.03502-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Encephalomyocarditis virus (EMCV) is a member of the Cardiovirus genus within the large Picornaviridae family, which includes a number of important human and animal pathogens. The RNA-dependent RNA polymerase (RdRp) 3Dpol is a key enzyme for viral genome replication. In this study, we report the X-ray structures of two different crystal forms of the EMCV RdRp determined at 2.8- and 2.15-Å resolution. The in vitro elongation and VPg uridylylation activities of the purified enzyme have also been demonstrated. Although the overall structure of EMCV 3Dpol is shown to be similar to that of the known RdRps of other members of the Picornaviridae family, structural comparisons show a large reorganization of the active-site cavity in one of the crystal forms. The rearrangement affects mainly motif A, where the conserved residue Asp240, involved in ribonucleoside triphosphate (rNTP) selection, and its neighbor residue, Phe239, move about 10 Å from their expected positions within the ribose binding pocket toward the entrance of the rNTP tunnel. This altered conformation of motif A is stabilized by a cation-π interaction established between the aromatic ring of Phe239 and the side chain of Lys56 within the finger domain. Other contacts, involving Phe239 and different residues of motif F, are also observed. The movement of motif A is connected with important conformational changes in the finger region flanked by residues 54 to 63, harboring Lys56, and in the polymerase N terminus. The structures determined in this work provide essential information for studies on the cardiovirus RNA replication process and may have important implications for the development of new antivirals targeting the altered conformation of motif A. IMPORTANCE The Picornaviridae family is one of the largest virus families known, including many important human and animal pathogens. The RNA-dependent RNA polymerase (RdRp) 3Dpol is a key enzyme for picornavirus genome replication and a validated target for the development of antiviral therapies. Solving the X-ray structure of the first cardiovirus RdRp, EMCV 3Dpol, we captured an altered conformation of a conserved motif in the polymerase active site (motif A) containing the aspartic acid residue involved in rNTP selection and binding. This altered conformation of motif A, which interferes with the correct positioning of the rNTP substrate in the active site, is stabilized by a number of residues strictly conserved among picornaviruses. The rearrangements observed suggest that this motif A segment is a dynamic element that can be modulated by external effectors, either activating or inhibiting enzyme activity, and this type of modulation appears to be general to all picornaviruses.
Collapse
|
28
|
Rozen-Gagnon K, Stapleford KA, Mongelli V, Blanc H, Failloux AB, Saleh MC, Vignuzzi M. Alphavirus mutator variants present host-specific defects and attenuation in mammalian and insect models. PLoS Pathog 2014; 10:e1003877. [PMID: 24453971 PMCID: PMC3894214 DOI: 10.1371/journal.ppat.1003877] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/25/2013] [Indexed: 01/26/2023] Open
Abstract
Arboviruses cycle through both vertebrates and invertebrates, which requires them to adapt to disparate hosts while maintaining genetic integrity during genome replication. To study the genetic mechanisms and determinants of these processes, we use chikungunya virus (CHIKV), a re-emerging human pathogen transmitted by the Aedes mosquito. We previously isolated a high fidelity (or antimutator) polymerase variant, C483Y, which had decreased fitness in both mammalian and mosquito hosts, suggesting this residue may be a key molecular determinant. To further investigate effects of position 483 on RNA-dependent RNA-polymerase (RdRp) fidelity, we substituted every amino acid at this position. We isolated novel mutators with decreased replication fidelity and higher mutation frequencies, allowing us to examine the fitness of error-prone arbovirus variants. Although CHIKV mutators displayed no major replication defects in mammalian cell culture, they had reduced specific infectivity and were attenuated in vivo. Unexpectedly, mutator phenotypes were suppressed in mosquito cells and the variants exhibited significant defects in RNA synthesis. Consequently, these replication defects resulted in strong selection for reversion during infection of mosquitoes. Since residue 483 is conserved among alphaviruses, we examined the analogous mutations in Sindbis virus (SINV), which also reduced polymerase fidelity and generated replication defects in mosquito cells. However, replication defects were mosquito cell-specific and were not observed in Drosophila S2 cells, allowing us to evaluate the potential attenuation of mutators in insect models where pressure for reversion was absent. Indeed, the SINV mutator variant was attenuated in fruit flies. These findings confirm that residue 483 is a determinant regulating alphavirus polymerase fidelity and demonstrate proof of principle that arboviruses can be attenuated in mammalian and insect hosts by reducing fidelity. Chikungunya (CHIKV) is a re-emerging mosquito-borne virus that constitutes a major and growing human health burden. Like all RNA viruses, during viral replication CHIKV copies its genome using a polymerase that makes an average of one mistake per replication cycle. Therefore, a single virus generates millions of viral progeny that carry a multitude of distinct mutations in their genomes. In this study, we isolated CHIKV mutators (strains that make more errors than the wildtype virus), to study how higher mutation rates affect fitness in arthropod-borne viruses (arboviruses). CHIKV mutators have reduced virulence in mice and severe replication defects in Aedes mosquito cells. However, these replication defects result in selective pressure for reversion of mutators to a wildtype polymerase in mosquito hosts. To examine how mutators would behave in an insect model in absence of this genetic instability, we isolated mutators of a related virus, Sindbis virus (SINV). SINV mutators had no replication defect in fruit fly (Drosophila) cells, and a SINV mutator strain was stable and attenuated in fruit flies. This work shows proof of principle that arbovirus mutators can exhibit attenuation in both mammalian and insect hosts, and may remain a viable vaccine strategy.
