1
|
Carcone A, Mortreux F, Alais S, Mathieu C, Journo C, Dutartre H. Peculiar transcriptional reprogramming with functional impairment of dendritic cells upon exposure to transformed HTLV-1-infected cells. PLoS Pathog 2024; 20:e1012555. [PMID: 39283919 PMCID: PMC11426526 DOI: 10.1371/journal.ppat.1012555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/26/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024] Open
Abstract
Manipulation of immune cell functions, independently of direct infection of these cells, emerges as a key process in viral pathophysiology. Chronic infection by Human T-cell Leukemia Virus type 1 (HTLV-1) is associated with immune dysfunctions, including misdirected responses of dendritic cells (DCs). Here, we interrogate the ability of transformed HTLV-1-infected T cells to manipulate human DC functions. We show that exposure to transformed HTLV-1-infected T cells induces a biased and peculiar transcriptional signature in monocyte-derived DCs, associated with an inefficient maturation and a poor responsiveness to subsequent stimulation by a TLR4 agonist. This poor responsiveness is also associated with a unique transcriptional landscape characterized by a set of genes whose expression is either conferred, impaired or abolished by HTLV-1 pre-exposure. Induction of this functional impairment requires several hours of coculture with transformed HTLV-1-infected cells, and associated mechanisms driven by viral capture, cell-cell contacts, and soluble mediators. Altogether, this cross-talk between infected T cells and DCs illustrate how HTLV-1 might co-opt communications between cells to induce a unique local tolerogenic immune microenvironment suitable for its own persistence.
Collapse
Affiliation(s)
- Auriane Carcone
- Centre International de Recherche en Infectiologie, Retroviral Oncogenesis, Inserm U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civiles de Lyon, Lyon, France
| | - Franck Mortreux
- Laboratory of Biology and Modelling of the Cell, University of Lyon, ENS de Lyon, University Claude Bernard, CNRS UMR 5239, Inserm U1210, Lyon, France
| | - Sandrine Alais
- Centre International de Recherche en Infectiologie, Retroviral Oncogenesis, Inserm U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civiles de Lyon, Lyon, France
| | - Cyrille Mathieu
- Centre International de Recherche en Infectiologie, équipe Neuro-Invasion, TROpism and VIRal Encephalitis, Inserm U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civiles de Lyon, Lyon, France
| | - Chloé Journo
- Centre International de Recherche en Infectiologie, Retroviral Oncogenesis, Inserm U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civiles de Lyon, Lyon, France
| | - Hélène Dutartre
- Centre International de Recherche en Infectiologie, Retroviral Oncogenesis, Inserm U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civiles de Lyon, Lyon, France
| |
Collapse
|
2
|
Pise-Masison CA, Franchini G. Hijacking Host Immunity by the Human T-Cell Leukemia Virus Type-1: Implications for Therapeutic and Preventive Vaccines. Viruses 2022; 14:2084. [PMID: 36298639 PMCID: PMC9609126 DOI: 10.3390/v14102084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2024] Open
Abstract
Human T-cell Leukemia virus type-1 (HTLV-1) causes adult T-cell leukemia/lymphoma (ATLL), HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and other inflammatory diseases. High viral DNA burden (VL) in peripheral blood mononuclear cells is a documented risk factor for ATLL and HAM/TSP, and patients with HAM/TSP have a higher VL in cerebrospinal fluid than in peripheral blood. VL alone is not sufficient to differentiate symptomatic patients from healthy carriers, suggesting the importance of other factors, including host immune response. HTLV-1 infection is life-long; CD4+-infected cells are not eradicated by the immune response because HTLV-1 inhibits the function of dendritic cells, monocytes, Natural Killer cells, and adaptive cytotoxic CD8+ responses. Although the majority of infected CD4+ T-cells adopt a resting phenotype, antigen stimulation may result in bursts of viral expression. The antigen-dependent "on-off" viral expression creates "conditional latency" that when combined with ineffective host responses precludes virus eradication. Epidemiological and clinical data suggest that the continuous attempt of the host immunity to eliminate infected cells results in chronic immune activation that can be further exacerbated by co-morbidities, resulting in the development of severe disease. We review cell and animal model studies that uncovered mechanisms used by HTLV-1 to usurp and/or counteract host immunity.
Collapse
Affiliation(s)
- Cynthia A. Pise-Masison
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|
3
|
Carcone A, Journo C, Dutartre H. Is the HTLV-1 Retrovirus Targeted by Host Restriction Factors? Viruses 2022; 14:v14081611. [PMID: 35893677 PMCID: PMC9332716 DOI: 10.3390/v14081611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1), the etiological agent of adult T cell leukemia/lymphoma (ATLL) and of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), was identified a few years before Human Immunodeficiency Virus (HIV). However, forty years later, our comprehension of HTLV-1 immune detection and the host immune responses to HTLV-1 is far more limited than for HIV. In addition to innate and adaptive immune responses that rely on specialized cells of the immune system, host cells may also express a range of antiviral factors that inhibit viral replication at different stages of the cycle, in a cell-autonomous manner. Multiple antiviral factors allowing such an intrinsic immunity have been primarily and extensively described in the context HIV infection. Here, we provide an overview of whether known HIV restriction factors might act on HTLV-1 replication. Interestingly, many of them do not exert any antiviral activity against HTLV-1, and we discuss viral replication cycle specificities that could account for these differences. Finally, we highlight future research directions that could help to identify antiviral factors specific to HTLV-1.
Collapse
|
4
|
El Hajj H, Bazarbachi A. Interplay between innate immunity and the viral oncoproteins Tax and HBZ in the pathogenesis and therapeutic response of HTLV-1 associated adult T cell leukemia. Front Immunol 2022; 13:957535. [PMID: 35935975 PMCID: PMC9352851 DOI: 10.3389/fimmu.2022.957535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
The Human T-cell Leukemia virus type 1 (HTLV-1) causes an array of pathologies, the most aggressive of which is adult T-cell leukemia (ATL), a fatal blood malignancy with dismal prognosis. The progression of these diseases is partly ascribed to the failure of the immune system in controlling the spread of virally infected cells. HTLV-1 infected subjects, whether asymptomatic carriers or symptomatic patients are prone to opportunistic infections. An increasing body of literature emphasizes the interplay between HTLV-1, its associated pathologies, and the pivotal role of the host innate and adoptive immune system, in shaping the progression of HTLV-1 associated diseases and their response to therapy. In this review, we will describe the modalities adopted by the malignant ATL cells to subvert the host innate immune response with emphasis on the role of the two viral oncoproteins Tax and HBZ in this process. We will also provide a comprehensive overview on the function of innate immunity in the therapeutic response to chemotherapy, anti-viral or targeted therapies in the pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Hiba El Hajj
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali Bazarbachi
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- *Correspondence: Ali Bazarbachi,
| |
Collapse
|
5
|
Ishizawa M, Ganbaatar U, Hasegawa A, Takatsuka N, Kondo N, Yoneda T, Katagiri K, Masuda T, Utsunomiya A, Kannagi M. Short-term cultured autologous peripheral blood mononuclear cells as a potential immunogen to activate Tax-specific CTL response in adult T-cell leukemia patients. Cancer Sci 2021; 112:1161-1172. [PMID: 33410215 PMCID: PMC7935807 DOI: 10.1111/cas.14800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 01/11/2023] Open
Abstract
Activation of CD8+ Tax‐specific CTL is a new therapeutic concept for adult T‐cell leukemia (ATL) caused by HTLV‐1. A recent clinical study of the dendritic cell vaccine pulsed with Tax peptides corresponding to CTL epitopes showed promising outcomes in ATL patients possessing limited human leukocyte antigen (HLA) alleles. In this study, we aimed to develop another immunotherapy to activate Tax‐specific CTL without HLA limitation by using patients’ own HTLV‐1‐infected cells as a vaccine. To examine the potential of HTLV‐1‐infected T‐cells to activate CTL via antigen presenting cells, we established a unique co–culture system. We demonstrated that mitomycin C‐treated HLA‐A2‐negative HTLV‐1‐infected T‐cell lines or short‐term cultured peripheral blood mononuclear cells (PBMC) derived from ATL patients induced cross–presentation of Tax antigen in co–cultured HLA‐A2‐positive antigen presenting cells, resulting in activation of HLA‐A2‐restricted CD8+ Tax‐specific CTL. This effect was not inhibited by a reverse transcriptase inhibitor. IL‐12 production and CD86 expression were also induced in antigen presenting cells co–cultured with HTLV‐1‐infected cells at various levels, which were improved by pre–treatment of the infected cells with histone deacetylase inhibitors. Furthermore, monocyte‐derived dendritic cells induced from PBMC of a chronic ATL patient produced IL‐12 and expressed enhanced levels of CD86 when co–cultured with autologous lymphocytes that had been isolated from the same PBMC and cultured for several days. These findings suggest that short‐term cultured autologous PBMC from ATL patients could potentially serve as a vaccine to evoke Tax‐specific CTL responses.
