1
|
Tau RL, Ferreccio C, Bachir N, Torales F, Romera SA, Maidana SS. Comprehensive Analysis of Equid Herpesvirus Recombination: An Insight Into the Repeat Regions. J Equine Vet Sci 2023; 130:104916. [PMID: 37704182 DOI: 10.1016/j.jevs.2023.104916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
High-throughput sequencing of genomes has expanded our knowledge of the Alphaherpesvirinae, a widely extended subfamily of DNA viruses that recombine to increase their genetic diversity. It has been acknowledged that equid herpesvirus 1 (EHV-1) and equid herpesvirus 4 (EHV-4), two alphaherpesviruses with an economic impact on the horse industry, can recombine. This work aimed to analyze interspecific recombination between all equid alphaherpesvirus species, using genomes of EHV-1, EHV-3, EHV-4, EHV-6, EHV-8, and EHV-9 available in GenBank. 14 events of recombination by RDP4 and Simplot between EHV-1 x EHV-4, EHV-1 x EHV-9, EHV-8 x EHV-1, and EHV-8 x EHV-9 were identified. Ten out of 14 events involved ORF64, a double-copy gene located at the repeat regions that codifies for the infected cell protein 4 (ICP4). Among the ICP4, recombination can be found between EHV-1 X EHV-9, EHV-8 X EHV-9, and EHV-1 X EHV-4, the former affects zebra-borne genotypes, a type of EHV-1 that infect wild equids, and the latter match with previous breakpoints reported in fields isolates. Consequently, these findings strongly suggest that ICP4 is a hotspot for recombination. This work describes novel recombination events and is the first genome-wide recombination analysis using all available equid alphaherpesvirus species genomes.
Collapse
Affiliation(s)
- Rocío Lucía Tau
- Institute of Virology and Technological Innovations, IVIT (INTA-CONICET), Dr Nicolas Repetto and De los Reseros, CP 1686, Hurlingham, Buenos Aires, Argentina.
| | - Carola Ferreccio
- Institute of Virology and Technological Innovations, IVIT (INTA-CONICET), Dr Nicolas Repetto and De los Reseros, CP 1686, Hurlingham, Buenos Aires, Argentina; Chair of immunology, University of Salvador (USAL), Champagnat 1599, CP 1630, Pilar, Buenos Aires, Argentina
| | - Natalia Bachir
- Institute of Virology and Technological Innovations, IVIT (INTA-CONICET), Dr Nicolas Repetto and De los Reseros, CP 1686, Hurlingham, Buenos Aires, Argentina
| | - Fatima Torales
- Institute of Virology and Technological Innovations, IVIT (INTA-CONICET), Dr Nicolas Repetto and De los Reseros, CP 1686, Hurlingham, Buenos Aires, Argentina
| | - Sonia Alejandra Romera
- Institute of Virology and Technological Innovations, IVIT (INTA-CONICET), Dr Nicolas Repetto and De los Reseros, CP 1686, Hurlingham, Buenos Aires, Argentina; Chair of immunology, University of Salvador (USAL), Champagnat 1599, CP 1630, Pilar, Buenos Aires, Argentina
| | - Silvina Soledad Maidana
- Institute of Virology and Technological Innovations, IVIT (INTA-CONICET), Dr Nicolas Repetto and De los Reseros, CP 1686, Hurlingham, Buenos Aires, Argentina; Chair of immunology, University of Salvador (USAL), Champagnat 1599, CP 1630, Pilar, Buenos Aires, Argentina
| |
Collapse
|
2
|
Onasanya AE, El-Hage C, Diaz-Méndez A, Vaz PK, Legione AR, Browning GF, Devlin JM, Hartley CA. Whole genome sequence analysis of equid gammaherpesvirus -2 field isolates reveals high levels of genomic diversity and recombination. BMC Genomics 2022; 23:622. [PMID: 36042397 PMCID: PMC9426266 DOI: 10.1186/s12864-022-08789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background Equid gammaherpesvirus 2 (EHV2) is a gammaherpesvirus with a widespread distribution in horse populations globally. Although its pathogenic significance can be unclear in most cases of infection, EHV2 infection can cause upper respiratory tract disease in foals. Co-infection of different strains of EHV2 in an individual horse is common. Small regions of the EHV2 genome have shown considerable genetic heterogeneity. This could suggest genomic recombination between different strains of EHV2, similar to the extensive recombination networks that have been demonstrated for some alphaherpesviruses. This study examined natural recombination and genome diversity of EHV2 field isolates. Results Whole genome sequencing analysis of 18 EHV2 isolates, along with analysis of two publicly available EHV2 genomes, revealed variation in genomes sizes (from 173.7 to 184.8 kbp), guanine plus cytosine content (from 56.7 to 57.8%) and the size of the terminal repeat regions (from 17,196 to 17,551 bp). The nucleotide sequence identity between the genomes ranged from 86.2 to 99.7%. The estimated average inter-strain nucleotide diversity between the 20 EHV2 genomes was 2.9%. Individual gene sequences showed varying levels of nucleotide diversity and ranged between 0 and 38.1%. The ratio of nonsynonymous substitutions, Ka, to synonymous substitutions, Ks, (Ka/Ks) suggests that over 50% of EHV2 genes are undergoing diversifying selection. Recombination analyses of the 20 EHV2 genome sequences using the recombination detection program (RDP4) and SplitsTree revealed evidence of viral recombination. Conclusions Analysis of the 18 new EHV2 genomes alongside the 2 previously sequenced genomes revealed a high degree of genetic diversity and extensive recombination networks. Herpesvirus genome diversification and virus evolution can be driven by recombination, and our findings are consistent with recombination being a key mechanism by which EHV2 genomes may vary and evolve.
Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08789-x.
