1
|
HIV-1 strategies to overcome the immune system by evading and invading innate immune system. HIV & AIDS REVIEW 2016. [DOI: 10.1016/j.hivar.2015.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
2
|
Gallerano D, Cabauatan CR, Sibanda EN, Valenta R. HIV-Specific Antibody Responses in HIV-Infected Patients: From a Monoclonal to a Polyclonal View. Int Arch Allergy Immunol 2015; 167:223-41. [PMID: 26414324 DOI: 10.1159/000438484] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
HIV infections represent a major global health threat, affecting more than 35 million individuals worldwide. High infection rates and problems associated with lifelong antiretroviral treatment emphasize the need for the development of prophylactic and therapeutic immune intervention strategies. It is conceivable that insights for the design of new immunogens capable of eliciting protective immune responses may come from the analysis of HIV-specific antibody responses in infected patients. Using sophisticated technologies, several monoclonal neutralizing antibodies were isolated from HIV-infected individuals. However, the majority of polyclonal antibody responses found in infected patients are nonneutralizing. Comprehensive analyses of the molecular targets of HIV-specific antibody responses identified that during natural infection antibodies are mainly misdirected towards gp120 epitopes outside of the CD4-binding site and against regions and proteins that are not exposed on the surface of the virus. We therefore argue that vaccines aiming to induce protective responses should include engineered immunogens, which are capable of focusing the immune response towards protective epitopes.
Collapse
Affiliation(s)
- Daniela Gallerano
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
3
|
Ringe R, Bhattacharya J. Preventive and therapeutic applications of neutralizing antibodies to Human Immunodeficiency Virus Type 1 (HIV-1). THERAPEUTIC ADVANCES IN VACCINES 2014; 1:67-80. [PMID: 24757516 DOI: 10.1177/2051013613494534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The development of a preventive vaccine to neutralize the highly variable and antigenically diverse human immunodeficiency virus type 1 (HIV-1) has been an indomitable goal. The recent discovery of a number of cross-neutralizing and potent monoclonal antibodies from elite neutralizers has provided important insights in this field. Neutralizing antibodies (NAbs) are useful in identifying neutralizing epitopes of vaccine utility and for understanding the mechanism of potent and broad cross-neutralization thus providing a modality of preventive and therapeutic value. In this article we review the current understanding on the potential use of broadly neutralizing antibodies (bNAbs) in their full-length IgG structure, engineered domain antibody or bispecific versions towards preventive and therapeutic applications. The potential implications of NAbs are discussed in the light of the recent developments as key components in vaccination against HIV-1. The development of a vaccine immunogen which elicits bNAbs and confers protective immunity remains a real challenge.
Collapse
Affiliation(s)
- Rajesh Ringe
- Weill Medical College of Cornell University, New York, NY, USA
| | - Jayanta Bhattacharya
- International AIDS Vaccine Initiative (IAVI), THSTI-IAVI HVTR Laboratory, Translational Health Science and Technology Institute (THSTI), Gurgaon-122016, Haryana, India
| |
Collapse
|
4
|
Huber G, Bánki Z, Kunert R, Stoiber H. Novel bifunctional single-chain variable antibody fragments to enhance virolysis by complement: generation and proof-of-concept. BIOMED RESEARCH INTERNATIONAL 2014; 2014:971345. [PMID: 24524088 PMCID: PMC3913500 DOI: 10.1155/2014/971345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/03/2013] [Indexed: 12/20/2022]
Abstract
When bound to the envelope of viruses, factor H (FH), a soluble regulator of complement activation, contributes to the protection against a potent immune defense mechanism, the complement-mediated lysis (CML). Thus, removing FH from the surface renders viruses, such as HIV, susceptible to CML. For a proof of concept, we developed a construct consisting of recombinant bifunctional single-chain variable fragment (scFv) based on a monoclonal antibody against Friend murine leukemia virus (F-MuLV) envelope protein gp70, which was coupled to specific binding domains (short consensus repeats 19-20; SCR1920) of FH. We used Pichia pastoris as expression system in common shake flasks and optimized expression in high density bench top fermentation. Specific binding of recombinant scFv was proven by flow cytometry. The recombinant scFv-SCR significantly enhanced CML of F-MuLV in vitro implying that FH binding to the viral surface was impaired by the scFv-SCR. This novel concept to enhance virolysis may provide a new approach for antiviral treatment.