Collapse
Affiliation(s)
- Miku Ishizawa
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Undrakh Ganbaatar
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsuhiko Hasegawa
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Natsuko Takatsuka
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobuyo Kondo
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeru Yoneda
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kuniko Katagiri
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takao Masuda
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Mari Kannagi
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Molecular Virology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Microbiology, Kansai Medical University, Osaka, Japan
| |
Collapse
|
6
|
Mizuguchi M, Takahashi Y, Tanaka R, Fukushima T, Tanaka Y. Conservation of a Neutralization Epitope of Human T-cell Leukemia Virus Type 1 (HTLV-1) among Currently Endemic Clinical Isolates in Okinawa, Japan. Pathogens 2020; 9:pathogens9020082. [PMID: 32012672 PMCID: PMC7168584 DOI: 10.3390/pathogens9020082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 12/18/2022] Open
Abstract
Approximately one-tenth of the 10 million individuals living with human T-cell leukemia virus type-1 (HTLV-1) worldwide live in Japan. Most of these infected individuals live in the southwest region of Japan, including Okinawa prefecture; however, currently no prophylactic vaccine against HTLV-1 infection is available. For preventing the HTLV-1 spread, we previously generated a humanized monoclonal antibody (hu-LAT-27) that mediates both neutralization and antibody-dependent cellular cytotoxicity (ADCC). The neutralization epitope of LAT-27 is a linear amino acid sequence from residue 191 to 196 (Leu-Pro-His-Ser-Asn-Leu) of the HTLV-1 envelope gp46 protein. Here, we found that the LAT-27 epitope is well conserved among HTLV-1 clinical isolates prevalent in Okinawa. The hu-LAT-27 treatment inhibited syncytium formation by these clinical HTLV-1 isolates. Although an amino acid substitution at residue 192 in the LAT-27 epitope from proline to serine was found in a few HTLV-1 isolates, hu-LAT-27 could still react with a synthetic peptide carrying this amino acid substitution. These findings demonstrate the wide spectrum of hu-LAT-27 reactivity, suggesting that hu-LAT-27 may be a candidate drug for prophylactic passive immunization against HTLV-1 infection.
Collapse
Affiliation(s)
- Mariko Mizuguchi
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan; (Y.T.); (R.T.)
- Correspondence: (M.M.); (Y.T.); Tel.: +81-98-895-1202
| | - Yoshiaki Takahashi
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan; (Y.T.); (R.T.)
| | - Reiko Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan; (Y.T.); (R.T.)
| | - Takuya Fukushima
- Laboratory of Hematoimmunology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan;
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan; (Y.T.); (R.T.)
- Correspondence: (M.M.); (Y.T.); Tel.: +81-98-895-1202
| |
Collapse
|
7
|
Rocamonde B, Carcone A, Mahieux R, Dutartre H. HTLV-1 infection of myeloid cells: from transmission to immune alterations. Retrovirology 2019; 16:45. [PMID: 31870397 PMCID: PMC6929313 DOI: 10.1186/s12977-019-0506-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1), the etiological agent of adult T-cell leukemia/lymphoma (ATLL) and the demyelinating neuroinflammatory disease known as HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP), was the first human retrovirus to be discovered. T-cells, which represent the main reservoir for HTLV-1, have been the main focus of studies aimed at understanding viral transmission and disease progression. However, other cell types such as myeloid cells are also target of HTLV-1 infection and display functional alterations as a consequence. In this work, we review the current investigations that shed light on infection, transmission and functional alterations subsequent to HTLV-1 infection of the different myeloid cells types, and we highlight the lack of knowledge in this regard.
Collapse
Affiliation(s)
- Brenda Rocamonde
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe labelisée par la Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
| | - Auriane Carcone
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe labelisée par la Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
| | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe labelisée par la Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
| | - Hélène Dutartre
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.
- Equipe labelisée par la Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France.
| |
Collapse
|
8
|
Kannagi M, Hasegawa A, Nagano Y, Kimpara S, Suehiro Y. Impact of host immunity on HTLV-1 pathogenesis: potential of Tax-targeted immunotherapy against ATL. Retrovirology 2019; 16:23. [PMID: 31438973 PMCID: PMC6704564 DOI: 10.1186/s12977-019-0484-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022] Open
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) causes adult T-cell leukemia/lymphoma (ATL), HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), and other inflammatory diseases. There is no disease-specific difference in viral strains, and it is unclear how HTLV-1 causes such different diseases manifesting as lymphoproliferation or inflammation. Although some progress has been made in therapies for these diseases, the prognosis for ATL is still dismal and HAM/TSP remains an intractable disease. So far, two regulatory proteins of HTLV-1, Tax and HBZ, have been well studied and shown to have pleiotropic functions implicated in viral pathogenesis. Tax in particular can strongly activate NFκB, which is constitutively activated in HTLV-1-infected cells and considered to contribute to both oncogenesis and inflammation. However, the expression level of Tax is very low in vivo, leading to confusion in understanding its role in viral pathogenesis. A series of studies using IL-2-dependent HTLV-1-infected cells indicated that IL-10, an anti-inflammatory/immune suppressive cytokine, could induce a proliferative phenotype in HTLV-1-infected cells. In addition, type I interferon (IFN) suppresses HTLV-1 expression in a reversible manner. These findings suggest involvement of host innate immunity in the switch between lymphoproliferative and inflammatory diseases as well as the regulation of HTLV-1 expression. Innate immune responses also affect another important host determinant, Tax-specific cytotoxic T lymphocytes (CTLs), which are impaired in ATL patients, while activated in HAM/TSP patients. Activation of Tax-specific CTLs in ATL patients after hematopoietic stem cell transplantation indicates Tax expression and its fluctuation in vivo. A recently developed anti-ATL therapeutic vaccine, consisting of Tax peptide-pulsed dendritic cells, induced Tax-specific CTL responses in ATL patients and exhibited favorable clinical outcomes, unless Tax-defective ATL clones emerged. These findings support the significance of Tax in HTLV-1 pathogenesis, at least in part, and encourage Tax-targeted immunotherapy in ATL. Host innate and acquired immune responses induce host microenvironments that modify HTLV-1-encoded pathogenesis and establish a complicated network for development of diseases in HTLV-1 infection. Both host and viral factors should be taken into consideration in development of therapeutic and prophylactic strategies in HTLV-1 infection.
Collapse
Affiliation(s)
- Mari Kannagi
- Department of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| | - Atsuhiko Hasegawa
- Department of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Yoshiko Nagano
- Department of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Shuichi Kimpara
- Department of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.,Department of Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Youko Suehiro
- Department of Hematology, National Kyushu Cancer Center, Fukuoka, Japan
| |
Collapse
|
9
|
Barrionuevo-Cornejo C, Dueñas-Hancco D. Neoplastic hematological diseases associated with HTLV-1 infection. Semin Diagn Pathol 2019; 37:98-103. [PMID: 31288962 DOI: 10.1053/j.semdp.2019.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adult cell lymphoma/leukemia (ATLL) is a type of lymphoma consisting of T-cells that are related to infection with the human T lymphotropic virus (HTLV-1). Four clinical forms have been described (leukemic, lymphomatous, chronic, smoldering) and the phenotype corresponds to regulatory CD4+ T cells. The histological characteristics are variable, with neoplastic cells showing a size ranging from small to large and atypical nuclei with irregular contours. A series of genetic and molecular alterations have been described, which partially explain the lymphomagenesis of the neoplasm, some of which are also factors related to the clinical course and overall survival. ATLL is a neoplasm with a poor prognosis, but in recent years new targeted therapies have been designed, with encouraging responses. This neoplasm should continue to be studied to improve treatment and evolution.
Collapse
Affiliation(s)
| | - Daniela Dueñas-Hancco
- Department of Translational Molecular Pathology. MD Anderson Cancer Center, Texas, USA
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Novel immunotherapies such as checkpoint inhibitors, bispecific antibodies, and chimeric antigen receptor T cells are leading to promising responses when treating solid tumors and hematological malignancies. T cell neoplasms include leukemia and lymphomas that are derived from T cells and overall are characterized by poor clinical outcomes. This review describes the rational and preliminary results of immunotherapy for patients with T cell lymphoma and leukemia. RECENT FINDINGS For T cell neoplasms, despite significant research effort, only few agents, such as monoclonal antibodies and allogeneic stem cell transplantation, showed some clinical activity. One of the major hurdles to targeting T cell neoplasms is that activation or elimination of T cells, either normal or neoplastic, can cause significant toxicity. A need to develop novel safe and effective immunotherapies for T cell neoplasms exists. In this review, we will discuss the rationale for immunotherapy of T cell leukemia and lymphoma and present the most recent therapeutic approaches.
Collapse
|
11
|
He B, Tran JT, Sanchez DJ. Manipulation of Type I Interferon Signaling by HIV and AIDS-Associated Viruses. J Immunol Res 2019; 2019:8685312. [PMID: 31089479 PMCID: PMC6476103 DOI: 10.1155/2019/8685312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/14/2019] [Indexed: 12/20/2022] Open
Abstract
Type I Interferons were first described for their profound antiviral abilities in cell culture and animal models, and later, they were translated into potent antiviral therapeutics. However, as additional studies into the function of Type I Interferons progressed, it was also seen that pathogenic viruses have coevolved to encode potent mechanisms allowing them to evade or suppress the impact of Type I Interferons on their replication. For chronic viral infections, such as HIV and many of the AIDS-associated viruses, including HTLV, HCV, KSHV, and EBV, the clinical efficacy of Type I Interferons is limited by these mechanisms. Here, we review some of the ways that HIV and AIDS-associated viruses thrive in Type I Interferon-rich environments via mechanisms that block the function of this important antiviral cytokine. Overall, a better understanding of these mechanisms creates avenues to better understand the innate immune response to these viruses as well as plan the development of antivirals that would allow the natural antiviral effect of Type I Interferons to manifest during these infections.