Collapse
Affiliation(s)
- Kathryn Rozen-Gagnon
- Institut Pasteur, Viral Populations and Pathogenesis, CNRS UMR 3569, Paris, France
- University Paris Diderot, Sorbonne Paris Cite, Cellule Pasteur, Paris, France
| | | | - Vanesa Mongelli
- Institut Pasteur, Viruses and RNA Interference, UMR 3569, Paris, France
| | - Hervé Blanc
- Institut Pasteur, Viral Populations and Pathogenesis, CNRS UMR 3569, Paris, France
| | | | - Maria-Carla Saleh
- Institut Pasteur, Viruses and RNA Interference, UMR 3569, Paris, France
| | - Marco Vignuzzi
- Institut Pasteur, Viral Populations and Pathogenesis, CNRS UMR 3569, Paris, France
- * E-mail:
| |
Collapse
|
29
|
Wang J, Lyle JM, Bullitt E. Surface for catalysis by poliovirus RNA-dependent RNA polymerase. J Mol Biol 2013; 425:2529-40. [PMID: 23583774 DOI: 10.1016/j.jmb.2013.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/17/2013] [Accepted: 04/04/2013] [Indexed: 12/22/2022]
Abstract
The poliovirus RNA-dependent RNA polymerase, 3Dpol, replicates the viral genomic RNA on the surface of virus-induced intracellular membranes. Macromolecular assemblies of 3Dpol form linear arrays of subunits that propagate along a strong protein-protein interaction called interface-I, as was observed in the crystal structure of wild-type poliovirus polymerase. These "filaments" recur with slight modifications in planar sheets and, with additional modifications that accommodate curvature, in helical tubes of the polymerase, by packing filaments together via a second set of interactions. Periodic variations of subunit orientations within 3Dpol tubes give rise to "ghost reflections" in diffraction patterns computed from electron cryomicrographs of helical arrays. The ghost reflections reveal that polymerase tubes are formed by bundles of four to five interface-I filaments, which are then connected to the next bundle of filaments with a perturbation of interface interactions between bundles. While enzymatically inactive polymerase is also capable of oligomerization, much thinner tubes that lack interface-I interactions between adjacent subunits are formed, suggesting that long-range allostery produces conformational changes that extend from the active site to the protein-protein interface. Macromolecular assemblies of poliovirus polymerase show repeated use of flexible interface interactions for polymerase lattice formation, suggesting that adaptability of polymerase-polymerase interactions facilitates RNA replication. In addition, the presence of a positively charged groove identified in polymerase arrays may help position and stabilize the RNA template during replication.
Collapse
Affiliation(s)
- Jing Wang
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA
| | | | | |
Collapse
|
30
|
Repeated exposure to 5D9, an inhibitor of 3D polymerase, effectively limits the replication of foot-and-mouth disease virus in host cells. Antiviral Res 2013; 98:380-5. [PMID: 23578728 DOI: 10.1016/j.antiviral.2013.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/11/2013] [Accepted: 03/28/2013] [Indexed: 11/21/2022]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious disease of livestock caused by a highly variable RNA virus (FMDV) that has seven serotypes and more than sixty subtypes. Both prophylactic and post-infection means of controlling the disease outbreak, including universally applicable vaccines and emergency response measures such as therapeutic treatments, are on high demand. In this study, we analyzed the long-term exposure outcome to a previously identified inhibitor of 3D polymerase (FMDV 3Dpol) for controlling FMDV infection and for the selection of resistance mutants. The results showed that no escape mutant viruses were isolated from FMDV A24 Cruzeiro infections in cell culture treated with gradually increasing concentrations of the antiviral compound 5D9 (4-chloro-N'-thieno, [2,3-d]pyrimidin-4-ylbenzenesulfonohydrazide) over ten passages. Biochemical and plaque assays revealed that when 5D9 was used at concentrations within a non-toxic range in cells, it drove the virus to undetectable levels at passage eight to ten. This is in contrast with observations made on parallel control (untreated) passages exhibiting fully viable and stable virus progenies. Collectively, the results demonstrated that under the experimental conditions, treatment with 5D9 does not confer a resistant phenotype and the virus is unable to evade the antiviral effect of the inhibitor. Further efforts using quantitative structure-property relationship (QSPR) based modifications of the 5D9 compound may result in the successful development of an effective in vivo antiviral drug targeting FMDV.