Collapse
Affiliation(s)
- Adepeju E Onasanya
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Charles El-Hage
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia.,Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Andrés Diaz-Méndez
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paola K Vaz
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alistair R Legione
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Glenn F Browning
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joanne M Devlin
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Carol A Hartley
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
3
|
Romera SA, Perez R, Marandino A, LuciaTau R, Campos F, Roehe PM, Thiry E, Maidana SS. Whole-genome analysis of natural interspecific recombinant between bovine alphaherpesviruses 1 and 5. Virus Res 2021; 309:198656. [PMID: 34915090 DOI: 10.1016/j.virusres.2021.198656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022]
Abstract
Bovine alphaherpesviruses 1 and 5 (BoHV-1 and BoHV-5) are closely related viruses that co-circulate in South America and recombine in the field. The complete genomes of three natural gB gene recombinant viruses between BoHV-1 and BoHV-5 were obtained by Illumina next-generation sequencing. Complete genome sequences of the three recombinant strains (RecA1, RecB2, and RecC2) have a similar size of approximately 138.3kb and a GC content of 75%. The genome structure corresponds to herpesvirus class D, with 69 open reading frames (ORFs) arranged in the same order as other bovine alphaherpesviruses related to BoHV-1. Their genomes were included in recombination network studies indicating statistically significant recombination evidence both based on the whole genome, as well as in the sub-regions. The novel recombinant region of 3074 nt of the RecB2 and RecC2 strains includes the complete genes of the myristylated tegument protein (UL11) and the glycoprotein M (UL10) and part of the helicase (UL9) gene, and it seems to have originated independently of the first recombinant event involving the gB gene. Phylogenetic analyzes performed with the amino acid sequences of UL9, UL 10, and UL11 indicated that RecB2 and RecC2 recombinants are closely related to the minor parental virus (BoHV-1.2b). On the contrary, RecA1 groups with the major parental (BoHV-5), thus confirming the absence of recombination in this region for this recombinant. One breakpoint in the second recombinant region lies in the middle of the UL9 reading frame, originating a chimeric enzyme half encoded by BoHV-5 and BoHV-1.2b parental strains. The chimeric helicases of both recombinants are identical and have 96.8 and 96.3% similarity with the BoHV-5 and BoHV-1 parents, respectively. In vitro characterization suggests that recombinants have delayed exit from the cell compared to parental strains. However, they produce the similar viral titer as their putative parents suggesting the accumulation of viral particles for the cell exit delayed on time. Despite in vitro different behavior, these natural recombinant viruses have been maintained in the bovine population for more than 30 years, indicating that recombination could be playing an important role in the biological diversity of these viral species. Our findings highlight the importance of studying whole genome diversity in the field and determining the role that homologous recombination plays in the structure of viral populations. A whole-genome recombinant characterization is a suitable tool to help understand the emergence of new viral forms with novel pathogenic features.
Collapse
Affiliation(s)
- Sonia Alejandra Romera
- Instituto de Virología e Innovaciones Tecnológicas IVIT (INTA-CONICET), Castelar, Buenos Aires, Argentina; Cátedra de Inmunología, Universidad del Salvador, Provincia de Buenos Aires, Argentina; Cátedra de Inmunogenética, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad de Morón, Morón, Buenos Aires, Argentina
| | - Ruben Perez
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ana Marandino
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rocio LuciaTau
- Instituto de Virología e Innovaciones Tecnológicas IVIT (INTA-CONICET), Castelar, Buenos Aires, Argentina
| | - Fabricio Campos
- Laboratory of Bioinformatics & Biotechnology, Campus de Gurupi, Federal University of Tocantins, Gurupi, Tocantins, Brazil
| | - Paulo Michel Roehe
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, Fundamental and Applied Research on Animal Health center and Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Silvina Soledad Maidana
- Instituto de Virología e Innovaciones Tecnológicas IVIT (INTA-CONICET), Castelar, Buenos Aires, Argentina; Cátedra de Inmunogenética, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad de Morón, Morón, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Gennart I, Petit A, Wiggers L, Pejaković S, Dauchot N, Laurent S, Coupeau D, Muylkens B. Epigenetic Silencing of MicroRNA-126 Promotes Cell Growth in Marek's Disease. Microorganisms 2021; 9:microorganisms9061339. [PMID: 34205549 PMCID: PMC8235390 DOI: 10.3390/microorganisms9061339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/30/2022] Open
Abstract
During latency, herpesvirus infection results in the establishment of a dormant state in which a restricted set of viral genes are expressed. Together with alterations of the viral genome, several host genes undergo epigenetic silencing during latency. These epigenetic dysregulations of cellular genes might be involved in the development of cancer. In this context, Gallid alphaherpesvirus 2 (GaHV-2), causing Marek’s disease (MD) in susceptible chicken, was shown to impair the expression of several cellular microRNAs (miRNAs). We decided to focus on gga-miR-126, a host miRNA considered a tumor suppressor through signaling pathways controlling cell proliferation. Our objectives were to analyze the cause and the impact of miR-126 silencing during GaHV-2 infection. This cellular miRNA was found to be repressed at crucial steps of the viral infection. In order to determine whether miR-126 low expression level was associated with specific epigenetic signatures, DNA methylation patterns were established in the miR-126 gene promoter. Repression was associated with hypermethylation at a CpG island located in the miR-126 host gene epidermal growth factor like-7 (EGFL-7). A strategy was developed to conditionally overexpress miR-126 and control miRNAs in transformed CD4+ T cells propagated from Marek’s disease (MD) lymphoma. This functional assay showed that miR-126 restoration specifically diminishes cell proliferation. We identified CT10 regulator of kinase (CRK), an adaptor protein dysregulated in several human malignancies, as a candidate target gene. Indeed, CRK protein levels were markedly reduced by the miR-126 restoration.
Collapse
Affiliation(s)
- Isabelle Gennart
- Integrated Veterinary Research Unit (URVI), Namur Research Institute for Life Sciences (NARILIS), Université de Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium; (I.G.); (L.W.); (S.P.); (D.C.)
| | - Astrid Petit
- Integrated Veterinary Research Unit (URVI), Namur Research Institute for Life Sciences (NARILIS), Université de Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium; (I.G.); (L.W.); (S.P.); (D.C.)
- Correspondence: (A.P.); (B.M.)
| | - Laetitia Wiggers
- Integrated Veterinary Research Unit (URVI), Namur Research Institute for Life Sciences (NARILIS), Université de Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium; (I.G.); (L.W.); (S.P.); (D.C.)
| | - Srđan Pejaković
- Integrated Veterinary Research Unit (URVI), Namur Research Institute for Life Sciences (NARILIS), Université de Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium; (I.G.); (L.W.); (S.P.); (D.C.)
| | - Nicolas Dauchot
- Unit of Research in Plant Cellular and Molecular Biology (URBV), Université de Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium;
| | - Sylvie Laurent
- Département Santé Animale, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre Val de Loire, 37380 Nouzilly, France;
| | - Damien Coupeau
- Integrated Veterinary Research Unit (URVI), Namur Research Institute for Life Sciences (NARILIS), Université de Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium; (I.G.); (L.W.); (S.P.); (D.C.)
| | - Benoît Muylkens
- Integrated Veterinary Research Unit (URVI), Namur Research Institute for Life Sciences (NARILIS), Université de Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium; (I.G.); (L.W.); (S.P.); (D.C.)
