1
|
Wang TT, Hirons A, Doerflinger M, Morris KV, Ledger S, Purcell DFJ, Kelleher AD, Ahlenstiel CL. Current State of Therapeutics for HTLV-1. Viruses 2024; 16:1616. [PMID: 39459949 PMCID: PMC11512412 DOI: 10.3390/v16101616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Human T cell leukaemia virus type-1 (HTLV-1) is an oncogenic retrovirus that causes lifelong infection in ~5-10 million individuals globally. It is endemic to certain First Nations populations of Northern and Central Australia, Japan, South and Central America, Africa, and the Caribbean region. HTLV-1 preferentially infects CD4+ T cells and remains in a state of reduced transcription, often being asymptomatic in the beginning of infection, with symptoms developing later in life. HTLV-1 infection is implicated in the development of adult T cell leukaemia/lymphoma (ATL) and HTLV-1-associated myelopathies (HAM), amongst other immune-related disorders. With no preventive or curative interventions, infected individuals have limited treatment options, most of which manage symptoms. The clinical burden and lack of treatment options directs the need for alternative treatment strategies for HTLV-1 infection. Recent advances have been made in the development of RNA-based antiviral therapeutics for Human Immunodeficiency Virus Type-1 (HIV-1), an analogous retrovirus that shares modes of transmission with HTLV-1. This review highlights past and ongoing efforts in the development of HTLV-1 therapeutics and vaccines, with a focus on the potential for gene therapy as a new treatment modality in light of its successes in HIV-1, as well as animal models that may help the advancement of novel antiviral and anticancer interventions.
Collapse
Affiliation(s)
- Tiana T. Wang
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
| | - Ashley Hirons
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3052, Australia; (A.H.); (D.F.J.P.)
| | - Marcel Doerflinger
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Kevin V. Morris
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia;
| | - Scott Ledger
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
| | - Damian F. J. Purcell
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3052, Australia; (A.H.); (D.F.J.P.)
| | - Anthony D. Kelleher
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chantelle L. Ahlenstiel
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Molecular targeting for treatment of human T-lymphotropic virus type 1 infection. Biomed Pharmacother 2019; 109:770-778. [DOI: 10.1016/j.biopha.2018.10.139] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022] Open
|
3
|
Hoshino H. Cellular Factors Involved in HTLV-1 Entry and Pathogenicit. Front Microbiol 2012; 3:222. [PMID: 22737146 PMCID: PMC3380293 DOI: 10.3389/fmicb.2012.00222] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 05/30/2012] [Indexed: 01/13/2023] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T cell leukemia (ATL) and HTLV-1 – associated myelopathy and tropical spastic paraparesis (HAM/TSP). HTLV-1 has a preferential tropism for CD4 T cells in healthy carriers and ATL patients, while both CD4 and CD8 T cells serve as viral reservoirs in HAM/TSP patients. HTLV-1 has also been detected other cell types, including monocytes, endothelial cells, and dendritic cells. In contrast to the limited cell tropism of HTLV-1 in vivo, the HTLV receptor appears to be expressed in almost all human or animal cell lines. It remains to be examined whether this cell tropism is determined by host factors or by HTLV-1 heterogeneity. Unlike most retroviruses, cell-free virions of HTLV-1 are very poorly infectious. The lack of completely HTLV-1-resistant cells and the low infectivity of HTLV-1 have hampered research on the HTLV entry receptor. Entry of HTLV-1 into target cells is thought to involve interactions between the env (Env) glycoproteins, a surface glycoprotein (surface unit), and a transmembrane glycoprotein. Recent studies have shown that glucose transporter GLUT1, heparan sulfate proteoglycans (HSPGs), and neuropilin-1 (NRP-1) are the three proteins important for the entry of HTLV-1. Studies using adherent cell lines have shown that GLUT1 can function as a receptor for HTLV. HSPGs are required for efficient entry of HTLV-1 into primary CD4 T cells. NRP-1 is expressed in most established cell lines. Further studies have shown that these three molecules work together to promote HTLV-1 binding to cells and fusion of viral and cell membranes. The virus could first contact with HSPGs and then form complexes with NRP-1, followed by association with GLUT1. It remains to be determined whether these three molecules can explain HTLV-1 cell tropism. It also remains to be more definitively proven that these molecules are sufficient to permit HTLV-1 entry into completely HTLV-1-resistant cells.