Collapse
|
31
|
Arias A, Isabel de Ávila A, Sanz-Ramos M, Agudo R, Escarmís C, Domingo E. Molecular dissection of a viral quasispecies under mutagenic treatment: positive correlation between fitness loss and mutational load. J Gen Virol 2013; 94:817-830. [DOI: 10.1099/vir.0.049171-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Low fidelity replication and the absence of error-repair activities in RNA viruses result in complex and adaptable ensembles of related genomes in the viral population, termed quasispecies, with important implications for natural infections. Theoretical predictions suggested that elevated replication error rates in RNA viruses might be near to a maximum compatible with viral viability. This fact encouraged the use of mutagenic nucleosides as a new antiviral strategy to induce viral extinction through increased replication error rates. Despite extensive evidence of lethal mutagenesis of RNA viruses by different mutagenic compounds, a detailed picture of the infectivity of individual genomes and its relationship with the mutations accumulated is lacking. Here, we report a molecular analysis of a foot-and-mouth disease virus population previously subjected to heavy mutagenesis to determine whether a correlation between increased mutagenesis and decreased fitness existed. Plaque-purified viruses isolated from a ribavirin-treated quasispecies presented decreases of up to 200-fold in infectivity relative to clones in the reference population, associated with an overall eightfold increase in the mutation frequency. This observation suggests that individual infectious genomes of a quasispecies subjected to increased mutagenesis lose infectivity by their continuous mutagenic ‘poisoning’. These results support the lethal defection model of virus extinction and the practical use of chemical mutagens as antiviral treatment. Even when extinction is not achieved, mutagenesis can decrease the infectivity of surviving virus, and facilitate their clearance by host immune responses or complementing antiviral approaches.
Collapse
Affiliation(s)
- Armando Arias
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1TN, UK
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Ana Isabel de Ávila
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Marta Sanz-Ramos
- Division of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Rubén Agudo
- Fachbereich Chemie, Philipps Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Cristina Escarmís
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Esteban Domingo
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| |
Collapse
|
32
|
Garriga D, Ferrer-Orta C, Querol-Audí J, Oliva B, Verdaguer N. Role of motif B loop in allosteric regulation of RNA-dependent RNA polymerization activity. J Mol Biol 2013; 425:2279-87. [PMID: 23542342 DOI: 10.1016/j.jmb.2013.03.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 03/15/2013] [Accepted: 03/21/2013] [Indexed: 01/22/2023]
Abstract
Increasing amounts of data show that conformational dynamics are essential for protein function. Unveiling the mechanisms by which this flexibility affects the activity of a given enzyme and how it is controlled by other effectors opens the door to the design of a new generation of highly specific drugs. Viral RNA-dependent RNA polymerases (RdRPs) are not an exception. These enzymes, essential for the multiplication of all RNA viruses, catalyze the formation of phosphodiester bonds between ribonucleotides in an RNA-template-dependent fashion. Inhibition of RdRP activity will prevent genome replication and virus multiplication. Thus, RdRPs, like the reverse transcriptase of retroviruses, are validated targets for the development of antiviral therapeutics. X-ray crystallography of RdRPs trapped in multiple steps throughout the catalytic process, together with NMR data and molecular dynamics simulations, have shown that all polymerase regions contributing to conserved motifs required for substrate binding, catalysis and product release are highly flexible and some of them are predicted to display correlated motions. All these dynamic elements can be modulated by external effectors, which appear as useful tools for the development of effective allosteric inhibitors that block or disturb the flexibility of these enzymes, ultimately impeding their function. Among all movements observed, motif B, and the B-loop at its N-terminus in particular, appears as a new potential druggable site.
Collapse
Affiliation(s)
- Damià Garriga
- Institut de Biología Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
33
|
Moreno H, Grande-Pérez A, Domingo E, Martín V. Arenaviruses and lethal mutagenesis. Prospects for new ribavirin-based interventions. Viruses 2012; 4:2786-805. [PMID: 23202505 PMCID: PMC3509673 DOI: 10.3390/v4112786] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 10/17/2012] [Accepted: 10/25/2012] [Indexed: 01/05/2023] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV) has contributed to unveil some of the molecular mechanisms of lethal mutagenesis, or loss of virus infectivity due to increased mutation rates. Here we review these developments, and provide additional evidence that ribavirin displays a dual mutagenic and inhibitory activity on LCMV that can be relevant to treatment designs. Using 5-fluorouracil as mutagenic agent and ribavirin either as inhibitor or mutagen, we document an advantage of a sequential inhibitor-mutagen administration over the corresponding combination treatment to achieve a low LCMV load in cell culture. This advantage is accentuated in the concentration range in which ribavirin acts mainly as an inhibitor, rather than as mutagen. This observation reinforces previous theoretical and experimental studies in supporting a sequential inhibitor-mutagen administration as a possible antiviral design. Given recent progress in the development of new inhibitors of arenavirus replication, our results suggest new options of ribavirin-based anti-arenavirus treatments.