- Correspondence: (A.P.); (B.M.)
| |
Collapse
|
5
|
Analysis of Whole-Genome Sequences of Infectious laryngotracheitis Virus Isolates from Poultry Flocks in Canada: Evidence of Recombination. Viruses 2020; 12:v12111302. [PMID: 33198373 PMCID: PMC7696358 DOI: 10.3390/v12111302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 01/09/2023] Open
Abstract
Infectious laryngotracheitis virus (ILTV) is a herpes virus that causes an acute respiratory disease of poultry known as infectious laryngotracheitis (ILT). Chicken embryo origin (CEO) and tissue culture origin (TCO) live attenuated vaccines are routinely used for the control of ILT. However, vaccine virus is known to revert to virulence, and it has been recently shown that ILT field viral strains can undergo recombination with vaccinal ILTV and such recombinant ILT viruses possess greater transmission and pathogenicity potential. Based on complete or partial genes of the ILTV genome, few studies genotyped ILTV strains circulating in Canada, and so far, information is scarce on whole-genome sequencing or the presence of recombination in Canadian ILTV isolates. The objective of this study was to genetically characterize the 14 ILTV isolates that originated from three provinces in Canada (Alberta, British Columbia and Quebec). To this end, a phylogenetic analysis of 50 ILTV complete genome sequences, including 14 sequences of Canadian origin, was carried out. Additional phylogenetic analysis of the unique long, unique short and inverted repeat regions of the ILTV genome was also performed. We observed that 71%, 21% and 7% of the ILTV isolates were categorized as CEO revertant, wild-type and TCO vaccine-related, respectively. The sequences were also analyzed for potential recombination events, which included evidence in the British Columbia ILTV isolate. This event involved two ILTV vaccine (CEO) strains as parental strains. Recombination analysis also identified that one ILTV isolate from Alberta as a potential parental strain for a United States origin ILTV isolate. The positions of the possible recombination breakpoints were identified. These results indicate that the ILTV wild-type strains can recombine with vaccinal strains complicating vaccine-mediated control of ILT. Further studies on the pathogenicity of these ILTV strains, including the recombinant ILTV isolate are currently ongoing.
Collapse
|
6
|
Maidana SS, Miño S, Apostolo RM, De Stefano GA, Romera SA. A new molecular method for the rapid subtyping of bovine herpesvirus 1 field isolates. J Vet Diagn Invest 2020; 32:112-117. [PMID: 32013802 DOI: 10.1177/1040638719898692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1) causes several clinical syndromes in cattle worldwide. There are 3 subtypes of BoHV-1: 1.1, 1.2a, and 1.2b. Several molecular methods are commonly used in the detection and characterization of BoHV-1. Among them, restriction endonuclease analysis (REA) and single-nucleotide polymorphism (SNP) analysis of the complete viral genome allow classification of BoHV-1 into different subtypes. However, developing countries need simpler and cheaper screening assays for routine testing. We designed a standard multiplex PCR followed by a REA assay allowing straightforward subclassification of all BoHV-1 isolates tested into 1.1, 1.2a, and 1.2b subtypes based on the analysis of fragment length polymorphism. Our standard multiplex PCR-REA was used to analyze 33 field strains of BoHV-1 isolated from various tissues. The assay confirmed the subtype identified previously by REA. In addition, non-polymorphic or undigested fragments were sequenced in order to confirm the mutation affecting the RE HindIII site. Our PCR-REA method is an affordable and rapid test that will subtype all BoHV-1 strains.
Collapse
Affiliation(s)
- Silvina S Maidana
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina (Maidana).,Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Virología e Innovaciones Tecnológicas (IVIT), INTA-CONICET (Miño, De Stefano, Romera).,INTA, Estación Experimental Agropecuaria (EEA)-Esquel, Chubut, Argentina (Apostolo).,Cátedra de Inmunogenética, Facultad de Ciencias exactas, Químicas y Naturales, Universidad de Morón, Buenos Aires, Argentina (Maidana, Romera).,Cátedra de Inmunología, Universidad del Salvador, Buenos Aires, Argentina (Romera)
| | - Samuel Miño
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina (Maidana).,Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Virología e Innovaciones Tecnológicas (IVIT), INTA-CONICET (Miño, De Stefano, Romera).,INTA, Estación Experimental Agropecuaria (EEA)-Esquel, Chubut, Argentina (Apostolo).,Cátedra de Inmunogenética, Facultad de Ciencias exactas, Químicas y Naturales, Universidad de Morón, Buenos Aires, Argentina (Maidana, Romera).,Cátedra de Inmunología, Universidad del Salvador, Buenos Aires, Argentina (Romera)
| | - Romina M Apostolo
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina (Maidana).,Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Virología e Innovaciones Tecnológicas (IVIT), INTA-CONICET (Miño, De Stefano, Romera).,INTA, Estación Experimental Agropecuaria (EEA)-Esquel, Chubut, Argentina (Apostolo).,Cátedra de Inmunogenética, Facultad de Ciencias exactas, Químicas y Naturales, Universidad de Morón, Buenos Aires, Argentina (Maidana, Romera).,Cátedra de Inmunología, Universidad del Salvador, Buenos Aires, Argentina (Romera)
| | - Gabriel A De Stefano
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina (Maidana).,Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Virología e Innovaciones Tecnológicas (IVIT), INTA-CONICET (Miño, De Stefano, Romera).,INTA, Estación Experimental Agropecuaria (EEA)-Esquel, Chubut, Argentina (Apostolo).,Cátedra de Inmunogenética, Facultad de Ciencias exactas, Químicas y Naturales, Universidad de Morón, Buenos Aires, Argentina (Maidana, Romera).,Cátedra de Inmunología, Universidad del Salvador, Buenos Aires, Argentina (Romera)
| | - Sonia A Romera
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina (Maidana).,Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Virología e Innovaciones Tecnológicas (IVIT), INTA-CONICET (Miño, De Stefano, Romera).,INTA, Estación Experimental Agropecuaria (EEA)-Esquel, Chubut, Argentina (Apostolo).,Cátedra de Inmunogenética, Facultad de Ciencias exactas, Químicas y Naturales, Universidad de Morón, Buenos Aires, Argentina (Maidana, Romera).,Cátedra de Inmunología, Universidad del Salvador, Buenos Aires, Argentina (Romera)
| |
Collapse
|
7
|
Genomic recombination between infectious laryngotracheitis vaccine strains occurs under a broad range of infection conditions in vitro and in ovo. PLoS One 2020; 15:e0229082. [PMID: 32119681 PMCID: PMC7051062 DOI: 10.1371/journal.pone.0229082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
Gallid alphaherpesvirus 1 causes infectious laryngotracheitis (ILT) in farmed poultry worldwide. Intertypic recombination between vaccine strains of this virus has generated novel and virulent isolates in field conditions. In this study, in vitro and in ovo systems were co-infected and superinfected under different conditions with two genomically distinct and commonly used ILTV vaccines. The progeny virus populations were examined for the frequency and pattern of recombination events using multi-locus high-resolution melting curve analysis of polymerase chain reaction products. A varied level of recombination (0 to 58.9%) was detected, depending on the infection system (in ovo or in vitro), viral load, the composition of the inoculum mixture, and the timing and order of infection. Full genome analysis of selected recombinants with different in vitro phenotypes identified alterations in coding and non-coding regions. The ability of ILTV vaccines to maintain their capacity to recombine under such varied conditions highlights the significance of recombination in the evolution of this virus and demonstrates the capacity of ILTV vaccines to play a role in the emergence of recombinant viruses.