Collapse
Affiliation(s)
- Georg Huber
- Division of Virology, Innsbruck Medical University, Peter-Mayr-Straße 4b, 6020 Innsbruck, Austria
| | - Zoltán Bánki
- Division of Virology, Innsbruck Medical University, Peter-Mayr-Straße 4b, 6020 Innsbruck, Austria
| | - Renate Kunert
- Department of Biotechnology, VIBT, BOKU-University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Heribert Stoiber
- Division of Virology, Innsbruck Medical University, Peter-Mayr-Straße 4b, 6020 Innsbruck, Austria
| |
Collapse
|
5
|
Moog C, Dereuddre-Bosquet N, Teillaud JL, Biedma ME, Holl V, Van Ham G, Heyndrickx L, Van Dorsselaer A, Katinger D, Vcelar B, Zolla-Pazner S, Mangeot I, Kelly C, Shattock RJ, Le Grand R. Protective effect of vaginal application of neutralizing and nonneutralizing inhibitory antibodies against vaginal SHIV challenge in macaques. Mucosal Immunol 2014; 7:46-56. [PMID: 23591718 DOI: 10.1038/mi.2013.23] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/14/2013] [Indexed: 02/07/2023]
Abstract
Definition of antibody (Ab) functions capable of preventing mucosal HIV transmission may be critical to both effective vaccine development and the prophylactic use of monoclonal Abs. Although direct antibody-mediated neutralization is highly effective against cell-free virus, increasing evidence suggests an important role for immunoglobulin G (IgG) Fcγ receptor (FcγR)-mediated inhibition of HIV replication. Thus, a panel of well-known neutralizing (NAbs) and nonneutralizing Abs (NoNAbs) were screened for their ability to block HIV acquisition and replication in vitro in either an independent or FcγR-dependent manner. Abs displaying the highest Fc-mediated inhibitory activity in various in vitro assays were selected, formulated for topical vaginal application in a microbicide gel, and tested for their antiviral activity against SHIVSF162P3 vaginal challenge in non-human primates (NHPs). A combination of three NAbs, 2G12, 2F5, and 4E10, fully prevented simian/human immunodeficiency virus (SHIV) vaginal transmission in 10 out of 15 treated NHPs, whereas a combination of two NoNAbs, 246-D and 4B3, although having no impact on SHIV acquisition, reduced plasma viral load. These results indicate that anti-HIV Abs with distinct neutralization and inhibitory functions differentially affect in vivo HIV acquisition and replication, by interfering with early viral replication and dissemination. Therefore, combining diverse Ab properties may potentiate the protective effects of anti-HIV-Ab-based strategies.