Collapse
Affiliation(s)
- Héctor Moreno
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Campus de Cantoblanco 28049, Madrid, Spain; (H.M.); (E.D.)
| | - Ana Grande-Pérez
- Área de Genética, Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, 29071, Málaga, Spain;
| | - Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Campus de Cantoblanco 28049, Madrid, Spain; (H.M.); (E.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| | - Verónica Martín
- Centro de Investigación en Sanidad Animal (CISA), Carretera de Algete a El Casar s/n, 28130 Valdeolmos, Madrid, Spain;
| |
Collapse
|
34
|
Residues Arg283, Arg285, and Ile287 in the nucleotide binding pocket of bovine viral diarrhea virus NS5B RNA polymerase affect catalysis and fidelity. J Virol 2012; 87:199-207. [PMID: 23077294 DOI: 10.1128/jvi.06968-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Residues Arg283, Arg285, and Ile287 are highly conserved amino acids in bovine viral diarrhea virus RNA polymerase (BVDV RdRp) and RdRps from related positive-strand RNA viruses. This motif is an important part of the binding pocket for the nascent RNA base pair during initiation and elongation. We found that replacement of the arginines with alanines or more conserved lysines or replacement of isoleucine with alanine or valine alters the ability of the mutant RdRps to incorporate ribonucleotides efficiently. The reduced RdRp activity stems from both decreased ribonucleotide binding and decreased catalytic efficiency in both primer-dependent and de novo initiation, as shown by kinetic studies. In line with other studies on flaviviral RdRps, our data suggest that Arg283 and Ile287 may be implicated in ribonucleotide binding and positioning of the template base in the active site. Arg285 appears to be involved directly in the selection of cognate nucleotide. The findings for Arg285 and Ile287 mutants also agree with similar data from picornavirus RdRps.
Collapse
|
35
|
Enhanced inhibition of foot-and-mouth disease virus by combinations of porcine interferon-α and antiviral agents. Antiviral Res 2012; 96:213-20. [PMID: 23000495 PMCID: PMC7114081 DOI: 10.1016/j.antiviral.2012.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/11/2012] [Accepted: 09/04/2012] [Indexed: 11/28/2022]
Abstract
Foot-and-mouth disease (FMD) is an economically significant animal disease because of the speed of its transmission. The current FMD vaccine provides no protection until 7 days after the vaccination, which reduces its effectiveness in the case of an outbreak. Therefore, to find an alternative method of applying antiviral agents for rapid and enhanced inhibition of the FMD virus (FMDV), we compared the antiviral effects of promising antiviral agents and attempted to apply them in combination. First, we measured and compared the 50% effective concentration (EC50) to the mean inhibition effects of FMDV, and the 50% cytotoxic concentration (CC50) to the mean cytotoxicity of antiviral agents such as ribavirin, guanidine-hydrochloride (guanidine-HCl), 6-azauridine, and recombinant adenovirus expressing three small interference RNAs (Ad-siRNA) or porcine interferon-α (Ad-porcine IFN-α) in swine kidney cells (IBRS-2). The selectivity indices of ribavirin (35.2) and 6-azauridine (34.6) were higher than that of guanidine-HCl (26.9). The selectivity indices of Ad-siRNA or Ad-porcine IFN-α were 7 × 103 or 7 × 104 based on the adenoviral titer. Next, we tested the combined effects of the FMDV inhibition agents. Enhanced inhibition effects were observed in the IBRS-2 cells and in suckling mice from the combination of Ad-porcine IFN-α and Ad-siRNA or ribavirin. The combined application of these recombinant adenoviruses and ribavirin may enhance their inhibitory effect on FMDV and overcome FMDV resistance against antiviral agents.
Collapse
|
36
|
Perales C, Iranzo J, Manrubia SC, Domingo E. The impact of quasispecies dynamics on the use of therapeutics. Trends Microbiol 2012; 20:595-603. [PMID: 22989762 DOI: 10.1016/j.tim.2012.08.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/13/2012] [Accepted: 08/20/2012] [Indexed: 01/31/2023]
Abstract
The application of quasispecies theory to viral populations has boosted our understanding of how endogenous and exogenous features condition their adaptation. Mounting empirical evidence demonstrates that internal interactions within mutant spectra may cause unexpected responses to antiviral treatments. In this scenario, increased mutagenesis could be efficient at low mutagen doses due to the lethal action of defective genomes, whereas sequential administration of antiviral drugs might be superior to combination therapies. Our ability to predict the outcome of a particular therapy takes advantage of the complementary use of in vivo observations, in vitro experiments, and mathematical models.