Collapse
|
8
|
d'Offay JM, Fulton RW, Fishbein M, Eberle R, Dubovi EJ. Isolation of a naturally occurring vaccine/wild-type recombinant bovine herpesvirus type 1 (BoHV-1) from an aborted bovine fetus. Vaccine 2019; 37:4518-4524. [PMID: 31266667 DOI: 10.1016/j.vaccine.2019.06.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 01/17/2023]
Abstract
Bovine herpesvirus type 1 (BoHV-1) causes various disease syndromes in cattle including respiratory disease and abortions. During an investigation into the potential role of BoHV-1 modified-live vaccines (MLV) causing diseases in cattle, we performed whole genome sequencing on six BoHV-1 field strains isolated at Cornell Animal Health Diagnostic Center in the late 1970s. Three isolates (two respiratory and a fetal) were identified as vaccine-derived isolates, having SNP patterns identical to that of a previously sequenced MLV virus that exhibited a deleted US2 and truncated US1.67 genes. Two other isolates (a respiratory and a fetal) were categorized as wild-type (WT) viruses based on their unique SNP pattern that is distinct from MLV viruses. The sixth isolate from an aborted fetus was a recombinant virus with 62% of its genome exhibiting SNPs identical to one of the above-mentioned WT viruses also recovered from an aborted fetus. The remaining 38% consisted of two blocks of sequences derived from the MLV virus. The first block replaced the UL9-UL19 region, and the second vaccine-derived sequence block encompassed all the genes within the unique short region and the internal/terminal repeats containing the regulatory genes BICP4 and BICP22. This is confirmatory evidence that recombination between BoHV-1 MLV and WT viruses can occur under natural conditions and cause disease. It is important in that it underscores the potential for the glycoprotein E negative (gE-) marker vaccine used to eradicate BoHV-1 in some countries, to recombine with virulent field strains allowing them to capture the gE- marker, thereby endangering the control and eradication programs.
Collapse
Affiliation(s)
- Jean M d'Offay
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Robert W Fulton
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Mark Fishbein
- Department of Plant Biology, Ecology & Evolution, Oklahoma State University, 301 Physical Sciences, Stillwater, OK 74078, USA
| | - R Eberle
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Edward J Dubovi
- Animal Health Diagnostic Center, Cornell University, Ithaca, NY 14852, USA
| |
Collapse
|
9
|
Single Nucleotide Polymorphism Genotyping Analysis Shows That Vaccination Can Limit the Number and Diversity of Recombinant Progeny of Infectious Laryngotracheitis Viruses from the United States. Appl Environ Microbiol 2018; 84:AEM.01822-18. [PMID: 30242009 DOI: 10.1128/aem.01822-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/12/2018] [Indexed: 11/20/2022] Open
Abstract
Infectious laryngotracheitis (ILTV; Gallid alphaherpesvirus 1) causes mild to severe respiratory disease in poultry worldwide. Recombination in this virus under natural (field) conditions was first described in 2012 and more recently has been studied under laboratory conditions. Previous studies have revealed that natural recombination is widespread in ILTV and have also demonstrated that recombination between two attenuated ILTV vaccine strains generated highly virulent viruses that produced widespread disease within poultry flocks in Australia. In the United States, natural ILTV recombination has also been detected, but not as frequently as in Australia. To better understand recombination in ILTV strains originating from the United States, we developed a TaqMan single nucleotide polymorphism (SNP) genotyping assay to detect recombination between two virulent U.S. field strains of ILTV (63140 and 1874c5) under experimental in vivo conditions. We also tested the capacity of the Innovax-ILT vaccine (a recombinant vaccine using herpesvirus of turkeys as a vector) and the Trachivax vaccine (a conventionally attenuated chicken embryo origin vaccine) to reduce recombination. The Trachivax vaccine prevented ILTV replication, and therefore recombination, in the trachea after challenge. The Innovax-ILT vaccine allowed the challenge viruses to replicate and to recombine, but at a significantly lower rate than in an unvaccinated group of birds. Our results demonstrate that the TaqMan SNP genotyping assay is a useful tool to study recombination between these ILTV strains and also show that vaccination can limit the number and diversity of recombinant progeny viruses.IMPORTANCE Recombination allows alphaherpesviruses to evolve over time and become more virulent. Historically, characterization of viral vaccines in poultry have mainly focused on limiting clinical disease, rather than limiting virus replication, but such approaches can allow field viruses to persist and evolve in vaccinated populations. In this study, we vaccinated chickens with Gallid alphaherpesvirus 1 vaccines that are commercially available in the United States and then performed coinoculations with two field strains of virus to measure the ability of the vaccines to prevent field strains from replicating and recombining. We found that vaccination reduced viral replication, recombination, and diversity compared to those in unvaccinated chickens, although the extent to which this occurred differed between vaccines. We suggest that characterization of vaccines could include studies to examine the ability of vaccines to reduce viral recombination in order to limit the rise of new virulent field strains due to recombination, especially for those vaccines that are known not to prevent viral replication following challenge.