Collapse
Affiliation(s)
- Buyuan He
- Pharmaceutical Sciences Department, College of Pharmacy, Western University of Health Sciences, Pomona 91766, California, USA
| | - James T. Tran
- Pharmaceutical Sciences Department, College of Pharmacy, Western University of Health Sciences, Pomona 91766, California, USA
| | - David Jesse Sanchez
- Pharmaceutical Sciences Department, College of Pharmacy, Western University of Health Sciences, Pomona 91766, California, USA
| |
Collapse
|
12
|
Assil S, Futsch N, Décembre E, Alais S, Gessain A, Cosset FL, Mahieux R, Dreux M, Dutartre H. Sensing of cell-associated HTLV by plasmacytoid dendritic cells is regulated by dense β-galactoside glycosylation. PLoS Pathog 2019; 15:e1007589. [PMID: 30818370 PMCID: PMC6413949 DOI: 10.1371/journal.ppat.1007589] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/12/2019] [Accepted: 01/22/2019] [Indexed: 01/20/2023] Open
Abstract
Human T Lymphotropic virus (HTLV) infection can persist in individuals resulting, at least in part, from viral escape of the innate immunity, including inhibition of type I interferon response in infected T-cells. Plasmacytoid dendritic cells (pDCs) are known to bypass viral escape by their robust type I interferon production. Here, we demonstrated that pDCs produce type I interferons upon physical cell contact with HTLV-infected cells, yet pDC activation inversely correlates with the ability of the HTLV-producing cells to transmit infection. We show that pDCs sense surface associated-HTLV present with glycan-rich structure referred to as biofilm-like structure, which thus represents a newly described viral structure triggering the antiviral response by pDCs. Consistently, heparan sulfate proteoglycans and especially the cell surface pattern of terminal β-galactoside glycosylation, modulate the transmission of the immunostimulatory RNA to pDCs. Altogether, our results uncover a function of virus-containing cell surface-associated glycosylated structures in the activation of innate immunity.
Collapse
Affiliation(s)
- Sonia Assil
- CIRI–Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Nicolas Futsch
- CIRI–Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Elodie Décembre
- CIRI–Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Sandrine Alais
- CIRI–Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Antoine Gessain
- Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris France
| | - François-Loïc Cosset
- CIRI–Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Renaud Mahieux
- CIRI–Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Marlène Dreux
- CIRI–Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
- * E-mail: (MD); (HD)
| | - Hélène Dutartre
- CIRI–Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
- * E-mail: (MD); (HD)
| |
Collapse
|
13
|
Kannagi M, Hasegawa A, Nagano Y, Iino T, Okamura J, Suehiro Y. Maintenance of long remission in adult T-cell leukemia by Tax-targeted vaccine: A hope for disease-preventive therapy. Cancer Sci 2019; 110:849-857. [PMID: 30666755 PMCID: PMC6398881 DOI: 10.1111/cas.13948] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/27/2018] [Accepted: 01/13/2019] [Indexed: 12/19/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) is an aggressive lymphoproliferative disease caused by human T-cell leukemia virus type 1 (HTLV-1). Multi-agent chemotherapy can reduce ATL cells but frequently allows relapses within a short period of time. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) following chemotherapy is now a standard therapy for ATL in Japan as it can achieve long-term remission in approximately one-third of recipient ATL patients; however, it also has a risk of treatment-related mortality. Allo-HSCT often induces HTLV-1 Tax-specific cytotoxic T cells (CTL) as well as graft-versus-host (GVH) response in ATL patients. This observation led to development of a new therapeutic vaccine to activate Tax-specific CTL, anticipating anti-ATL effects without GVH response. The newly developed Tax-DC vaccine consists of autologous dendritic cells pulsed with Tax peptides corresponding to CTL epitopes that have been identified in post-allo-HSCT ATL patients. In a pilot study of Tax-DC therapy in three ATL patients after various initial therapies, two patients survived for more than 4 years after vaccination without severe adverse effects (UMIN000011423). The Tax-DC vaccine is currently under phase I trial, showing a promising clinical outcome so far. These findings indicate the importance of patients' own HTLV-1-specific T-cell responses in maintaining remission and provide a new approach to anti-ATL immunotherapy targeting Tax. Although Tax-targeted vaccination is ineffective against Tax-negative ATL cells, it can be a safe alternative maintenance therapy for Tax-positive ATL and may be further applicable for treatment of indolent ATL or even prophylaxis of ATL development among HTLV-1-carriers.
Collapse
Affiliation(s)
- Mari Kannagi
- Department of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsuhiko Hasegawa
- Department of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshiko Nagano
- Department of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tadafumi Iino
- Center for Advanced Medicine Innovation, Kyushu University, Fukuoka, Japan
| | - Jun Okamura
- Institute for Clinical Research, National Kyushu Cancer Center, Fukuoka, Japan
| | - Youko Suehiro
- Department of Hematology, National Kyushu Cancer Center, Fukuoka, Japan
| |
Collapse
|
14
|
Rodrigues ES, de Macedo MD, Orellana MD, Takayanagui OM, Palma PVB, Pinto MT, de Oliveira GLV, Malmegrim KCR, Slavov SN, Covas DT, Kashima S. Short Communication: Human Bone Marrow Stromal Cells Exhibit Immunosuppressive Effects on Human T Lymphotropic Virus Type 1 T Lymphocyte from Infected Individuals. AIDS Res Hum Retroviruses 2019; 35:164-168. [PMID: 30351194 DOI: 10.1089/aid.2018.0066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human multipotent mesenchymal stromal cells (MSCs) display immunoregulatory functions that can modulate innate and adaptive cellular immune responses. The suppressive and immunomodulatory activities of MSCs occur through the action of soluble factors that are constitutively produced and released by these cells or, alternatively, after MSC induction by stimuli of inflammatory microenvironments. However, to date the contribution of MSCs in the inflammatory microenvironment resulting from viral infection is unknown. In our study, we evaluated the MSC immunosuppressive effect on human T lymphotropic virus type 1 (HTLV-1) infected T lymphocytes. To evaluate if MSC immunoregulation can influence the proliferation of HTLV-1 infected T lymphocytes, we compared the proliferation of lymphocytes obtained from HTLV-1 infected and healthy individuals cocultured in the presence of MSCs. It was observed that the lymphoproliferative inhibition by MSCs on infected lymphocytes was similar compared to the cells obtained from healthy individuals. In addition, this suppressive effect was related to a significant increase of indoleamine-2,3-dioxygenase and prostaglandin E2 gene expression (p ≤ .05). Furthermore, the HTLV-1 pol gene was less expressed after coculturing with MSCs, suggesting that the MSC immunoregulation can have effective suppression on HTLV-1 infected T cells. In conclusion, this study suggests that MSCs could be involved in the immunomodulation of the HTLV-1 infected T lymphocytes.
Collapse
Affiliation(s)
- Evandra Strazza Rodrigues
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Mayra Dorigan de Macedo
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Maristela Delgado Orellana
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
- Department of Clinical Medicine, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Osvaldo Massaiti Takayanagui
- Department of Clinical Medicine, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Patrícia Vianna Bonini Palma
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Mariana Tomazini Pinto
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Gislane Lelis Vilela de Oliveira
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE), Sao Jose do Rio Preto, São Paulo, Brazil
| | - Kelen Cristina Ribeiro Malmegrim
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Svetoslav Nanev Slavov
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Dimas Tadeu Covas
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
- Department of Clinical Medicine, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Simone Kashima
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, Brazil
- Department of Clinical Medicine, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| |
Collapse
|
15
|
Vicario M, Mattiolo A, Montini B, Piano MA, Cavallari I, Amadori A, Chieco-Bianchi L, Calabrò ML. A Preclinical Model for the ATLL Lymphoma Subtype With Insights Into the Role of Microenvironment in HTLV-1-Mediated Lymphomagenesis. Front Microbiol 2018; 9:1215. [PMID: 29951044 PMCID: PMC6008390 DOI: 10.3389/fmicb.2018.01215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/18/2018] [Indexed: 11/25/2022] Open
Abstract
Adult T cell Leukemia/Lymphoma (ATLL) is a mature T cell malignancy associated with Human T cell Leukemia Virus type 1 (HTLV-1) infection. Among its four main clinical subtypes, the prognosis of acute and lymphoma variants remains poor. The long latency (3–6 decades) and low incidence (3–5%) of ATLL imply the involvement of viral and host factors in full-blown malignancy. Despite multiple preclinical and clinical studies, the contribution of the stromal microenvironment in ATLL development is not yet completely unraveled. The aims of this study were to investigate the role of the host microenvironment, and specifically fibroblasts, in ATLL pathogenesis and to propose a murine model for the lymphoma subtype. Here we present evidence that the oncogenic capacity of HTLV-1-immortalized C91/PL cells is enhanced when they are xenotransplanted together with human foreskin fibroblasts (HFF) in immunocompromised BALB/c Rag2-/-γc-/- mice. Moreover, cell lines derived from a developed lymphoma and their subsequent in vivo passages acquired the stable property to induce aggressive T cell lymphomas. In particular, one of these cell lines, C91/III cells, consistently induced aggressive lymphomas also in NOD/SCID/IL2Rγc KO (NSG) mice. To dissect the mechanisms linked to this enhanced tumorigenic ability, we quantified 45 soluble factors released by these cell lines and found that 21 of them, mainly pro-inflammatory cytokines and chemokines, were significantly increased in C91/III cells compared to the parental C91/PL cells. Moreover, many of the increased factors were also released by human fibroblasts and belonged to the known secretory pattern of ATLL cells. C91/PL cells co-cultured with HFF showed features reminiscent of those observed in C91/III cells, including a similar secretory pattern and a more aggressive behavior in vivo. On the whole, our data provide evidence that fibroblasts, one of the major stromal components, might enhance tumorigenesis of HTLV-1-infected and immortalized T cells, thus throwing light on the role of microenvironment contribution in ATLL pathogenesis. We also propose that the lymphoma induced in NSG mice by injection with C91/III cells represents a new murine preclinical ATLL model that could be adopted to test novel therapeutic interventions for the aggressive lymphoma subtype.