Collapse
Affiliation(s)
- Celia Perales
- Centro de Biología Molecular Severo Ochoa, Campus de Cantoblanco 28049, Madrid, Spain
| | | | | | | |
Collapse
|
37
|
Gnädig NF, Beaucourt S, Campagnola G, Bordería AV, Sanz-Ramos M, Gong P, Blanc H, Peersen OB, Vignuzzi M. Coxsackievirus B3 mutator strains are attenuated in vivo. Proc Natl Acad Sci U S A 2012; 109:E2294-303. [PMID: 22853955 PMCID: PMC3427060 DOI: 10.1073/pnas.1204022109] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Based on structural data of the RNA-dependent RNA polymerase, rational targeting of key residues, and screens for Coxsackievirus B3 fidelity variants, we isolated nine polymerase variants with mutator phenotypes, which allowed us to probe the effects of lowering fidelity on virus replication, mutability, and in vivo fitness. These mutator strains generate higher mutation frequencies than WT virus and are more sensitive to mutagenic treatments, and their purified polymerases present lower-fidelity profiles in an in vitro incorporation assay. Whereas these strains replicate with WT-like kinetics in tissue culture, in vivo infections reveal a strong correlation between mutation frequency and fitness. Variants with the highest mutation frequencies are less fit in vivo and fail to productively infect important target organs, such as the heart or pancreas. Furthermore, whereas WT virus is readily detectable in target organs 30 d after infection, some variants fail to successfully establish persistent infections. Our results show that, although mutator strains are sufficiently fit when grown in large population size, their fitness is greatly impacted when subjected to severe bottlenecking, which would occur during in vivo infection. The data indicate that, although RNA viruses have extreme mutation frequencies to maximize adaptability, nature has fine-tuned replication fidelity. Our work forges ground in showing that the mutability of RNA viruses does have an upper limit, where larger than natural genetic diversity is deleterious to virus survival.
Collapse
Affiliation(s)
- Nina F. Gnädig
- Institut Pasteur, Centre National de la Recherche Scientifique Unité de Recherche Associée 3015, 75724 Paris Cedex 15, France
- University of Paris Diderot, Sorbonne Paris Cite, Cellule Pasteur, 75015 Paris, France; and
| | - Stéphanie Beaucourt
- Institut Pasteur, Centre National de la Recherche Scientifique Unité de Recherche Associée 3015, 75724 Paris Cedex 15, France
| | - Grace Campagnola
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Antonio V. Bordería
- Institut Pasteur, Centre National de la Recherche Scientifique Unité de Recherche Associée 3015, 75724 Paris Cedex 15, France
| | - Marta Sanz-Ramos
- Institut Pasteur, Centre National de la Recherche Scientifique Unité de Recherche Associée 3015, 75724 Paris Cedex 15, France
| | - Peng Gong
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Hervé Blanc
- Institut Pasteur, Centre National de la Recherche Scientifique Unité de Recherche Associée 3015, 75724 Paris Cedex 15, France
| | - Olve B. Peersen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Marco Vignuzzi
- Institut Pasteur, Centre National de la Recherche Scientifique Unité de Recherche Associée 3015, 75724 Paris Cedex 15, France
| |
Collapse
|
38
|
Sanz-Ramos M, Rodríguez-Calvo T, Sevilla N. Mutagenesis-mediated decrease of pathogenicity as a feature of the mutant spectrum of a viral population. PLoS One 2012; 7:e39941. [PMID: 22761933 PMCID: PMC3386257 DOI: 10.1371/journal.pone.0039941] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/29/2012] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND RNA virus populations are heterogeneous ensembles of closely related genomes termed quasispecies. This highly complex distribution of variants confers important properties to RNA viruses and influences their pathogenic behavior. It has been hypothesized that increased mutagenesis of viral populations, by treatment with mutagenic agents, can induce alterations in the pathogenic potential of a virus population. In this work we investigate whether mutagenized foot-and-mouth disease virus (FMDV) populations display changes in their virulence in mice. METHODOLOGY AND PRINCIPAL FINDINGS FMDV C-S8c1 was passaged in BHK cells in the presence of the mutagenic agent ribavirin. Decline in viral titer and viral RNA progeny was observed in the first passage, fluctuating around a constant value thereafter. Hence, the specific infectivity remained stable during the passages. The viral population harvested from passage 9 (P9 R) showed decreased virulence in mice, with a lethal dose 50 (LD(50)) >10(4) PFU, as compared with LD(50) of 50 PFU of the parental population FMDV C-S8c1. This decrease in virulence was associated to a 20-fold increase in the mutation frequency of the P9 R population with respect to C-S8c1. Interestingly, individual biological clones isolated from the attenuated population P9 R were as virulent as the parental virus C-S8c1. Furthermore, a mixed population of C-S8c1 and P9 R was inoculated into mice and showed decreased virulence as compared to C-S8c1, suggesting that population P9 R is able to suppress the virulent phenotype of C-S8c1. CONCLUSION Ribavirin-mediated mutagenesis of an FMDV population resulted in attenuation in vivo, albeit a large proportion of its biological clones displayed a highly virulent phenotype. These results, together with the suppression of C-S8c1 by mutagenized P9 R population, document a suppressive effect of mutagenized viral quasispecies in vivo, and suggest novel approaches to the treatment and prevention of viral diseases.