Collapse
|
10
|
Rahman M, Nabi A, Asadulghani M, Faruque SM, Islam MA. Toxigenic properties and stx phage characterization of Escherichia coli O157 isolated from animal sources in a developing country setting. BMC Microbiol 2018; 18:98. [PMID: 30170562 PMCID: PMC6119239 DOI: 10.1186/s12866-018-1235-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022] Open
Abstract
Background In many Asian countries including Bangladesh E. coli O157 are prevalent in animal reservoirs and in the food chain, but the incidence of human infection due to E. coli O157 is rare. One of the reasons could be inability of the organism from animal origin to produce sufficient amount of Shiga toxin (Stx), which is the main virulence factor associated with the severe sequelae of infection. This study aimed to fill out this knowledge gap by investigating the toxigenic properties and characteristics of stx phage of E. coli O157 isolated from animal sources in Bangladesh. Results We analysed 47 stx2 positive E. coli O157 of food/animal origin for stx2 gene variants, Shiga toxin production, presence of other virulence genes, stx phage insertion sites, presence of genes associated with functionality of stx phages (Q933 and Q21) and stx2 upstream region. Of the 47 isolates, 46 were positive for both stx2a and stx2d while the remaining isolate was positive for stx2d only. Reverse Passive Latex Agglutination assay (RPLA) showed that 42/47 isolates produced little or no toxin, while 5 isolates produced a high titre of toxin (64 to 128). 39/47 isolates were positive for the Toxin Non-Producing (TNP) specific regions in the stx2 promoter. Additionally, all isolates were negative for antiterminator Q933while a majority of isolates were positive for Q21 gene suggesting the presence of defective stx phage. Of the yehV and wrbA phage insertion sites, yehV was found occupied in 11 isolates while wrbA site was intact in all the isolates. None of the isolates was positive for the virulence gene, cdt but all were positive for hlyA, katP, etpD and eae genes. Isolates that produced high titre Stx (n = 5) produced complete phage particles capable of infecting multiple bacterial hosts. One of these phages was shown to produce stable lysogens in host strains rendering the Stx2 producing ability. Conclusion Despite low frequency in the tested isolates, E. coli O157 isolates in Bangladesh carry inducible stx phages and have the capacity to produce Stx2, indicating a potential risk of E. coli O157 infection in humans.
Collapse
Affiliation(s)
- Mahdia Rahman
- Enteric and Food Microbiology Laboratory, Laboratory Sciences and Services Division (LSSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, 1212, Bangladesh
| | - Ashikun Nabi
- Enteric and Food Microbiology Laboratory, Laboratory Sciences and Services Division (LSSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, 1212, Bangladesh.,Present Address: Department of Biology, University of Vermont, Burlington, VT, 05405, USA
| | - Md Asadulghani
- Enteric and Food Microbiology Laboratory, Laboratory Sciences and Services Division (LSSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, 1212, Bangladesh
| | - Shah M Faruque
- Enteric and Food Microbiology Laboratory, Laboratory Sciences and Services Division (LSSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, 1212, Bangladesh.,Present Address: Department of Mathematics and Natural Sciences, BRAC University, Mohakhali, Dhaka, 1212, Bangladesh
| | - Mohammad Aminul Islam
- Enteric and Food Microbiology Laboratory, Laboratory Sciences and Services Division (LSSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, 1212, Bangladesh.
| |
Collapse
|
11
|
Loncoman CA, Hartley CA, Coppo MJC, Browning GF, Quinteros JA, Diaz-Méndez A, Thilakarathne D, Fakhri O, Vaz PK, Devlin JM. Replication-independent reduction in the number and diversity of recombinant progeny viruses in chickens vaccinated with an attenuated infectious laryngotracheitis vaccine. Vaccine 2018; 36:5709-5716. [PMID: 30104116 DOI: 10.1016/j.vaccine.2018.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/28/2018] [Accepted: 08/05/2018] [Indexed: 01/10/2023]
Abstract
Recombination is closely linked with virus replication and is an important mechanism that contributes to genome diversification and evolution in alphaherpesviruses. Infectious laryngotracheitis (ILTV; Gallid alphaherpesvirus 1) is an alphaherpesvirus that causes respiratory disease in poultry. In the past, natural (field) recombination events between different strains of ILTV generated virulent recombinant viruses that have caused severe disease and economic loss in poultry industries. In this study, chickens were vaccinated with attenuated ILTV vaccines to examine the effect of vaccination on viral recombination and diversity following subsequent co-inoculation with two field strains of ILTV. Two of the vaccines (SA2 and A20) prevented ILTV replication in the trachea after challenge, but the level of viral replication after co-infection in birds that received the Serva ILTV vaccine strain did not differ from that of the mock-vaccinated (control) birds. Even though the levels of viral replication were similar in the two groups, the number of recombinant progeny viruses and the level of viral diversity were significantly lower in the Serva-vaccinated birds than in mock-vaccinated birds. In both the mock-vaccinated and Serva-vaccinated groups, a high proportion of recombinant viruses were detected in naïve in-contact chickens that were housed with the co-inoculated birds. Our results indicate that vaccination can limit the number and diversity of recombinant progeny viruses in a manner that is independent of the level of virus replication. It is possible that immune responses induced by vaccination can select for virus genotypes that replicate well under the pressure of the host immune response.
Collapse
Affiliation(s)
- Carlos A Loncoman
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Carol A Hartley
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mauricio J C Coppo
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - José A Quinteros
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrés Diaz-Méndez
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dulari Thilakarathne
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Omid Fakhri
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Paola K Vaz
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joanne M Devlin
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
12
|
Ludwig-Begall LF, Mauroy A, Thiry E. Norovirus recombinants: recurrent in the field, recalcitrant in the lab - a scoping review of recombination and recombinant types of noroviruses. J Gen Virol 2018; 99:970-988. [PMID: 29906257 DOI: 10.1099/jgv.0.001103] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Noroviruses are recognized as the major global cause of sporadic and epidemic non-bacterial gastroenteritis in humans. Molecular mechanisms driving norovirus evolution are the accumulation of point mutations and recombination. Intragenotypic recombination has long been postulated to be a driving force of GII.4 noroviruses, the predominant genotype circulating in humans for over two decades. Increasingly, emergence and re-emergence of different intragenotype recombinants have been reported. The number and types of norovirus recombinants remained undefined until the 2007 Journal of General Virology research article 'Norovirus recombination' reported an assembly of 20 hitherto unclassified intergenotypic norovirus recombinant types. In the intervening decade, a host of novel recombinants has been analysed. New recombination breakpoints have been described, in vitro and in vivo studies supplement in silico analyses, and advances have been made in analysing factors driving norovirus recombination. This work presents a timely overview of these data and focuses on important aspects of norovirus recombination and its role in norovirus molecular evolution. An overview of intergenogroup, intergenotype, intragenotype and 'obligatory' norovirus recombinants as detected via in silico methods in the field is provided, enlarging the scope of intergenotypic recombinant types to 80 in total, and notably including three intergenogroup recombinants. A recap of advances made studying norovirus recombination in the laboratory is given. Putative drivers and constraints of norovirus recombination are discussed and the potential link between recombination and norovirus zoonosis risk is examined.