Collapse
Affiliation(s)
- Mattia Vicario
- Immunology and Molecular Oncology, Veneto Institute of Oncology, IOV - IRCCS, Padua, Italy
| | - Adriana Mattiolo
- Immunology and Molecular Oncology, Veneto Institute of Oncology, IOV - IRCCS, Padua, Italy
| | - Barbara Montini
- Immunology and Molecular Oncology, Veneto Institute of Oncology, IOV - IRCCS, Padua, Italy
| | - Maria Assunta Piano
- Immunology and Molecular Oncology, Veneto Institute of Oncology, IOV - IRCCS, Padua, Italy
| | - Ilaria Cavallari
- Immunology and Molecular Oncology, Veneto Institute of Oncology, IOV - IRCCS, Padua, Italy
| | - Alberto Amadori
- Immunology and Molecular Oncology, Veneto Institute of Oncology, IOV - IRCCS, Padua, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Luigi Chieco-Bianchi
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Maria Luisa Calabrò
- Immunology and Molecular Oncology, Veneto Institute of Oncology, IOV - IRCCS, Padua, Italy
| |
Collapse
|
16
|
Futsch N, Mahieux R, Dutartre H. HTLV-1, the Other Pathogenic Yet Neglected Human Retrovirus: From Transmission to Therapeutic Treatment. Viruses 2017; 10:v10010001. [PMID: 29267225 PMCID: PMC5795414 DOI: 10.3390/v10010001] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 12/12/2022] Open
Abstract
Going back to their discovery in the early 1980s, both the Human T-cell Leukemia virus type-1 (HTLV-1) and the Human Immunodeficiency Virus type-1 (HIV-1) greatly fascinated the virology scene, not only because they were the first human retroviruses discovered, but also because they were associated with fatal diseases in the human population. In almost four decades of scientific research, both viruses have had different fates, HTLV-1 being often upstaged by HIV-1. However, although being very close in terms of genome organization, cellular tropism, and viral replication, HIV-1 and HTLV-1 are not completely commutable in terms of treatment, especially because of the opposite fate of the cells they infect: death versus immortalization, respectively. Nowadays, the antiretroviral therapies developed to treat HIV-1 infected individuals and to limit HIV-1 spread among the human population have a poor or no effect on HTLV-1 infected individuals, and thus, do not prevent the development of HTLV-1-associated diseases, which still lack highly efficient treatments. The present review mainly focuses on the course of HTLV-1 infection, from the initial infection of the host to diseases development and associated treatments, but also investigates HIV-1/HTLV-1 co-infection events and their impact on diseases development.
Collapse
Affiliation(s)
- Nicolas Futsch
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007 Lyon, France.
- Equipe labellisée "Ligue Nationale Contre le Cancer", France.
| | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007 Lyon, France.
- Equipe labellisée "Ligue Nationale Contre le Cancer", France.
| | - Hélène Dutartre
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007 Lyon, France.
- Equipe labellisée "Ligue Nationale Contre le Cancer", France.
| |
Collapse
|
17
|
Abstract
Human T cell leukemia virus type 1 (HTLV-1), also known as human T lymphotropic virus type 1, was the first exogenous human retrovirus discovered. Unlike the distantly related lentivirus HIV-1, HTLV-1 causes disease in only 5-10% of infected people, depending on their ethnic origin. But whereas HIV-1 infection and the consequent diseases can be efficiently contained in most cases by antiretroviral drug treatment, there is no satisfactory treatment for the malignant or inflammatory diseases caused by HTLV-1. The purpose of the present article is to review recent advances in the understanding of the mechanisms by which the virus persists in vivo and causes disabling or fatal diseases.
Collapse
Affiliation(s)
- Charles R M Bangham
- Division of Infectious Diseases, Faculty of Medicine, Imperial College, London W2 1PG, United Kingdom;
| |
Collapse
|
18
|
Rizkallah G, Journo C, Mahieux R, Dutartre H. How does susceptibility to HTLV-1 infection varies with the maturation state of dendritic cells? Future Virol 2017. [DOI: 10.2217/fvl-2017-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Gerges Rizkallah
- International Center for Research in Infectiology, Retroviral Oncogenesis laboratory, INSERM U1111 – Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007, Lyon, France
- Equipe labellisée “Ligue Nationale Contre le Cancer”
| | - Chloé Journo
- International Center for Research in Infectiology, Retroviral Oncogenesis laboratory, INSERM U1111 – Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007, Lyon, France
- Equipe labellisée “Ligue Nationale Contre le Cancer”
| | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis laboratory, INSERM U1111 – Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007, Lyon, France
- Equipe labellisée “Ligue Nationale Contre le Cancer”
| | - Hélène Dutartre
- International Center for Research in Infectiology, Retroviral Oncogenesis laboratory, INSERM U1111 – Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007, Lyon, France
- Equipe labellisée “Ligue Nationale Contre le Cancer”
| |
Collapse
|
19
|
Sawada L, Nagano Y, Hasegawa A, Kanai H, Nogami K, Ito S, Sato T, Yamano Y, Tanaka Y, Masuda T, Kannagi M. IL-10-mediated signals act as a switch for lymphoproliferation in Human T-cell leukemia virus type-1 infection by activating the STAT3 and IRF4 pathways. PLoS Pathog 2017; 13:e1006597. [PMID: 28910419 PMCID: PMC5614654 DOI: 10.1371/journal.ppat.1006597] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/26/2017] [Accepted: 08/22/2017] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) causes two distinct diseases, adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Since there are no disease-specific differences among HTLV-1 strains, the etiological mechanisms separating these respective lymphoproliferative and inflammatory diseases are not well understood. In this study, by using IL-2-dependent HTLV-1-infected T-cell lines (ILTs) established from patients with ATL and HAM/TSP, we demonstrate that the anti-inflammatory cytokine IL-10 and its downstream signals potentially act as a switch for proliferation in HTLV-1-infected cells. Among six ILTs used, ILTs derived from all three ATL patients grew much faster than those from three HAM/TSP patients. Although most of the ILTs tested produced IFN-γ and IL-6, the production of IL-10 was preferentially observed in the rapid-growing ILTs. Interestingly, treatment with exogenous IL-10 markedly enhanced proliferation of the slow-growing HAM/TSP-derived ILTs. The IL-10-mediated proliferation of these ILTs was associated with phosphorylation of STAT3 and induction of survivin and IRF4, all of which are characteristics of ATL cells. Knockdown of STAT3 reduced expression of IL-10, implying a positive-feedback regulation between STAT3 and IL-10. STAT3 knockdown also reduced survivin and IRF4 in the IL-10- producing or IL-10- treated ILTs. IRF4 knockdown further suppressed survivin expression and the cell growth in these ILTs. These findings indicate that the IL-10-mediated signals promote cell proliferation in HTLV-1-infected cells through the STAT3 and IRF4 pathways. Our results imply that, although HTLV-1 infection alone may not be sufficient for cell proliferation, IL-10 and its signaling pathways within the infected cell itself and/or its surrounding microenvironment may play a critical role in pushing HTLV-1-infected cells towards proliferation at the early stages of HTLV-1 leukemogenesis. This study provides useful information for understanding of disease mechanisms and disease-prophylactic strategies in HTLV-1 infection.