Collapse
Affiliation(s)
- Marta Sanz-Ramos
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CISA-INIA), Valdeolmos, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Madrid, Spain
| | - Teresa Rodríguez-Calvo
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CISA-INIA), Valdeolmos, Madrid, Spain
| |
Collapse
|
39
|
Abstract
Evolution of RNA viruses occurs through disequilibria of collections of closely related mutant spectra or mutant clouds termed viral quasispecies. Here we review the origin of the quasispecies concept and some biological implications of quasispecies dynamics. Two main aspects are addressed: (i) mutant clouds as reservoirs of phenotypic variants for virus adaptability and (ii) the internal interactions that are established within mutant spectra that render a virus ensemble the unit of selection. The understanding of viruses as quasispecies has led to new antiviral designs, such as lethal mutagenesis, whose aim is to drive viruses toward low fitness values with limited chances of fitness recovery. The impact of quasispecies for three salient human pathogens, human immunodeficiency virus and the hepatitis B and C viruses, is reviewed, with emphasis on antiviral treatment strategies. Finally, extensions of quasispecies to nonviral systems are briefly mentioned to emphasize the broad applicability of quasispecies theory.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/ Nicolás Cabrera, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | | | | |
Collapse
|
40
|
Abstract
The replication of the hepatitis C viral (HCV) genome is accomplished by the NS5B RNA-dependent RNA polymerase (RdRp), for which mechanistic understanding and structure-guided drug design efforts have been hampered by its propensity to crystallize in a closed, polymerization-incompetent state. The removal of an autoinhibitory β-hairpin loop from genotype 2a HCV NS5B increases de novo RNA synthesis by >100-fold, promotes RNA binding, and facilitated the determination of the first crystallographic structures of HCV polymerase in complex with RNA primer-template pairs. These crystal structures demonstrate the structural realignment required for primer-template recognition and elongation, provide new insights into HCV RNA synthesis at the molecular level, and may prove useful in the structure-based design of novel antiviral compounds. Additionally, our approach for obtaining the RNA primer-template-bound structure of HCV polymerase may be generally applicable to solving RNA-bound complexes for other viral RdRps that contain similar regulatory β-hairpin loops, including bovine viral diarrhea virus, dengue virus, and West Nile virus.
Collapse
|
41
|
Moreno H, Gallego I, Sevilla N, de la Torre JC, Domingo E, Martín V. Ribavirin can be mutagenic for arenaviruses. J Virol 2011; 85:7246-55. [PMID: 21561907 PMCID: PMC3126590 DOI: 10.1128/jvi.00614-11] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 04/29/2011] [Indexed: 01/11/2023] Open
Abstract
Arenaviruses include several important human pathogens, and there are very limited options of preventive or therapeutic interventions to combat these viruses. An off-label use of the purine nucleoside analogue ribavirin (1-β-d-ribofuranosyl-1-H-1,2,4-triazole-3-carboxamide) is the only antiviral treatment currently available for arenavirus infections. However, the ribavirin antiviral mechanism action against arenaviruses remains unknown. Here we document that ribavirin is mutagenic for the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) in cell culture. The mutagenic activity of ribavirin on LCMV was observed under single- and multiple-passage regimes and could not be accounted for by a decrease of the intracellular GTP pool promoted by ribavirin-mediated inhibition of inosine monophosphate dehydrogenase (IMPDH). Our findings suggest that the antiviral activity of ribavirin on arenaviruses might be exerted, at least partially, by lethal mutagenesis. Implications for antiarenavirus therapy are discussed.