Collapse
Affiliation(s)
- C Moog
- U1110 INSERM/UNISTRA, Institute of Virology, Strasbourg, France
| | - N Dereuddre-Bosquet
- 1] CEA, Division of Immuno-Virology, iMETI, DSV, Fontenay-aux-Roses, France [2] UMR-E1, Université Paris Sud-11, Orsay, France
| | - J-L Teillaud
- INSERM UMR-S 872, Cordeliers Research Center, Paris Descartes University, Pierre et Marie Curie University, Paris, France
| | - M E Biedma
- U1110 INSERM/UNISTRA, Institute of Virology, Strasbourg, France
| | - V Holl
- U1110 INSERM/UNISTRA, Institute of Virology, Strasbourg, France
| | - G Van Ham
- Institute of Tropical Medicine and University of Antwerp, Antwerp, Belgium
| | - L Heyndrickx
- Institute of Tropical Medicine and University of Antwerp, Antwerp, Belgium
| | | | - D Katinger
- Polymun Scientific GmbH, Klosterneuburg, Austria
| | - B Vcelar
- Polymun Scientific GmbH, Klosterneuburg, Austria
| | - S Zolla-Pazner
- NYU School of Medicine and New York Veterans Affairs Medical Center, New York, New York, USA
| | - I Mangeot
- 1] CEA, Division of Immuno-Virology, iMETI, DSV, Fontenay-aux-Roses, France [2] UMR-E1, Université Paris Sud-11, Orsay, France
| | - C Kelly
- Clinical and Diagnostic Sciences, King's College, London, UK
| | - R J Shattock
- Department of Medicine, Imperial College, London, UK
| | - R Le Grand
- 1] CEA, Division of Immuno-Virology, iMETI, DSV, Fontenay-aux-Roses, France [2] UMR-E1, Université Paris Sud-11, Orsay, France
| |
Collapse
|
6
|
Vargas-Inchaustegui DA, Robert-Guroff M. Fc receptor-mediated immune responses: new tools but increased complexity in HIV prevention. Curr HIV Res 2013; 11:407-20. [PMID: 24191937 PMCID: PMC6288814 DOI: 10.2174/1570162x113116660063] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 12/21/2022]
Abstract
The modest success of the RV144 HIV vaccine trial in Thailand and the ensuing suggestion that a Fc-receptormediated antibody activity might have played a role in the protection observed have intensified investigations on Fcrelated immune responses. HIV neutralizing antibodies have been and continue to be the focal point of research into humoral immune protection. However, recent knowledge that their protective efficacy can be augmented by Fc-FcR interactions has increased the complexity of identifying immune correlates of protection. If anything, continued studies of both humoral and cellular immune mechanisms point to the lack of a single protective anti-HIV immune response. Here we focus on humoral immunity, analyzing the role played by Fc receptor-related responses and discussing how new knowledge of their interactions requires further investigation, but may also spur novel vaccination approaches. We initially address classical Fc-receptor mediated anti-viral mechanisms including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cell mediated viral inhibition (ADCVI), and antibody-dependent cellular phagocytosis (ADCP), as well as the effector cells that mediate these functions. Next, we summarize key aspects of FcR-Fc interactions that are important for potential control of HIV/SIV such as FcR polymorphisms and post-transcriptional modifications. Finally we discuss less commonly studied non-mechanistic anti-HIV immune functions: antibody avidity and envelopespecific B cell memory. Overall, a spectrum of immune responses, reflecting the immune system's redundancy, will likely be needed to prevent HIV infection and/or disease progression. Aside from elicitation of critical immune mechanisms, a successful vaccine will need to induce mature B cell responses and long-lasting immune memory.
Collapse
Affiliation(s)
- Diego A Vargas-Inchaustegui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, 41 Medlars Drive, Building 41, Room D804, Bethesda, MD 20192-5065, USA.
| | | |
Collapse
|
7
|
|
8
|
Abstract
INTRODUCTION One of the challenges facing the development of an AIDS vaccine is eliciting antibody (Ab) capable of preventing the acquisition of HIV. Broadly neutralizing Ab (bnAb) that can prevent HIV infection has proven to be difficult to elicit. Here, we consider the potential for protective non-neutralizing Ab (pnnAb) to provide the much needed Ab component for an HIV vaccine. Such Ab acts by "tagging" virus or infected cells for destruction by the innate immune system. AREAS COVERED We review interactions between the Fc region of immunoglobulin G (IgG) and Fcϒ receptors or complement that can lead to the destruction of HIV or HIV-infected cells, correlations between the presence of pnnAb and the prevention of HIV and simian immunodeficiency virus (SIV) infections, differences between classical HIV-specific bnAb and HIV-specific pnnAb, HIV envelope antigens and adjuvants which have been hypothesized to generate pnnAb, and the use of avidity as a serological correlate for pnnAb. EXPERT OPINION We hypothesize that selection of HIV for the poor ability to elicit bnAb has also selected it for slow entry into cells and a window of opportunity for pnnAb to tag virus for destruction by innate immune responses.