Collapse
Affiliation(s)
- Louisa F Ludwig-Begall
- 1Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, B43b, Quartier Vallée 2, Avenue de Cureghem, 10, B-4000 Liège, Belgium
| | - Axel Mauroy
- 2Staff direction for risk assessment, Control Policy, Federal Agency for the Safety of the Food Chain, Blv du Jardin Botanique 55, 1000 Brussels, Belgium
| | - Etienne Thiry
- 1Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, B43b, Quartier Vallée 2, Avenue de Cureghem, 10, B-4000 Liège, Belgium
| |
Collapse
|
13
|
Law GA, Herr AE, Cwick JP, Taylor MP. A New Approach to Assessing HSV-1 Recombination during Intercellular Spread. Viruses 2018; 10:E220. [PMID: 29693602 PMCID: PMC5977213 DOI: 10.3390/v10050220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 12/16/2022] Open
Abstract
The neuroinvasive Herpes simplex virus type 1 (HSV-1) utilizes intergenomic recombination in order to diversify viral populations. Research efforts to assess HSV-1 recombination are often complicated by the use of attenuating mutations, which differentiate viral progeny but unduly influence the replication and spread. In this work, we generated viruses with markers that allowed for classification of viral progeny with limited attenuation of viral replication. We isolated viruses, harboring either a cyan (C) or yellow (Y) fluorescent protein (FP) expression cassette inserted in two different locations within the viral genome, in order to visually quantify the recombinant progeny based on plaque fluorescence. We found that the FP marked genomes had a limited negative affect on the viral replication and production of progeny virions. A co-infection of the two viruses resulted in recombinant progeny that was dependent on the multiplicity of infection and independent of the time post infection, at a rate that was similar to previous reports. The sequential passage of mixed viral populations revealed a limited change in the distribution of the parental and recombinant progeny. Interestingly, the neuroinvasive spread within neuronal cultures and an in vivo mouse model, revealed large, random shifts in the parental and recombinant distributions in viral populations. In conclusion, our approach highlights the utility of FP expressing viruses in order to provide new insights into mechanisms of HSV-1 recombination.
Collapse
Affiliation(s)
- Gabrielle A Law
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT 59717, USA.
| | - Alix E Herr
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT 59717, USA.
| | - James P Cwick
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT 59717, USA.
| | - Matthew P Taylor
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
14
|
Genetic Diversity of Infectious Laryngotracheitis Virus during In Vivo Coinfection Parallels Viral Replication and Arises from Recombination Hot Spots within the Genome. Appl Environ Microbiol 2017; 83:AEM.01532-17. [PMID: 28939604 DOI: 10.1128/aem.01532-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/12/2017] [Indexed: 02/07/2023] Open
Abstract
Recombination is a feature of many alphaherpesviruses that infect people and animals. Infectious laryngotracheitis virus (ILTV; Gallid alphaherpesvirus 1) causes respiratory disease in chickens, resulting in significant production losses in poultry industries worldwide. Natural (field) ILTV recombination is widespread, particularly recombination between attenuated ILTV vaccine strains to create virulent viruses. These virulent recombinants have had a major impact on animal health. Recently, the development of a single nucleotide polymorphism (SNP) genotyping assay for ILTV has helped to understand ILTV recombination in laboratory settings. In this study, we applied this SNP genotyping assay to further examine ILTV recombination in the natural host. Following coinoculation of specific-pathogen-free chickens, we examined the resultant progeny for evidence of viral recombination and characterized the diversity of the recombinants over time. The results showed that ILTV replication and recombination are closely related and that the recombinant viral progeny are most diverse 4 days after coinoculation, which is the peak of viral replication. Further, the locations of recombination breakpoints in a selection of the recombinant progeny, and in field isolates of ILTV from different geographical regions, were examined following full-genome sequencing and used to identify recombination hot spots in the ILTV genome.IMPORTANCE Alphaherpesviruses are common causes of disease in people and animals. Recombination enables genome diversification in many different species of alphaherpesviruses, which can lead to the evolution of higher levels of viral virulence. Using the alphaherpesvirus infectious laryngotracheitis virus (ILTV), we performed coinfections in the natural host (chickens) to demonstrate high levels of virus recombination. Higher levels of diversity in the recombinant progeny coincided with the highest levels of virus replication. In the recombinant progeny, and in field isolates, recombination occurred at greater frequency in recombination hot spot regions of the virus genome. Our results suggest that control measures that aim to limit viral replication could offer the potential to limit virus recombination and thus the evolution of virulence. The development and use of vaccines that are focused on limiting virus replication, rather than vaccines that are focused more on limiting clinical disease, may be indicated in order to better control disease.
Collapse
|
15
|
Maidana SS, Craig PO, Craig MI, Ludwig L, Mauroy A, Thiry E, Romera SA. Evidence of natural interspecific recombinant viruses between bovine alphaherpesviruses 1 and 5. Virus Res 2017; 242:122-130. [DOI: 10.1016/j.virusres.2017.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
|
16
|
Natural recombination in alphaherpesviruses: Insights into viral evolution through full genome sequencing and sequence analysis. INFECTION GENETICS AND EVOLUTION 2017; 49:174-185. [DOI: 10.1016/j.meegid.2016.12.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 01/05/2023]
|
17
|
Development and application of a TaqMan single nucleotide polymorphism genotyping assay to study infectious laryngotracheitis virus recombination in the natural host. PLoS One 2017; 12:e0174590. [PMID: 28350819 PMCID: PMC5370143 DOI: 10.1371/journal.pone.0174590] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/10/2017] [Indexed: 12/25/2022] Open
Abstract
To date, recombination between different strains of the avian alphaherpesvirus infectious laryngotracheitis virus (ILTV) has only been detected in field samples using full genome sequencing and sequence analysis. These previous studies have revealed that natural recombination is widespread in ILTV and have demonstrated that recombination between two attenuated ILTV vaccine strains generated highly virulent viruses that produced widespread disease within poultry flocks in Australia. In order to better understand ILTV recombination, this study developed a TaqMan single nucleotide polymorphism (SNP) genotyping assay to detect recombination between two field strains of ILTV (CSW-1 and V1-99 ILTV) under experimental conditions. Following in vivo co-inoculation of these two ILTV strains in specific pathogen free (SPF) chickens, recovered viruses were plaque purified and subjected to the SNP genotyping assay. This assay revealed ILTV recombinants in all co-inoculated chickens. In total 64/87 (74%) of the recovered viruses were recombinants and 23 different recombination patterns were detected, with some of them occurring more frequently than others. The results from this study demonstrate that the TaqMan SNP genotyping assay is a useful tool to study recombination in ILTV and also show that recombination occurs frequently during experimental co-infection with ILTV in SPF chickens. This tool, when used to assess ILTV recombination in the natural host, has the potential to greatly contribute to our understanding of alphaherpesvirus recombination.