Collapse
Affiliation(s)
- Héctor Moreno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049 Madrid, Spain
- Department of Neuropharmacology, The Scripps Research Institute, IMM-6, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Isabel Gallego
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación Agraria y Alimentaria, Valdeolmos, Madrid, Spain
| | - Juan Carlos de la Torre
- Department of Neuropharmacology, The Scripps Research Institute, IMM-6, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Esteban Domingo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | - Verónica Martín
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049 Madrid, Spain
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación Agraria y Alimentaria, Valdeolmos, Madrid, Spain
| |
Collapse
|
42
|
Perales C, Agudo R, Manrubia SC, Domingo E. Influence of mutagenesis and viral load on the sustained low-level replication of an RNA virus. J Mol Biol 2011; 407:60-78. [PMID: 21256131 DOI: 10.1016/j.jmb.2011.01.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 01/10/2023]
Abstract
Lethal mutagenesis is an antiviral strategy that aims to extinguish viruses as a consequence of enhanced mutation rates during virus replication. The molecular mechanisms that underlie virus extinction by mutagenic nucleoside analogues are not well understood. When mutagenic agents and antiviral inhibitors are administered sequentially or in combination, interconnected and often conflicting selective constraints can influence the fate of the virus either towards survival through selection of mutagen-escape or inhibitor-escape mutants or towards extinction. Here we report a study involving the mutagenesis of foot-and-mouth disease virus (FMDV) by the nucleoside analogue ribavirin (R) and the effect of R-mediated mutagenesis on the selection of FMDV mutants resistant to the inhibitor of RNA replication, guanidine hydrochloride (GU). The results show that under comparable (and low) viral load, an inhibitory activity by GU could not substitute for an equivalent inhibitory activity by R in driving FMDV to extinction. Both the prior history of R mutagenesis and the viral population size influenced the selection of GU-escape mutants. A sufficiently low viral load allowed continued viral replication without selection of inhibitor-escape mutants, irrespective of the history of mutagenesis. These observations imply that reductions of viral load as a result of a mutagenic treatment may provide an opportunity either for immune-mediated clearing of a virus or for an alternative antiviral intervention, even if extinction is not initially achieved.
Collapse
Affiliation(s)
- Celia Perales
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
43
|
Durk RC, Singh K, Cornelison CA, Rai DK, Matzek KB, Leslie MD, Schafer E, Marchand B, Adedeji A, Michailidis E, Dorst CA, Moran J, Pautler C, Rodriguez LL, McIntosh MA, Rieder E, Sarafianos SG. Inhibitors of foot and mouth disease virus targeting a novel pocket of the RNA-dependent RNA polymerase. PLoS One 2010; 5:e15049. [PMID: 21203539 PMCID: PMC3006429 DOI: 10.1371/journal.pone.0015049] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 10/25/2010] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Foot-and-Mouth Disease Virus (FMDV) is a picornavirus that infects cloven-hoofed animals and leads to severe losses in livestock production. In the case of an FMD outbreak, emergency vaccination requires at least 7 days to trigger an effective immune response. There are currently no approved inhibitors for the treatment or prevention of FMDV infections. METHODOLOGY/PRINCIPAL FINDINGS Using a luciferase-based assay we screened a library of compounds and identified seven novel inhibitors of 3Dpol, the RNA-dependent RNA polymerase of FMDV. The compounds inhibited specifically 3Dpol (IC(50)s from 2-17 µM) and not other viral or bacterial polymerases. Enzyme kinetic studies on the inhibition mechanism by compounds 5D9 and 7F8 showed that they are non-competitive inhibitors with respect to NTP and nucleic acid substrates. Molecular modeling and docking studies into the 3Dpol structure revealed an inhibitor binding pocket proximal to, but distinct from the 3Dpol catalytic site. Residues surrounding this pocket are conserved among all 60 FMDV subtypes. Site directed mutagenesis of two residues located at either side of the pocket caused distinct resistance to the compounds, demonstrating that they indeed bind at this site. Several compounds inhibited viral replication with 5D9 suppressing virus production in FMDV-infected cells with EC(50) = 12 µM and EC(90) = 20 µM). SIGNIFICANCE We identified several non-competitive inhibitors of FMDV 3Dpol that target a novel binding pocket, which can be used for future structure-based drug design studies. Such studies can lead to the discovery of even more potent antivirals that could provide alternative or supplementary options to contain future outbreaks of FMD.