Collapse
|
9
|
Abstract
Antibody-based therapeutics have been successfully used for the treatment of various diseases and as research tools. Several well characterized, broadly neutralizing monoclonal antibodies (bnmAbs) targeting HIV-1 envelope glycoproteins or related host cell surface proteins show sterilizing protection of animals, but they are not effective when used for therapy of an established infection in humans. Recently, a number of novel bnmAbs, engineered antibody domains (eAds), and multifunctional fusion proteins have been reported which exhibit exceptionally potent and broad neutralizing activity against a wide range of HIV-1 isolates from diverse genetic subtypes. eAds could be more effective in vivo than conventional full-size antibodies generated by the human immune system. Because of their small size (12∼15 kD), they can better access sterically restricted epitopes and penetrate densely packed tissue where HIV-1 replicates than the larger full-size antibodies. HIV-1 possesses a number of mechanisms to escape neutralization by full-size antibodies but could be less likely to develop resistance to eAds. Here, we review the in vitro and in vivo antiviral efficacies of existing HIV-1 bnmAbs, summarize the development of eAds and multispecific fusion proteins as novel types of HIV-1 inhibitors, and discuss possible strategies to generate more potent antibody-based candidate therapeutics against HIV-1, including some that could be used to eradicate the virus.
Collapse
Affiliation(s)
- Rui Gong
- Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702-1201, USA.
| | | | | |
Collapse
|
10
|
Strokappe N, Szynol A, Aasa-Chapman M, Gorlani A, Forsman Quigley A, Hulsik DL, Chen L, Weiss R, de Haard H, Verrips T. Llama antibody fragments recognizing various epitopes of the CD4bs neutralize a broad range of HIV-1 subtypes A, B and C. PLoS One 2012; 7:e33298. [PMID: 22438910 PMCID: PMC3305327 DOI: 10.1371/journal.pone.0033298] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 02/10/2012] [Indexed: 11/30/2022] Open
Abstract
Many of the neutralising antibodies, isolated to date, display limited activities against the globally most prevalent HIV-1 subtypes A and C. Therefore, those subtypes are considered to be an important target for antibody-based therapy. Variable domains of llama heavy chain antibodies (VHH) have some superior properties compared with classical antibodies. Therefore we describe the application of trimeric forms of envelope proteins (Env), derived from HIV-1 of subtype A and B/C, for a prolonged immunization of two llamas. A panel of VHH, which interfere with CD4 binding to HIV-1 Env were selected with use of panning. The results of binding and competition assays to various Env, including a variant with a stabilized CD4-binding state (gp120Ds2), cross-competition experiments, maturation analysis and neutralisation assays, enabled us to classify the selected VHH into three groups. The VHH of group I were efficient mainly against viruses of subtype A, C and B′/C. The VHH of group II resemble the broadly neutralising antibody (bnmAb) b12, neutralizing mainly subtype B and C viruses, however some had a broader neutralisation profile. A representative of the third group, 2E7, had an even higher neutralization breadth, neutralizing 21 out of the 26 tested strains belonging to the A, A/G, B, B/C and C subtypes. To evaluate the contribution of certain amino acids to the potency of the VHH a small set of the mutants were constructed. Surprisingly this yielded one mutant with slightly improved neutralisation potency against 92UG37.A9 (subtype A) and 96ZM651.02 (subtype C). These findings and the well-known stability of VHH indicate the potential application of these VHH as anti-HIV-1 microbicides.