Collapse
Affiliation(s)
- Hiroo Hoshino
- Advanced Scientific Research-Leaders Development Unit, Gunma University Graduate School of Medicine Maebashi, Gunma, Japan
| |
Collapse
|
4
|
Lee KK, Pessi A, Gui L, Santoprete A, Talekar A, Moscona A, Porotto M. Capturing a fusion intermediate of influenza hemagglutinin with a cholesterol-conjugated peptide, a new antiviral strategy for influenza virus. J Biol Chem 2011; 286:42141-42149. [PMID: 21994935 DOI: 10.1074/jbc.m111.254243] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We previously described fusion-inhibitory peptides that are targeted to the cell membrane by cholesterol conjugation and potently inhibit enveloped viruses that fuse at the cell surface, including HIV, parainfluenza, and henipaviruses. However, for viruses that fuse inside of intracellular compartments, fusion-inhibitory peptides have exhibited very low antiviral activity. We propose that for these viruses, too, membrane targeting via cholesterol conjugation may yield potent compounds. Here we compare the activity of fusion-inhibitory peptides derived from the influenza hemagglutinin (HA) and show that although the unconjugated peptides are inactive, the cholesterol-conjugated compounds are effective inhibitors of infectivity and membrane fusion. We hypothesize that the cholesterol moiety, by localizing the peptides to the target cell membrane, allows the peptides to follow the virus to the intracellular site of fusion. The cholesterol-conjugated peptides trap HA in a transient intermediate state after fusion is triggered but before completion of the refolding steps that drive the merging of the viral and cellular membranes. These results provide proof of concept for an antiviral strategy that is applicable to intracellularly fusing viruses, including known and emerging viral pathogens.
Collapse
Affiliation(s)
- Kelly K Lee
- Department of Medicinal Chemistry and Biomolecular Structure and Design Program, University of Washington, Seattle, Washington 98195.
| | - Antonello Pessi
- PeptiPharma, Via dei Castelli Romani 22, 00040 Pomezia, Rome, Italy
| | - Long Gui
- Department of Medicinal Chemistry and Biomolecular Structure and Design Program, University of Washington, Seattle, Washington 98195
| | - Alessia Santoprete
- Departments of Pediatrics and of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021
| | - Aparna Talekar
- Departments of Pediatrics and of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021
| | - Anne Moscona
- Departments of Pediatrics and of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021
| | - Matteo Porotto
- Departments of Pediatrics and of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021.
| |
Collapse
|
5
|
Lamb D, Schüttelkopf AW, van Aalten DMF, Brighty DW. Charge-surrounded pockets and electrostatic interactions with small ions modulate the activity of retroviral fusion proteins. PLoS Pathog 2011; 7:e1001268. [PMID: 21304939 PMCID: PMC3033372 DOI: 10.1371/journal.ppat.1001268] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 12/31/2010] [Indexed: 11/25/2022] Open
Abstract
Refolding of viral class-1 membrane fusion proteins from a native state to a trimer-of-hairpins structure promotes entry of viruses into cells. Here we present the structure of the bovine leukaemia virus transmembrane glycoprotein (TM) and identify a group of asparagine residues at the membrane-distal end of the trimer-of-hairpins that is strikingly conserved among divergent viruses. These asparagines are not essential for surface display of pre-fusogenic envelope. Instead, substitution of these residues dramatically disrupts membrane fusion. Our data indicate that, through electrostatic interactions with a chloride ion, the asparagine residues promote assembly and profoundly stabilize the fusion-active structures that are required for viral envelope-mediated membrane fusion. Moreover, the BLV TM structure also reveals a charge-surrounded hydrophobic pocket on the central coiled coil and interactions with basic residues that cluster around this pocket are critical to membrane fusion and form a target for peptide inhibitors of envelope function. Charge-surrounded pockets and electrostatic interactions with small ions are common among class-1 fusion proteins, suggesting that small molecules that specifically target such motifs should prevent assembly of the trimer-of-hairpins and be of value as therapeutic inhibitors of viral entry. Human T-cell leukaemia virus types-1 (HTLV-1) and bovine leukaemia virus (BLV) are divergent blood borne viruses that cause hematological malignancies in humans and cattle respectively. In common with other enveloped viruses, infection of cells by HTLV-1 and BLV is dependent on the membrane fusion properties of the viral envelope glycoproteins. Here we have solved the crystal structure of the BLV transmembrane glycoprotein, and, through a functional and comparative analysis with HTLV-1, we have identified features that are critical to fusion protein function. In particular, we demonstrate that electrostatic interactions with small ions dramatically stabilize the assembly and fusion-associated forms of the BLV TM, but are not required for the cell surface display of native pre-fusogenic envelope. Moreover, we show that charged residues that border a deep hydrophobic pocket contribute directly to appropriate folding of fusion-active envelope and are critical to membrane fusion. Importantly, the charged residues that border the pocket are key features that determine the specificity and activity of peptide inhibitors of envelope function. Our study demonstrates that charge-surrounded pockets and electrostatic interactions with small ions are significant leitmotifs of diverse class-1 fusion proteins and that these elements represent ideal targets for novel small-molecule inhibitors of viral entry.