Collapse
Affiliation(s)
- Leila Sawada
- Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Bunkyo-ku, Tokyo, Japan
| | - Yoshiko Nagano
- Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Bunkyo-ku, Tokyo, Japan
| | - Atsuhiko Hasegawa
- Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Bunkyo-ku, Tokyo, Japan
| | - Hikari Kanai
- Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Bunkyo-ku, Tokyo, Japan
| | - Kai Nogami
- Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Bunkyo-ku, Tokyo, Japan
| | - Sayaka Ito
- Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Bunkyo-ku, Tokyo, Japan
- Department of Medical Technology, School of Health Sciences, Tokyo University of Technology, Ota-ku, Tokyo, Japan
| | - Tomoo Sato
- Department of Rare Disease Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Yoshihisa Yamano
- Department of Rare Disease Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Yuetsu Tanaka
- Department of Immunology, Graduate school of Medicine, University of the Ryukyus, Nishihara-cho, Okinawa, Japan
| | - Takao Masuda
- Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Bunkyo-ku, Tokyo, Japan
| | - Mari Kannagi
- Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
20
|
Dierckx T, Khouri R, Menezes SM, Decanine D, Farre L, Bittencourt A, Vandamme AM, Van Weyenbergh J. IFN-β induces greater antiproliferative and proapoptotic effects and increased p53 signaling compared with IFN-α in PBMCs of Adult T-cell Leukemia/Lymphoma patients. Blood Cancer J 2017; 7:e519. [PMID: 28128792 PMCID: PMC5301034 DOI: 10.1038/bcj.2016.126] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- T Dierckx
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, Leuven, Belgium
| | - R Khouri
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, Leuven, Belgium.,Instituto Gonçalo Moniz-FIOCRUZ, Salvador-Bahia, Brazil
| | - S M Menezes
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, Leuven, Belgium
| | - D Decanine
- Instituto Gonçalo Moniz-FIOCRUZ, Salvador-Bahia, Brazil
| | - L Farre
- Instituto Gonçalo Moniz-FIOCRUZ, Salvador-Bahia, Brazil
| | - A Bittencourt
- Hospital Universitário Professor Edgar Santos-UFBA, Salvador-BA, Brazil
| | - A M Vandamme
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, Leuven, Belgium.,Center for Global Health and Tropical Medicine, Unidade de Microbiologia, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - J Van Weyenbergh
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, Leuven, Belgium.,Instituto Gonçalo Moniz-FIOCRUZ, Salvador-Bahia, Brazil
| |
Collapse
|
21
|
HTLV-1 Tax impairs K63-linked ubiquitination of STING to evade host innate immunity. Virus Res 2017; 232:13-21. [PMID: 28119118 DOI: 10.1016/j.virusres.2017.01.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/14/2017] [Accepted: 01/15/2017] [Indexed: 01/10/2023]
Abstract
The cellular antiviral innate immune system is essential for host defense and viruses have evolved a variety of strategies to evade the innate immunity. Human T lymphotropic virus type 1 (HTLV-1) belongs to the deltaretrovirus family and it can establish persistent infection in human beings for many years. However, how this virus evades the host innate immune responses remains unclear. Here we report a new strategy used by HTLV-1 to block innate immune responses. We observed that stimulator of interferon genes (STING) limited HTLV-1 protein expression and was critical to HTLV-1 reverse transcription intermediate (RTI) ssDNA90 triggered interferon (IFN)-β production in phorbol12-myristate13-acetate (PMA)-differentiated THP1 (PMA-THP1) cells. The HTLV-1 protein Tax inhibited STING overexpression induced transcriptional activation of IFN-β. Tax also impaired poly(dA:dT), interferon stimulatory DNA (ISD) or cyclic GMP-AMP (cGAMP) -stimulated IFN-β production, which was dependent on STING activation. Coimmunoprecipitation assays and confocal microscopy indicated that Tax was associated with STING in the same complex. Mechanistic studies suggested that Tax decreased the K63-linked ubiquitination of STING and disrupted the interactions between STING and TANK-binding kinase 1 (TBK1). These findings may shed more light on the molecular mechanisms underlying HTLV-1 infection.
Collapse
|
22
|
Bangham CRM, Ratner L. How does HTLV-1 cause adult T-cell leukaemia/lymphoma (ATL)? Curr Opin Virol 2015; 14:93-100. [PMID: 26414684 PMCID: PMC4772697 DOI: 10.1016/j.coviro.2015.09.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/09/2015] [Accepted: 09/09/2015] [Indexed: 11/21/2022]
Abstract
A typical person infected with the retrovirus human T-lymphotropic virus type 1 (HTLV-1) carries tens of thousands of clones of HTLV-1-infected T lymphocytes, each clone distinguished by a unique integration site of the provirus in the host genome. However, only 5% of infected people develop the malignant disease adult T cell leukaemia/lymphoma, usually more than 50 years after becoming infected. We review the host and viral factors that cause this aggressive disease.
Collapse
Affiliation(s)
- Charles R M Bangham
- Section of Virology, Department of Medicine, Imperial College, London W2 1PG, UK.
| | - Lee Ratner
- Medical Oncology Section, Hematology-Oncology Faculty, Washington University School of Medicine, St Louis, WA, USA
| |
Collapse
|
23
|
Abstract
Human T-lymphotropic virus 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a progressive disease of the CNS that causes weakness or paralysis of the legs, lower back pain and urinary symptoms. HAM/TSP was first described in Jamaica in the nineteenth century, but the aetiology of the condition, infection with the retrovirus HTLV-1, was only identified in the 1980s. HAM/TSP causes chronic disability and, accordingly, imposes a substantial health burden in areas where HTLV-1 infection is endemic. Since the discovery of the cause of HAM/TSP, considerable advances have been made in the understanding of the virology, immunology, cell biology and pathology of HTLV-1 infection and its associated diseases. However, progress has been limited by the lack of accurate animal models of the disease. Moreover, the treatment of HAM/TSP remains highly unsatisfactory: antiretroviral drugs have little impact on the infection and, although potential disease-modifying therapies are widely used, their value is unproved. At present, clinical management is focused on symptomatic treatment and counselling. Here, we summarize current knowledge on the epidemiology, pathogenesis and treatment of HAM/TSP and identify areas in which further research is needed. For an illustrated summary of this Primer, visit: http://go.nature.com/tjZCFM.
Collapse
|
24
|
Diani E, Avesani F, Bergamo E, Cremonese G, Bertazzoni U, Romanelli MG. HTLV-1 Tax protein recruitment into IKKε and TBK1 kinase complexes enhances IFN-I expression. Virology 2014; 476:92-99. [PMID: 25531185 DOI: 10.1016/j.virol.2014.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/30/2014] [Accepted: 12/02/2014] [Indexed: 12/24/2022]
Abstract
The Tax protein expressed by human T-cell leukemia virus type 1 (HTLV-1) plays a pivotal role in the deregulation of cellular pathways involved in the immune response, inflammation, cell survival, and cancer. Many of these effects derive from Tax multiple interactions with host factors, including the subunits of the IKK-complex that are required for NF-κB activation. IKKɛ and TBK1 are two IKK-related kinases that allow the phosphorylation of interferon regulatory factors that trigger IFN type I gene expression. We observed that IKKɛ and TBK1 recruit Tax into cellular immunocomplexes. We also found that TRAF3, which regulates cell receptor signaling effectors, forms complexes with Tax. Transactivation analyses revealed that expression of Tax, in presence of IKKɛ and TBK1, enhances IFN-β promoter activity, whereas the activation of NF-κB promoter is not modified. We propose that Tax may be recruited into the TBK1/IKKɛ complexes as a scaffolding-adaptor protein that enhances IFN-I gene expression.
Collapse
Affiliation(s)
- Erica Diani
- Department of Life and Reproduction Sciences, Section of Biology and Genetics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy.
| | - Francesca Avesani
- Department of Life and Reproduction Sciences, Section of Biology and Genetics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy.
| | - Elisa Bergamo
- Department of Life and Reproduction Sciences, Section of Biology and Genetics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy.
| | - Giorgia Cremonese
- Department of Life and Reproduction Sciences, Section of Biology and Genetics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy.
| | - Umberto Bertazzoni
- Department of Life and Reproduction Sciences, Section of Biology and Genetics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy.
| | - Maria Grazia Romanelli
- Department of Life and Reproduction Sciences, Section of Biology and Genetics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy.