Collapse
|
18
|
De Paepe M, Hutinet G, Son O, Amarir-Bouhram J, Schbath S, Petit MA. Temperate phages acquire DNA from defective prophages by relaxed homologous recombination: the role of Rad52-like recombinases. PLoS Genet 2014; 10:e1004181. [PMID: 24603854 PMCID: PMC3945230 DOI: 10.1371/journal.pgen.1004181] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 01/04/2014] [Indexed: 01/13/2023] Open
Abstract
Bacteriophages (or phages) dominate the biosphere both numerically and in terms of genetic diversity. In particular, genomic comparisons suggest a remarkable level of horizontal gene transfer among temperate phages, favoring a high evolution rate. Molecular mechanisms of this pervasive mosaicism are mostly unknown. One hypothesis is that phage encoded recombinases are key players in these horizontal transfers, thanks to their high efficiency and low fidelity. Here, we associate two complementary in vivo assays and a bioinformatics analysis to address the role of phage encoded recombinases in genomic mosaicism. The first assay allowed determining the genetic determinants of mosaic formation between lambdoid phages and Escherichia coli prophage remnants. In the second assay, recombination was monitored between sequences on phage λ, and allowed to compare the performance of three different Rad52-like recombinases on the same substrate. We also addressed the importance of homologous recombination in phage evolution by a genomic comparison of 84 E. coli virulent and temperate phages or prophages. We demonstrate that mosaics are mainly generated by homology-driven mechanisms that tolerate high substrate divergence. We show that phage encoded Rad52-like recombinases act independently of RecA, and that they are relatively more efficient when the exchanged fragments are divergent. We also show that accessory phage genes orf and rap contribute to mosaicism. A bioinformatics analysis strengthens our experimental results by showing that homologous recombination left traces in temperate phage genomes at the borders of recently exchanged fragments. We found no evidence of exchanges between virulent and temperate phages of E. coli. Altogether, our results demonstrate that Rad52-like recombinases promote gene shuffling among temperate phages, accelerating their evolution. This mechanism may prove to be more general, as other mobile genetic elements such as ICE encode Rad52-like functions, and play an important role in bacterial evolution itself.
Collapse
Affiliation(s)
- Marianne De Paepe
- INRA, UMR1319, Micalis, domaine de Vilvert, Jouy en Josas, France
- AgroParisTech, UMR1319, Micalis, domaine de Vilvert, Jouy en Josas, France
| | - Geoffrey Hutinet
- INRA, UMR1319, Micalis, domaine de Vilvert, Jouy en Josas, France
- AgroParisTech, UMR1319, Micalis, domaine de Vilvert, Jouy en Josas, France
| | - Olivier Son
- INRA, UMR1319, Micalis, domaine de Vilvert, Jouy en Josas, France
- AgroParisTech, UMR1319, Micalis, domaine de Vilvert, Jouy en Josas, France
| | - Jihane Amarir-Bouhram
- INRA, UMR1319, Micalis, domaine de Vilvert, Jouy en Josas, France
- AgroParisTech, UMR1319, Micalis, domaine de Vilvert, Jouy en Josas, France
| | - Sophie Schbath
- INRA, UR1077, MIG, domaine de Vilvert, Jouy en Josas, France
| | - Marie-Agnès Petit
- INRA, UMR1319, Micalis, domaine de Vilvert, Jouy en Josas, France
- AgroParisTech, UMR1319, Micalis, domaine de Vilvert, Jouy en Josas, France
| |
Collapse
|
19
|
Varicella-zoster virus and herpes simplex virus 1 can infect and replicate in the same neurons whether co- or superinfected. J Virol 2014; 88:5079-86. [PMID: 24574392 DOI: 10.1128/jvi.00252-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED The two human neurotropic alphaherpesviruses varicella-zoster virus (VZV) and herpes simplex virus type 1 (HSV1) both establish latency in sensory ganglia. Human trigeminal ganglia are known to frequently harbor both viruses, and there is evidence to suggest the presence of both VZV and HSV1 DNA in the same neuron. We ask here whether VZV and HSV1 can exclude themselves and each other and whether they can productively infect the same cells in human neurons and human foreskin fibroblasts (HFF). Simultaneous infection (coinfection) or consecutive infection (superinfection) was assessed using cell-free HSV1 and VZV expressing fluorescent reporter proteins. Automated analysis was carried out to detect singly and dually infected cells. We demonstrate that VZV and HSV1 both display efficient superinfection exclusion (SE) in HFF, with each virus excluding either itself or the other virus. While SE also occurred in neurons, it was with much lower efficiency. Both alphaherpesviruses productively infected the same neurons, whether applied simultaneously or even consecutively, albeit at lower frequencies. IMPORTANCE Superinfection exclusion by VZV for itself or the related neurotropic alphaherpesvirus HSV1 has been studied here for the first time. We find that while these viruses display classic SE in fibroblasts, SE is less efficient for both HSV1 and VZV in human neurons. The ability of multiple VZV strains to productively infect the same neurons has important implications in terms of recombination of both wild-type and vaccine strains in patients.
Collapse
|
20
|
Smith LM, McWhorter AR, Shellam GR, Redwood AJ. The genome of murine cytomegalovirus is shaped by purifying selection and extensive recombination. Virology 2012; 435:258-68. [PMID: 23107009 DOI: 10.1016/j.virol.2012.08.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 08/02/2012] [Accepted: 08/24/2012] [Indexed: 11/19/2022]
Abstract
The herpesvirus lifestyle results in a long-term interaction between host and invading pathogen, resulting in exquisite adaptation of virus to host. We have sequenced the genomes of nine strains of murine cytomegalovirus (a betaherpesvirus), isolated from free-living mice trapped at locations separated geographically and temporally. Despite this separation these genomes were found to have low levels of nucleotide variation. Of the more than 160 open reading frames, almost 90% had a dN/dS ratio of amino acid substitutions of less than 0.6, indicating the level of purifying selection on the coding potential of MCMV. Examination of selection acting on individual genes at the codon level however indicates some level of positive selection, with 0.03% of codons showing strong evidence for positive selection. Conversely, 1.3% of codons show strong evidence of purifying selection. Alignments of both genome sequences and coding regions suggested that high levels of recombination have shaped the MCMV genome.