Collapse
Affiliation(s)
- Daniel Lamb
- The Biomedical Research Institute, College of Medicine, Ninewells Hospital, The University of Dundee, Dundee, United Kingdom
| | - Alexander W. Schüttelkopf
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Daan M. F. van Aalten
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - David W. Brighty
- The Biomedical Research Institute, College of Medicine, Ninewells Hospital, The University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Bagossi P, Bander P, Bozóki B, Tözsér J. Discovery and significance of new human T-lymphotropic viruses: HTLV-3 and HTLV-4. Expert Rev Anti Infect Ther 2010; 7:1235-49. [PMID: 19968515 DOI: 10.1586/eri.09.97] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) and type 2 (HTLV-2) were discovered approximately 30 years ago and they are associated with various lymphoproliferative and neurological diseases. The estimated number of infected people is 10-20 million worldwide. In 2005, two new HTLV-1/HTLV-2-related viruses were detected, HTLV-3 and HTLV-4, from the same geographical area of Africa. In the last 4 years, their complete genomic sequences were determined and some of their characteristic features were studied in detail. These newly discovered retroviruses alongside their human (HTLV-1 and -2) and animal relatives (simian T-lymphotropic virus type 1-3) are reviewed. The potential risks associated with these viruses and the potential antiretroviral therapies are also discussed.
Collapse
Affiliation(s)
- Péter Bagossi
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary.
| | | | | | | |
Collapse
|
7
|
The six-helix bundle of human immunodeficiency virus Env controls pore formation and enlargement and is initiated at residues proximal to the hairpin turn. J Virol 2009; 83:10048-57. [PMID: 19625396 DOI: 10.1128/jvi.00316-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Residues that create the grooves of the human immunodeficiency virus type 1 (HIV-1) Env triple-stranded coiled coil (HR1) and the residues that pack into the grooves (HR2) to complete the formation of the six-helix bundle (6HB) were mutated. The extent and kinetics of fusion as well as pore enlargement were measured for each mutant. Mutations near the hairpin turns of each monomer of the 6HB were more important than those far from the turn, for both HR1 and HR2. This result is consistent with the idea that binding of HR2 to the HR1 grooves is initiated near the hairpin turn of each monomer. Mutations at the distal portions also reduced fusion, albeit to a smaller extent. An intermediate of fusion (temperature-arrested state [TAS]) was formed, and the consequences of mutation were compared; a mutant that exhibited less fusion also showed slower kinetics from TAS. This suggests that formation of the bundle is a rate-limiting step downstream of the intermediate state. The rate of enlargement of a fusion pore also correlated with the extent and kinetics of fusion. The rate of pore enlargement was severely reduced by mutation. This supports our prior conclusion that formation of the 6HB occurs after pore creation and strongly suggests that the free energy released by bundle formation is directly used to promote pore growth.
Collapse
|
8
|
|
9
|
Abstract
The entry of viruses into target cells involves a complex series of sequential steps, with opportunities for inhibition at every stage. Entry inhibitors exert their biological properties by inhibiting protein-protein interactions either within the viral envelope (Env) glycoproteins or between viral Env and host-cell receptors. The nature of resistance to entry inhibitors also differs from compounds inhibiting enzymatic targets due to their different modes of action and the relative variability in Env sequences both temporally and between patients. Two drugs that target HIV-1 entry, enfuvirtide and maraviroc, are now licensed for treatment of HIV-1 infection. The efficacy of these drugs validates entry as a point of intervention in viral life cycles and, in the context of HIV treatment, contributes to the growing armamentarium of antivirals which, in multidrug combinations, can effectively inhibit viral replication and prevent disease progression.