| |
Collapse
|
25
|
Saito M, Tanaka R, Fujii H, Kodama A, Takahashi Y, Matsuzaki T, Takashima H, Tanaka Y. The neutralizing function of the anti-HTLV-1 antibody is essential in preventing in vivo transmission of HTLV-1 to human T cells in NOD-SCID/γcnull (NOG) mice. Retrovirology 2014; 11:74. [PMID: 25163482 PMCID: PMC4180130 DOI: 10.1186/s12977-014-0074-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 08/13/2014] [Indexed: 02/06/2023] Open
Abstract
Background Human T-cell leukemia virus type 1 (HTLV-1) causes both neoplastic and inflammatory diseases, including adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Because these life-threatening and disabling diseases are not yet curable, it is important to prevent new HTLV-1 infections. Findings In this study, we have established a simple humanized mouse model of HTLV-1 infection for evaluating prophylactic and therapeutic interventions. In this model, HTLV-1-negative normal human peripheral blood mononuclear cells (PBMCs) are transplanted directly into the spleens of severely immunodeficient NOD-SCID/γcnull (NOG) mice, together with mitomycin-treated HTLV-1-producing T cells. Using this model, we tested the efficacy of monoclonal antibodies (mAbs) specific to HTLV-1 as well as human IgG isolated from HAM/TSP patients (HAM-IgG) in preventing HTLV-1-infection. One hour before and 24 h after transplantation of the human cells, each antibody sample was inoculated intraperitoneally. On day 14, human PBMCs isolated from the mouse spleens were tested for HTLV-1 infection. Whereas fresh CD4-positive and CD8-positive T cells isolated from untreated mice or mice treated with isotype control mAb, HTLV-1 non-neutralizing mAbs to envelope gp46, gag p19, and normal human IgG were all infected with HTLV-1; the mice treated with either HTLV-1 neutralizing anti-gp46 mAb or HAM-IgG did not become infected. Conclusions Our data indicate that the neutralizing function of the antibody, but not the antigen specificity, is essential for preventing the in vivo transmission of HTLV-1. The present animal model will also be useful for the in vivo evaluation of the efficacy of candidate molecules to be used as prophylactic and therapeutic intervention against HTLV-1 infection. Electronic supplementary material The online version of this article (doi:10.1186/s12977-014-0074-z) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Sega M, Chignola R. Population ecology of heterotypic tumour cell cultures. Cell Prolif 2014; 47:476-83. [PMID: 25159179 DOI: 10.1111/cpr.12126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/20/2014] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES Here, we propose a population ecology perspective to describe dynamic interplay between human leukaemia and cervical cancer cells growing together in the same environment. MATERIALS AND METHODS MOLT-3 (human T-lymphoblastic leukaemia) and HeLa (human cervical adenocarcinoma) cells were grown together or alone. Living cells were measured using flow cytometry, by counting propidium iodide-negative cells either CD5(+) (MOLT-3) or CD55(+) (HeLa). We developed a mathematical model to take into account possible interactions between cells and among cells and their environmental niches. Model equations were then fitted to growth data. RESULTS Ecological interactions that require direct cell contact and indirect mechanisms acting on cell niches, successfully modelled cell population growth. Predicted heterotypic adhesion between the two different cell types was demonstrated experimentally. CONCLUSIONS Theoretical ecology can be assayed using human cells and, most importantly, it can provide a conceptual framework to describe and understand evolution of mixed tumour cell populations.
Collapse
Affiliation(s)
- M Sega
- Department of Biotechnology, University of Verona, I-37134, Verona, Italy
| | | |
Collapse
|
27
|
Cachat A, Chevalier SA, Alais S, Ko NL, Ratner L, Journo C, Dutartre H, Mahieux R. Alpha interferon restricts human T-lymphotropic virus type 1 and 2 de novo infection through PKR activation. J Virol 2013; 87:13386-96. [PMID: 24089560 PMCID: PMC3838277 DOI: 10.1128/jvi.02758-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 01/24/2023] Open
Abstract
Type I interferon (IFN-I) inhibits the replication of different viruses. However, the effect of IFN-I on the human T-lymphotropic virus type 1 (HTLV-1) viral cycle is controversial. Here, we investigated the consequences of IFN-α addition for different steps of HTLV-1 and HTLV-2 infection. We first show that alpha interferon (IFN-α) efficiently impairs HTLV-1 and HTLV-2 de novo infection in a T cell line and in primary lymphocytes. Using pseudotyped viruses expressing HTLV-1 envelope, we then show that cell-free infection is insensitive to IFN-α, demonstrating that the cytokine does not affect the early stages of the viral cycle. In contrast, intracellular levels of Gag, Env, or Tax protein are affected by IFN-α treatment in T cells, primary lymphocytes, or 293T cells transfected with HTLV-1 or HTLV-2 molecular clones, demonstrating that IFN-α acts during the late stages of infection. We show that IFN-α does not affect Tax-mediated transcription and acts at a posttranscriptional level. Using either small interfering RNA (siRNA) directed against PKR or a PKR inhibitor, we demonstrate that PKR, whose expression is induced by interferon, plays a major role in IFN-α-induced HTLV-1/2 inhibition. These results indicate that IFN-α has a strong repressive effect on the HTLV-1 and HTLV-2 viral cycle during de novo infection of cells that are natural targets of the viruses.
Collapse
Affiliation(s)
- Anne Cachat
- Equipe Oncogenèse Rétrovirale
- Equipe Labelisée Ligue Nationale Contre le Cancer
- International Center for Research in Infectiology, INSERM U1111-CNRS UMR5308
- Ecole Normale Supérieure de Lyon
- Université Lyon 1, LabEx ECOFECT-Eco-Evolutionary Dynamics of Infectious Diseases, Lyon, France
| | - Sébastien Alain Chevalier
- Equipe Oncogenèse Rétrovirale
- Equipe Labelisée Ligue Nationale Contre le Cancer
- International Center for Research in Infectiology, INSERM U1111-CNRS UMR5308
- Ecole Normale Supérieure de Lyon
- Université Lyon 1, LabEx ECOFECT-Eco-Evolutionary Dynamics of Infectious Diseases, Lyon, France
| | - Sandrine Alais
- Equipe Oncogenèse Rétrovirale
- Equipe Labelisée Ligue Nationale Contre le Cancer
- International Center for Research in Infectiology, INSERM U1111-CNRS UMR5308
- Ecole Normale Supérieure de Lyon
- Université Lyon 1, LabEx ECOFECT-Eco-Evolutionary Dynamics of Infectious Diseases, Lyon, France
| | - Nga Ling Ko
- Unité d'Épidémiologie et Physiopathoglogie des Virus Oncogenes, Institut Pasteur, Paris, France
| | - Lee Ratner
- Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chloé Journo
- Equipe Oncogenèse Rétrovirale
- Equipe Labelisée Ligue Nationale Contre le Cancer
- International Center for Research in Infectiology, INSERM U1111-CNRS UMR5308
- Ecole Normale Supérieure de Lyon
- Université Lyon 1, LabEx ECOFECT-Eco-Evolutionary Dynamics of Infectious Diseases, Lyon, France
| | - Hélène Dutartre
- Equipe Oncogenèse Rétrovirale
- Equipe Labelisée Ligue Nationale Contre le Cancer
- International Center for Research in Infectiology, INSERM U1111-CNRS UMR5308
- Ecole Normale Supérieure de Lyon
- Université Lyon 1, LabEx ECOFECT-Eco-Evolutionary Dynamics of Infectious Diseases, Lyon, France
| | - Renaud Mahieux
- Equipe Oncogenèse Rétrovirale
- Equipe Labelisée Ligue Nationale Contre le Cancer
- International Center for Research in Infectiology, INSERM U1111-CNRS UMR5308
- Ecole Normale Supérieure de Lyon
- Université Lyon 1, LabEx ECOFECT-Eco-Evolutionary Dynamics of Infectious Diseases, Lyon, France
| |
Collapse
|
28
|
Saito M. Neuroimmunological aspects of human T cell leukemia virus type 1-associated myelopathy/tropical spastic paraparesis. J Neurovirol 2013; 20:164-74. [PMID: 23943469 DOI: 10.1007/s13365-013-0192-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/09/2013] [Accepted: 07/22/2013] [Indexed: 12/30/2022]
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is a human retrovirus etiologically associated with adult T cell leukemia/lymphoma and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Only approximately 0.25-4 % of infected individuals develop HAM/TSP; the majority of infected individuals remain lifelong asymptomatic carriers. Recent data suggest that immunological aspects of host-virus interactions might play an important role in the development and pathogenesis of HAM/TSP. This review outlines and discusses the current understanding, ongoing developments, and future perspectives of HAM/TSP research.
Collapse
Affiliation(s)
- Mineki Saito
- Department of Microbiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan,
| |
Collapse
|
29
|
Kinpara S, Kijiyama M, Takamori A, Hasegawa A, Sasada A, Masuda T, Tanaka Y, Utsunomiya A, Kannagi M. Interferon-α (IFN-α) suppresses HTLV-1 gene expression and cell cycling, while IFN-α combined with zidovudine induces p53 signaling and apoptosis in HTLV-1-infected cells. Retrovirology 2013; 10:52. [PMID: 23688327 PMCID: PMC3698133 DOI: 10.1186/1742-4690-10-52] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 05/09/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Human T-cell leukemia virus type-1 (HTLV-1) is the causative retrovirus of adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-1 gene expression is maintained at low levels in vivo by unknown mechanisms. A combination therapy of interferon-α (IFN-α) and zidovudin (AZT) shows therapeutic effects in ATL patients, although its mechanism is also obscure. We previously found that viral gene expression in IL-2-dependent HTLV-1-infected T-cells (ILTs) derived from ATL patients was markedly suppressed by stromal cells through a type I IFN response. Here, we investigated the effects of IFN-α with or without AZT on viral gene expression and cell growth in ILTs. RESULTS ILTs expressed variable but lower amounts of HTLV-1 Tax protein than HTLV-1-transformed HUT102 cells. Following the addition of IFN-α, the amounts of HTLV-1 p19 in the supernatants of these cells decreased in three days, while HTLV-1 gene expression decreased only in ILTs but not HUT102 cells. IFN-α also suppressed the spontaneous HTLV-1 induction in primary ATL cells cultured for 24 h. A time course study using ILTs revealed that the levels of intracellular Tax proteins decreased in the first 24 h after addition of IFN-α, before the reduction in HTLV-1 mRNA levels. The initial decreases of Tax protein following IFN-α treatment were observed in 6 of 7 ILT lines tested, although the reduction rates varied among ILT lines. An RNA-dependent protein kinase (PKR)-inhibitor reversed IFN-mediated suppression of Tax in ILTs. IFN-α also induced cell cycle arrest at the G0/G1 phase and suppressed NF-κB activities in these cells. AZT alone did not affect HTLV-1 gene expression, cell viability or NF-κB activities. AZT combined with IFN-α markedly induced cell apoptosis associated with phosphorylation of p53 and induction of p53-responsive genes in ILTs. CONCLUSIONS IFN-α suppressed HTLV-1 gene expression at least through a PKR-mediated mechanism, and also induced cell cycle arrest in ILTs. In combination with AZT, IFN-α further induced p53 signaling and cell apoptosis in these cells. These findings suggest that HTLV-1-infected cells at an IL-2-dependent stage retain susceptibility to type I IFN-mediated regulation of viral expression, and partly explain how AZT/IFN-α produces therapeutic effects in ATL.