Collapse
Affiliation(s)
- L M Smith
- School of Pathology and Laboratory Medicine, University of Western Australia, Australia
| | | | | | | |
Collapse
|
21
|
Schumacher AJ, Mohni KN, Kan Y, Hendrickson EA, Stark JM, Weller SK. The HSV-1 exonuclease, UL12, stimulates recombination by a single strand annealing mechanism. PLoS Pathog 2012; 8:e1002862. [PMID: 22912580 PMCID: PMC3415443 DOI: 10.1371/journal.ppat.1002862] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/01/2012] [Indexed: 11/19/2022] Open
Abstract
Production of concatemeric DNA is an essential step during HSV infection, as the packaging machinery must recognize longer-than-unit-length concatemers; however, the mechanism by which they are formed is poorly understood. Although it has been proposed that the viral genome circularizes and rolling circle replication leads to the formation of concatemers, several lines of evidence suggest that HSV DNA replication involves recombination-dependent replication reminiscent of bacteriophages λ and T4. Similar to λ, HSV-1 encodes a 5′-to-3′ exonuclease (UL12) and a single strand annealing protein [SSAP (ICP8)] that interact with each other and can perform strand exchange in vitro. By analogy with λ phage, HSV may utilize viral and/or cellular recombination proteins during DNA replication. At least four double strand break repair pathways are present in eukaryotic cells, and HSV-1 is known to manipulate several components of these pathways. Chromosomally integrated reporter assays were used to measure the repair of double strand breaks in HSV-infected cells. Single strand annealing (SSA) was increased in HSV-infected cells, while homologous recombination (HR), non-homologous end joining (NHEJ) and alternative non-homologous end joining (A-NHEJ) were decreased. The increase in SSA was abolished when cells were infected with a viral mutant lacking UL12. Moreover, expression of UL12 alone caused an increase in SSA, which was completely eliminated when a UL12 mutant lacking exonuclease activity was expressed. UL12-mediated stimulation of SSA was decreased in cells lacking the cellular SSAP, Rad52, and could be restored by coexpressing the viral SSAP, ICP8, indicating that an SSAP is also required. These results demonstrate that UL12 can specifically stimulate SSA and that either ICP8 or Rad52 can function as an SSAP. We suggest that SSA is the homology-mediated repair pathway utilized during HSV infection. The repair of DNA damage is essential to maintain genomic stability. Cells have at least four distinct DNA repair pathways, and defects in any of them can lead to tumor formation and cancer progression. Herpes Simplex Virus-1 (HSV-1) manipulates components of the host DNA repair pathways. In this paper we showed that DNA repair by the single strand annealing (SSA) pathway was increased during HSV infection and that other pathways were inhibited. We also show that a viral nuclease in conjunction with either a viral or cellular single strand annealing protein can stimulate the SSA pathway. We suggest that viral DNA synthesis occurs via an SSAdependent mechanism that is reminiscent of that used by bacterial viruses such as λ. Interestingly, λ has evolved an SSA-mediated repair mechanism to exchange genetic information that has also been used to enhance gene targeting in bacteria. It is thus possible that HSV proteins could be similarly used as tools to stimulate gene targeting in human cells leading to more effective strategies for gene therapy. Furthermore, the diversity of HSV reported in human populations, combined with the high rate of genetic exchange during infection, suggests that SSA may play a role in viral evolution and pathogenesis.
Collapse
Affiliation(s)
- April J. Schumacher
- Molecular, Microbial and Structural Biology Department, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Kareem N. Mohni
- Molecular, Microbial and Structural Biology Department, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Yinan Kan
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Eric A. Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Jeremy M. Stark
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Sandra K. Weller
- Molecular, Microbial and Structural Biology Department, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
22
|
A genome-wide comparative evolutionary analysis of herpes simplex virus type 1 and varicella zoster virus. PLoS One 2011; 6:e22527. [PMID: 21799886 PMCID: PMC3143153 DOI: 10.1371/journal.pone.0022527] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/23/2011] [Indexed: 11/19/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) and varicella zoster virus (VZV) are closely related viruses causing lifelong infections. They are typically associated with mucocutaneous or skin lesions, but may also cause severe neurological or ophthalmic diseases, possibly due to viral- and/or host-genetic factors. Although these viruses are well characterized, genome-wide evolutionary studies have hitherto only been presented for VZV. Here, we present a genome-wide study on HSV-1. We also compared the evolutionary characteristics of HSV-1 with those for VZV. We demonstrate that, in contrast to VZV for which only a few ancient recombination events have been suggested, all HSV-1 genomes contain mosaic patterns of segments with different evolutionary origins. Thus, recombination seems to occur extremely frequent for HSV-1. We conclude by proposing a timescale for HSV-1 evolution, and by discussing putative underlying mechanisms for why these otherwise biologically similar viruses have such striking evolutionary differences.
Collapse
|
23
|
Mathijs E, Muylkens B, Mauroy A, Ziant D, Delwiche T, Thiry E. Experimental evidence of recombination in murine noroviruses. J Gen Virol 2010; 91:2723-33. [PMID: 20702654 DOI: 10.1099/vir.0.024109-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Based on sequencing data, norovirus (NoV) recombinants have been described, but no experimental evidence of recombination in NoVs has been documented. Using the murine norovirus (MNV) model, we investigated the occurrence of genetic recombination between two co-infecting wild-type MNV isolates in RAW cells. The design of a PCR-based genotyping tool allowed accurate discrimination between the parental genomes and the detection of a viable recombinant MNV (Rec MNV) in the progeny viruses. Genetic analysis of Rec MNV identified a homologous-recombination event located at the ORF1-ORF2 overlap. Rec MNV exhibited distinct growth curves and produced smaller plaques than the wild-type MNV in RAW cells. Here, we demonstrate experimentally that MNV undergoes homologous recombination at the previously described recombination hot spot for NoVs, suggesting that the MNV model might be suitable for in vitro studies of NoV recombination. Moreover, the results show that exchange of genetic material between NoVs can generate viruses with distinct biological properties from the parental viruses.
Collapse
Affiliation(s)
- Elisabeth Mathijs
- Department of Infectious and Parasitic Diseases, Virology and Viral Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | | | | | | | | | | |
Collapse
|
24
|
Steiner F, Zumsteg A, Vogt B, Ackermann M, Schwyzer M. Bovine herpesvirus 5 BICP0 complements the bovine herpesvirus 1 homolog. Vet Microbiol 2010; 143:37-44. [DOI: 10.1016/j.vetmic.2010.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|