Collapse
Affiliation(s)
- Ryan C. Durk
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Kamalendra Singh
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Ceili A. Cornelison
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Devendra K. Rai
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Kayla B. Matzek
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Maxwell D. Leslie
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Elizabeth Schafer
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, Greenport, New York, United States of America
| | - Bruno Marchand
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Adeyemi Adedeji
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Eleftherios Michailidis
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Christopher A. Dorst
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Jennifer Moran
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Christie Pautler
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Luis L. Rodriguez
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, Greenport, New York, United States of America
| | - Mark A. McIntosh
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Elizabeth Rieder
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, Greenport, New York, United States of America
| | - Stefan G. Sarafianos
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| |
Collapse
|
44
|
Yang X, Welch JL, Arnold JJ, Boehr DD. Long-range interaction networks in the function and fidelity of poliovirus RNA-dependent RNA polymerase studied by nuclear magnetic resonance. Biochemistry 2010; 49:9361-71. [PMID: 20860410 DOI: 10.1021/bi100833r] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The fidelity of the poliovirus RNA-dependent RNA polymerase (3D(pol)) plays a direct role in the genomic evolution and pathogenesis of the virus. A single site mutation (Gly64Ser) that is remote from the catalytic center results in a higher fidelity polymerase. NMR studies with [methyl-(13)C]methionine-labeled protein were used to compare the solution structure and dynamics of wild-type and Gly64Ser 3D(pol). The chemical shifts for the Met6 resonance were significantly different between wild-type and Gly64Ser 3D(pol) when bound in ternary complexes with RNA and incorrect, but not with correct, nucleotide, suggesting that the Gly64Ser mutation induces structural changes in the N-terminal β-strand when the enzyme is bound to incorrect but not correct nucleotide. We also observe changes in the transverse relaxation times for methionines near regions important for nucleotide and RNA binding and catalysis. Our strategy to assign the [methyl-(13)C]methionine resonances involved separately mutating each of the 17 methionines. Several substitutions produced additional resonances for both Met6 and Met187, a reporter for RNA binding, and conformational changes in the highly conserved motif B loop, even though these methionines are greater than 20 Å apart. The results for Gly64Ser and the other mutants are intriguing considering that they can result in structural and/or dynamic changes to methionines distant from the site of mutation. We propose that there is a long-distance network operating throughout 3D(pol) that coordinates ligand binding, conformational changes, and catalysis. Mutation of Gly64 results in structural and/or dynamic changes to the network that may affect polymerase fidelity.
Collapse
Affiliation(s)
- Xiaorong Yang
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
45
|
Agudo R, Ferrer-Orta C, Arias A, de la Higuera I, Perales C, Pérez-Luque R, Verdaguer N, Domingo E. A multi-step process of viral adaptation to a mutagenic nucleoside analogue by modulation of transition types leads to extinction-escape. PLoS Pathog 2010; 6:e1001072. [PMID: 20865120 PMCID: PMC2928812 DOI: 10.1371/journal.ppat.1001072] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 07/26/2010] [Indexed: 01/18/2023] Open
Abstract
Resistance of viruses to mutagenic agents is an important problem for the development of lethal mutagenesis as an antiviral strategy. Previous studies with RNA viruses have documented that resistance to the mutagenic nucleoside analogue ribavirin (1-β-D-ribofuranosyl-1-H-1,2,4-triazole-3-carboxamide) is mediated by amino acid substitutions in the viral polymerase that either increase the general template copying fidelity of the enzyme or decrease the incorporation of ribavirin into RNA. Here we describe experiments that show that replication of the important picornavirus pathogen foot-and-mouth disease virus (FMDV) in the presence of increasing concentrations of ribavirin results in the sequential incorporation of three amino acid substitutions (M296I, P44S and P169S) in the viral polymerase (3D). The main biological effect of these substitutions is to attenuate the consequences of the mutagenic activity of ribavirin —by avoiding the biased repertoire of transition mutations produced by this purine analogue—and to maintain the replicative fitness of the virus which is able to escape extinction by ribavirin. This is achieved through alteration of the pairing behavior of ribavirin-triphosphate (RTP), as evidenced by in vitro polymerization assays with purified mutant 3Ds. Comparison of the three-dimensional structure of wild type and mutant polymerases suggests that the amino acid substitutions alter the position of the template RNA in the entry channel of the enzyme, thereby affecting nucleotide recognition. The results provide evidence of a new mechanism of resistance to a mutagenic nucleoside analogue which allows the virus to maintain a balance among mutation types introduced into progeny genomes during replication under strong mutagenic pressure. Viruses that have RNA as genetic material include many important human, animal and plant pathogens. A new strategy against RNA viruses consists in using mutagenic nucleotides. The objective is to provoke an excessive number of mutations, to deteriorate the viral functions to the point that the virus can not survive. One of the mutagens used in research on lethal mutagenesis is ribavirin, extensively employed in clinical practice. Unfortunately, viral mutants that are resistant to ribavirin have been selected, thus facilitating escape from lethal mutagenesis. Here we describe a new mechanism by which foot-and-mouth disease virus (FMDV) can become resistant to ribavirin. Amino acid changes in the viral polymerase, selected by ribavirin, are able to modify the types of mutations produced in the presence of ribavirin. Biochemical data indicate that the alteration of the enzyme changes the pairing behavior of ribavirin, avoiding the production of an excess of some types of mutations, supporting the hypothesis that an unbalanced mutation repertoire is detrimental to the virus. Thus, this new mechanism of resistance to ribavirin is based not as much in limiting the number of mutations in the virus genetic material but in ensuring an equilibrium among different types of mutations that favors viral survival.
Collapse
Affiliation(s)
- Rubén Agudo
- Centro de Biologia Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Cristina Ferrer-Orta
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Armando Arias
- Centro de Biologia Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
| | | | - Celia Perales
- Centro de Biologia Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Rosa Pérez-Luque
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Nuria Verdaguer
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Esteban Domingo
- Centro de Biologia Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- * E-mail:
| |
Collapse
|