Collapse
Affiliation(s)
- Tom Melby
- Clinical Virology Associates, 101 E. Ellerbee St. Durham, NC 27704, USA.
| | | |
Collapse
|
10
|
Lamb D, Mirsaliotis A, Kelly SM, Brighty DW. Basic residues are critical to the activity of peptide inhibitors of human T cell leukemia virus type 1 entry. J Biol Chem 2008; 284:6575-84. [PMID: 19114713 DOI: 10.1074/jbc.m806725200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A synthetic peptide based on the leash and alpha-helical region (LHR) of human T cell leukemia virus type 1 envelope is a potent inhibitor of viral entry into cells. The inhibitory peptide targets a triple-stranded coiled-coil motif of the fusion-active transmembrane glycoprotein and in a trans-dominant negative manner blocks resolution to the trimer-of-hairpins form. The LHR-mimetic is, therefore, functionally analogous to the C34/T20-type inhibitors of human immunodeficiency virus. Previous attempts to shorten the bioactive peptide produced peptides with severely attenuated activity. We now demonstrate that truncated peptides often suffer from poor solubility and impaired coiled coil binding properties, and we identify features that are critical to peptide function. In particular, the alpha-helical region of the LHR-mimetic is necessary but not sufficient for inhibitory activity. Moreover, two basic residues are crucial for coiled-coil binding and efficient inhibition of membrane fusion. By retaining these basic residues and a region of main chain peptide contacts with the coiled coil, a core LHR-mimetic was obtained that retains both the inhibitory properties and solubility profile of the parental peptide. Variants of the core peptide inhibit both membrane fusion and infection of cells by free viral particles, but unexpectedly, infection by virions was more susceptible to inhibition by low activity inhibitors than syncytium formation. The core inhibitor provides a valuable lead in the search for smaller more bio-available peptides and peptido-mimetics that possess anti-viral activity. Such molecules may be attractive candidates for therapeutic intervention in human T cell leukemia virus type 1 infections.
Collapse
Affiliation(s)
- Daniel Lamb
- Biomedical Research Centre, Ninewells Hospital and Medical School, The University, Dundee DD1 9SY, Scotland, United Kingdom
| | | | | | | |
Collapse
|
11
|
Lamb D, Schüttelkopf AW, van Aalten DMF, Brighty DW. Highly specific inhibition of leukaemia virus membrane fusion by interaction of peptide antagonists with a conserved region of the coiled coil of envelope. Retrovirology 2008; 5:70. [PMID: 18680566 PMCID: PMC2533354 DOI: 10.1186/1742-4690-5-70] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 08/04/2008] [Indexed: 01/19/2023] Open
Abstract
Background Human T-cell leukaemia virus (HTLV-1) and bovine leukaemia virus (BLV) entry into cells is mediated by envelope glycoprotein catalyzed membrane fusion and is achieved by folding of the transmembrane glycoprotein (TM) from a rod-like pre-hairpin intermediate to a trimer-of-hairpins. For HTLV-1 and for several virus groups this process is sensitive to inhibition by peptides that mimic the C-terminal α-helical region of the trimer-of-hairpins. Results We now show that amino acids that are conserved between BLV and HTLV-1 TM tend to map to the hydrophobic groove of the central triple-stranded coiled coil and to the leash and C-terminal α-helical region (LHR) of the trimer-of-hairpins. Remarkably, despite this conservation, BLV envelope was profoundly resistant to inhibition by HTLV-1-derived LHR-mimetics. Conversely, a BLV LHR-mimetic peptide antagonized BLV envelope-mediated membrane fusion but failed to inhibit HTLV-1-induced fusion. Notably, conserved leucine residues are critical to the inhibitory activity of the BLV LHR-based peptides. Homology modeling indicated that hydrophobic residues in the BLV LHR likely make direct contact with a pocket at the membrane-proximal end of the core coiled-coil and disruption of these interactions severely impaired the activity of the BLV inhibitor. Finally, the structural predictions assisted the design of a more potent antagonist of BLV membrane fusion. Conclusion A conserved region of the HTLV-1 and BLV coiled coil is a target for peptide inhibitors of envelope-mediated membrane fusion and HTLV-1 entry. Nevertheless, the LHR-based inhibitors are highly specific to the virus from which the peptide was derived. We provide a model structure for the BLV LHR and coiled coil, which will facilitate comparative analysis of leukaemia virus TM function and may provide information of value in the development of improved, therapeutically relevant, antagonists of HTLV-1 entry into cells.
Collapse
Affiliation(s)
- Daniel Lamb
- The Biomedical Research Centre, College of Medicine, Ninewells Hospital, The University, Dundee, DD1 9SY, Scotland, UK.
| | | | | | | |
Collapse
|