Collapse
Affiliation(s)
- Shuichi Kinpara
- Department of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Miyatake Y, Oliveira ALA, Jarboui MA, Ota S, Tomaru U, Teshima T, Hall WW, Kasahara M. Protective roles of epithelial cells in the survival of adult T-cell leukemia/lymphoma cells. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1832-42. [PMID: 23474084 DOI: 10.1016/j.ajpath.2013.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/14/2012] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
Abstract
Adult T-cell leukemia/lymphoma (ATL) is a highly invasive and intractable T-cell malignancy caused by human T-cell leukemia virus-1 infection. We demonstrate herein that normal tissue-derived epithelial cells (NECs) exert protective effects on the survival of leukemic cells, which may partially account for high resistance to antileukemic therapies in patients with ATL. Viral gene-silenced, ATL-derived cell lines (ATL cells) dramatically escaped from histone deacetylase inhibitor-induced apoptosis by direct co-culture with NECs. Adhesions to NECs suppressed p21(Cip1) expression and increased a proportion of resting G0/G1 phase cells in trichostatin A (TSA)-treated ATL cells. ATL cells adhering to NECs down-regulated CD25 expression and enhanced vimentin expression, suggesting that most ATL cells acquired a quiescent state by cell-cell interactions with NECs. ATL cells adhering to NECs displayed highly elevated expression of the cancer stem cell marker CD44. Blockade of CD44 signaling diminished the NEC-conferred resistance of ATL cells to TSA-induced apoptosis. Co-culture with NECs also suppressed the expression of NKG2D ligands on TSA-treated ATL cells, resulting in decreased natural killer cell-mediated cytotoxicity. Combined evidence suggests that interactions with normal epithelial cells augment the resistance of ATL cells to TSA-induced apoptosis and facilitate immune evasion by ATL cells.
Collapse
Affiliation(s)
- Yukiko Miyatake
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kannagi M, Hasegawa A, Takamori A, Kinpara S, Utsunomiya A. The roles of acquired and innate immunity in human T-cell leukemia virus type 1-mediated diseases. Front Microbiol 2012; 3:323. [PMID: 22969761 PMCID: PMC3432515 DOI: 10.3389/fmicb.2012.00323] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 08/20/2012] [Indexed: 12/22/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis in small subsets of HTLV-1 carriers. HTLV-1-specific T-cell responses play critical roles in anti-viral and anti-tumor host defense during HTLV-1 infections. Some HTLV-1 carriers exhibit selective loss or anergy of HTLV-1-specific T-cells at an asymptomatic stage. This is also observed in ATL patients and may therefore be an underlying risk factor of ATL in combination with elevated proviral loads. HTLV-1-specific T-cells often recognize the viral oncoprotein Tax, indicating expression of Tax protein in vivo, although levels of HTLV-1 gene expression are known to be very low. A type-I interferon (IFN) response can be induced by HTLV-1-infected cells and suppresses HTLV-1 expression in vitro, suggesting a role of type-I IFN response in viral suppression and pathogenesis in vivo. Both acquired and innate immune responses control the status of HTLV-1-infected cells and could be the important determinants in the development of HTLV-1-mediated malignant and inflammatory diseases.
Collapse
Affiliation(s)
- Mari Kannagi
- Department of Immunotherapeutics, Graduate School, Tokyo Medical and Dental University Tokyo, Japan
| | | | | | | | | |
Collapse
|
32
|
Tattermusch S, Bangham CRM. HTLV-1 infection: what determines the risk of inflammatory disease? Trends Microbiol 2012; 20:494-500. [PMID: 22917680 DOI: 10.1016/j.tim.2012.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/11/2012] [Accepted: 07/11/2012] [Indexed: 12/24/2022]
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is an exogenous retrovirus that persists lifelong in the infected host. Infection has been linked to a spectrum of diverse diseases: adult T cell leukemia, encephalomyelopathy, and predisposition to opportunistic bacterial and helminth infections. Applications of new technologies and biological concepts to the field have provided new insights into viral persistence and pathogenesis in HTLV-1 infection. Here, we summarize the emerging concepts of dynamic HTLV-1-host interactions and propose that chronic interferon (IFN) production causes tissue damage in HTLV-1-associated inflammatory diseases.
Collapse
Affiliation(s)
- Sonja Tattermusch
- Imperial College London, Department of Immunology, Norfolk Place, London W2 1PG, UK
| | | |
Collapse
|
33
|
Chan JK, Greene WC. Dynamic roles for NF-κB in HTLV-I and HIV-1 retroviral pathogenesis. Immunol Rev 2012; 246:286-310. [DOI: 10.1111/j.1600-065x.2012.01094.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Yamada O, Ozaki K, Akiyama M, Kawauchi K. JAK–STAT and JAK–PI3K–mTORC1 Pathways Regulate Telomerase Transcriptionally and Posttranslationally in ATL Cells. Mol Cancer Ther 2012; 11:1112-21. [DOI: 10.1158/1535-7163.mct-11-0850] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Immunopathogenesis of human T-cell leukemia virus type-1-associated myelopathy/tropical spastic paraparesis: recent perspectives. LEUKEMIA RESEARCH AND TREATMENT 2012. [PMID: 23198155 PMCID: PMC3505925 DOI: 10.1155/2012/259045] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) is a replication-competent human retrovirus associated with two distinct types of disease only in a minority of infected individuals: the malignancy known as adult T-cell leukemia (ATL) and a chronic inflammatory central nervous system disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HAM/TSP is a chronic progressive myelopathy characterized by spastic paraparesis, sphincter dysfunction, and mild sensory disturbance in the lower extremities. Although the factors that cause these different manifestations of HTLV-1 infection are not fully understood, accumulating evidence from host population genetics, viral genetics, DNA expression microarrays, and assays of lymphocyte function suggests that complex virus-host interactions and the host immune response play an important role in the pathogenesis of HAM/TSP. Especially, the efficiency of an individual's cytotoxic T-cell (CTL) response to HTLV-1 limits the HTLV-1 proviral load and the risk of HAM/TSP. This paper focuses on the recent advances in HAM/TSP research with the aim to identify the precise mechanisms of disease, in order to develop effective treatment and prevention.
Collapse
|
36
|
Systems biology approaches reveal a specific interferon-inducible signature in HTLV-1 associated myelopathy. PLoS Pathog 2012; 8:e1002480. [PMID: 22291590 PMCID: PMC3266939 DOI: 10.1371/journal.ppat.1002480] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 11/28/2011] [Indexed: 12/24/2022] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is a retrovirus that persists lifelong in the host. In ∼4% of infected people, HTLV-1 causes a chronic disabling neuroinflammatory disease known as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The pathogenesis of HAM/TSP is unknown and treatment remains ineffective. We used gene expression microarrays followed by flow cytometric and functional assays to investigate global changes in blood transcriptional profiles of HTLV-1-infected and seronegative individuals. We found that perturbations of the p53 signaling pathway were a hallmark of HTLV-1 infection. In contrast, a subset of interferon (IFN)-stimulated genes was over-expressed in patients with HAM/TSP but not in asymptomatic HTLV-1 carriers or patients with the clinically similar disease multiple sclerosis. The IFN-inducible signature was present in all circulating leukocytes and its intensity correlated with the clinical severity of HAM/TSP. Leukocytes from patients with HAM/TSP were primed to respond strongly to stimulation with exogenous IFN. However, while type I IFN suppressed expression of the HTLV-1 structural protein Gag it failed to suppress the highly immunogenic viral transcriptional transactivator Tax. We conclude that over-expression of a subset of IFN-stimulated genes in chronic HTLV-1 infection does not constitute an efficient host response but instead contributes to the development of HAM/TSP. Infection with the Human T Lymphotropic virus is widespread in the tropics and subtropics, where it causes a chronic disabling disease of the nervous system abbreviated as HAM/TSP. There is no effective treatment available for HAM/TSP, because it is not understood how the virus causes the neuronal damage that results in the clinical symptoms of weakness and paralysis of the legs. Here, we compared the frequencies of cell populations and gene expression profiles from diseased and asymptomatic HTLV-1 carriers to identify abnormalities in biological pathways that cause HAM/TSP. We discovered a distinct group of genes that is over-expressed in white blood cells in patients with HAM/TSP, but not asymptomatic HTLV-1 carriers or patients with the clinically similar disease multiple sclerosis. The expression of these genes is induced by interferons, a group of anti-viral proteins that are usually beneficial to the host but can also cause inflammation. We also found that interferons did not efficiently suppress HTLV-1 protein expression in vitro. We conclude that interferons do not control chronic HTLV-1 infection but instead contribute to the development of HAM/TSP. Our study provides new insights into the development of HTLV-1-associated diseases and opens new areas of therapeutic intervention.
Collapse
|
37
|
Jones KS, Bertolette DC, Bai XT, Petrow-Sadowski C, Fu T, Franchini G, Nicot C, Ruscetti FW. Continuous long-term growth of plasmacytoid dendritic cells following in vitro infection with HTLV-1. Retrovirology 2011. [PMCID: PMC3112647 DOI: 10.1186/1742-4690-8-s1-a174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
38
|
Journo C, Mahieux R. HTLV-1 and innate immunity. Viruses 2011; 3:1374-94. [PMID: 21994785 PMCID: PMC3185810 DOI: 10.3390/v3081374] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 07/20/2011] [Accepted: 08/01/2011] [Indexed: 01/12/2023] Open
Abstract
Innate immunity plays a critical role in the host response to a viral infection. The innate response has two main functions. First, it triggers effector mechanisms that restrict the infection. Second, it primes development of the adaptive response, which completes the elimination of the pathogen or of infected cells. In vivo, HTLV-1 infects T lymphocytes that participate in adaptive immunity but also monocytes and dendritic cells that are major players in innate immunity. Herein, we will review the interplay between HTLV-1 and innate immunity. Particular emphasis is put on HTLV-1-induced alteration of type-I interferon (IFN-I) function. In vitro, the viral Tax protein plays a significant role in the alteration of IFN synthesis and signaling. Despite this, IFN-I/AZT treatment of Adult T-cell Leukemia/Lymphoma (ATLL) patients leads to complete remission. We will discuss a model in which exogenous IFN-I could act both on the microenvironment of the T-cells to protect them from infection, and also on infected cells when combined with other drugs that lead to Tax down-regulation/degradation.
Collapse
Affiliation(s)
- Chloé Journo
- Retroviral Oncogenesis Laboratory, INSERM-U758 Human Virology, 69364 Lyon cedex 07, France
- Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France
- IFR 128 Biosciences Lyon-Gerland, 69364 Lyon cedex 07, France
| | - Renaud Mahieux
- Retroviral Oncogenesis Laboratory, INSERM-U758 Human Virology, 69364 Lyon cedex 07, France
- Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France
- IFR 128 Biosciences Lyon-Gerland, 69364 Lyon cedex 07, France
| |
Collapse
|
39
|
Olière S, Douville R, Sze A, Belgnaoui SM, Hiscott J. Modulation of innate immune responses during human T-cell leukemia virus (HTLV-1) pathogenesis. Cytokine Growth Factor Rev 2011; 22:197-210. [DOI: 10.1016/j.cytogfr.2011.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Controversies in targeted therapy of adult T cell leukemia/lymphoma: ON target or OFF target effects? Viruses 2011; 3:750-69. [PMID: 21994752 PMCID: PMC3185778 DOI: 10.3390/v3060750] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/16/2011] [Accepted: 05/17/2011] [Indexed: 01/08/2023] Open
Abstract
Adult T cell leukemia/lymphoma (ATL) represents an ideal model for targeted therapy because of intrinsic chemo-resistance of ATL cells and the presence of two well identified targets: the HTLV-I retrovirus and the viral oncoprotein Tax. The combination of zidovudine (AZT) and interferon-alpha (IFN) has a dramatic impact on survival of ATL patients. Although the mechanism of action remains unclear, arguments in favor or against a direct antiviral effect will be discussed. Yet, most patients relapse and alternative therapies are mandatory. IFN and arsenic trioxide induce Tax proteolysis, synergize to induce apoptosis in ATL cells and cure Tax-driven ATL in mice through specific targeting of leukemia initiating cell activity. These results provide a biological basis for the clinical success of arsenic/IFN/AZT therapy in ATL patients and suggest that both extinction of viral replication (AZT) and Tax degradation (arsenic/IFN) are needed to cure ATL.
Collapse
|
41
|
Kannagi M, Hasegawa A, Kinpara S, Shimizu Y, Takamori A, Utsunomiya A. Double control systems for human T-cell leukemia virus type 1 by innate and acquired immunity. Cancer Sci 2011; 102:670-6. [DOI: 10.1111/j.1349-7006.2011.01862.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
42
|
Olière S, Hernandez E, Lézin A, Arguello M, Douville R, Nguyen TLA, Olindo S, Panelatti G, Kazanji M, Wilkinson P, Sékaly RP, Césaire R, Hiscott J. HTLV-1 evades type I interferon antiviral signaling by inducing the suppressor of cytokine signaling 1 (SOCS1). PLoS Pathog 2010; 6:e1001177. [PMID: 21079688 PMCID: PMC2973829 DOI: 10.1371/journal.ppat.1001177] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 10/01/2010] [Indexed: 12/25/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is the etiologic agent of Adult T cell Leukemia (ATL) and the neurological disorder HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Although the majority of HTLV-1–infected individuals remain asymptomatic carriers (AC) during their lifetime, 2–5% will develop either ATL or HAM/TSP, but never both. To better understand the gene expression changes in HTLV-1-associated diseases, we examined the mRNA profiles of CD4+ T cells isolated from 7 ATL, 12 HAM/TSP, 11 AC and 8 non-infected controls. Using genomic approaches followed by bioinformatic analysis, we identified gene expression pattern characteristic of HTLV-1 infected individuals and particular disease states. Of particular interest, the suppressor of cytokine signaling 1—SOCS1—was upregulated in HAM/TSP and AC patients but not in ATL. Moreover, SOCS1 was positively correlated with the expression of HTLV-1 mRNA in HAM/TSP patient samples. In primary PBMCs transfected with a HTLV-1 proviral clone and in HTLV-1-transformed MT-2 cells, HTLV-1 replication correlated with induction of SOCS1 and inhibition of IFN-α/β and IFN-stimulated gene expression. Targeting SOCS1 with siRNA restored type I IFN production and reduced HTLV-1 replication in MT-2 cells. Conversely, exogenous expression of SOCS1 resulted in enhanced HTLV-1 mRNA synthesis. In addition to inhibiting signaling downstream of the IFN receptor, SOCS1 inhibited IFN-β production by targeting IRF3 for ubiquitination and proteasomal degradation. These observations identify a novel SOCS1 driven mechanism of evasion of the type I IFN antiviral response against HTLV-1. Infection with HTLV-1 leads to the development of Adult T cell Leukemia (ATL) or the neurological disorder HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Although the majority of HTLV-1–infected individuals remain asymptomatic carriers (AC) during their lifetime, 2–5% will develop either ATL or HAM/TSP. Using gene expression profiling of CD4+ T lymphocytes from HTLV-1 infected patients, we identified Suppressor of cytokine signaling 1 (SOCS1) as being highly expressed in HAM/TSP and AC patients. SOCS1 expression positively correlated with the high HTLV-1 mRNA load that is characteristic of HAM/TSP patients. SOCS1 inhibited cellular antiviral signaling during HTLV-1 infection by degrading IRF3, an essential transcription factor in the interferon pathway. Our study reveals a novel evasion mechanism utilized by HTLV-1 that leads to increased retroviral replication, without triggering the innate immune response.
Collapse
Affiliation(s)
- Stéphanie Olière
- Molecular Oncology Group, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gómez-Lucía E, Collado VM, Miró G, Doménech A. Effect of type-I interferon on retroviruses. Viruses 2009; 1:545-73. [PMID: 21994560 PMCID: PMC3185530 DOI: 10.3390/v1030545] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 10/05/2009] [Accepted: 10/26/2009] [Indexed: 12/21/2022] Open
Abstract
Type-I interferons (IFN-I) play an important role in the innate immune response to several retroviruses. They seem to be effective in controlling the in vivo infection, though many of the clinical signs of retroviral infection may be due to their continual presence which over-stimulates the immune system and activates apoptosis. IFN-I not only affect the immune system, but also operate directly on virus replication. Most data suggest that the in vitro treatment with IFN-I of retrovirus infected cells inhibits the final stages of virogenesis, avoiding the correct assembly of viral particles and their budding, even though the mechanism is not well understood. However, in some retroviruses IFN-I may also act at a previous stage as some retroviral LTRs posses sequences homologous to the IFN-stimulated response element (ISRE). When stimulated, ISREs control viral transcription. HIV-1 displays several mechanisms for evading IFN-I, such as through Tat and Nef. Besides IFN-α and IFN-β, some other type I IFN, such as IFN-τ and IFN-ω, have potent antiviral activity and are promising treatment drugs.
Collapse
Affiliation(s)
- Esperanza Gómez-Lucía
- Departamento de Sanidad Animal, Facultad Veterinaria, Universidad Complutense, 28040 Madrid, Spain; E-mails: (V.M.C.); (G.M.); (A.D.)
| | | | | | | |
Collapse
|