Collapse
Affiliation(s)
- Nika Strokappe
- Biomolecular Imaging, Department Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Agnieszka Szynol
- Biomolecular Imaging, Department Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Marlèn Aasa-Chapman
- Division of Infection and Immunity, UCL/MRC Centre for Medical Molecular Virology, University College London, London, United Kingdom
| | - Andrea Gorlani
- Biomolecular Imaging, Department Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Anna Forsman Quigley
- Division of Infection and Immunity, UCL/MRC Centre for Medical Molecular Virology, University College London, London, United Kingdom
| | - David Lutje Hulsik
- Unit of Virus Host Cell Interactions (UVHCI), UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Lei Chen
- Vaccine Research Centre, National Institute of Allergy and Infectious Diseases (NIAID), Nation Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Robin Weiss
- Division of Infection and Immunity, UCL/MRC Centre for Medical Molecular Virology, University College London, London, United Kingdom
| | - Hans de Haard
- Biomolecular Imaging, Department Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Theo Verrips
- Biomolecular Imaging, Department Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
11
|
De Coster G, De Neve L, Martín-Gálvez D, Therry L, Lens L. Variation in innate immunity in relation to ectoparasite load, age and season: a field experiment in great tits (Parus major). J Exp Biol 2010; 213:3012-8. [DOI: 10.1242/jeb.042721] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
It remains largely unknown which factors affect the innate immune responses of free-living birds. Nevertheless, the degree of innate immunity may play a crucial role in an individual's survival as it procures the first defence against pathogens. We manipulated the ectoparasite load of great tit (Parus major) nests by infesting them with hen fleas (Ceratophyllus gallinae) before egg laying. We subsequently quantified natural antibody (NAb) concentration and complement activation in nestlings and adult females during breeding and post-breeding periods. NAb concentrations increased in nestlings and adult females breeding in flea-infested nest boxes during the nestling provisioning period, but not in breeding females during incubation. In contrast, parasite abundance did not affect levels of complement activity in females. NAb levels of nestlings were already fully developed at the end of the nestling stage, but complement activation was only observed post-fledging. Concentrations of NAbs and complement activation of adult females were significantly lower during the breeding season compared with post-breeding levels, but did not differ between incubation and chick rearing. Further experimental studies in species that vary in life-history strategies will allow us to unravel the mechanisms underlying the observed variation in innate immune defences.
Collapse
Affiliation(s)
- Greet De Coster
- Department of Biology, Terrestrial Ecology Unit, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Liesbeth De Neve
- Departamento de Biología Animal, Facultad de Ciencias, Campus Universitario Fuentenueva s/n, 18071 Granada, Spain
| | - David Martín-Gálvez
- Estación Experimental de Zonas Áridas, Carretera de Sacramento s/n, 04120 La Cañada de San Urbano, Almería, Spain
| | - Lieven Therry
- Department of Biology, Terrestrial Ecology Unit, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Luc Lens
- Department of Biology, Terrestrial Ecology Unit, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Major roadblocks persist in the development of vaccines that elicit potent neutralizing antibodies targeting diverse HIV-1 strains, similar to known broadly neutralizing HIV-1 human monoclonal antibodies. Alternatively, other types of anti-HIV-1 envelope antibodies that may not neutralize HIV-1 in traditional neutralization assays but have other anti-HIV-1 activities (hereafter termed HIV-1 inhibitory antibodies) can be elicited by current vaccine strategies, and numerous studies are exploring their roles in preventing HIV-1 acquisition. We review examples of strategies for eliciting potentially protective HIV-1 inhibitory antibodies. RECENT FINDINGS Heterologous prime-boost strategies can yield anti-HIV immune responses, although only one (canarypox prime, Env protein boost) has been tested and shown positive results in an efficacy trial (RV144). Although the immune correlates of protection are as yet undefined, the reduced rate of acquisition without a significant effect on initial viral loads or CD4 T-cell counts, have raised the hypothesis of an RV144 vaccine-elicited transient protective B-cell response. SUMMARY In light of the RV144 trial, there is a critical need to define the entire functional spectrum of anti-HIV-1 antibodies, how easily each can be elicited, and how effective different types of antibody effector mechanisms can be in prevention of HIV-1 transmission.
Collapse
Affiliation(s)
- Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA.
| | | |
Collapse
|
13
|
Abstract
Individuals infected with HIV-1 and nearly everyone vaccinated with HIV-1 vaccines will, in time, generate antibodies against viral proteins. These antibodies do not resolve natural infection, and vaccine candidates that successfully stimulate the production of high titers of neutralizing antibodies have failed to protect against infection. In spite of this, antibodies continue to be a focus of vaccine research. One reason for the continued interest in antibodies is the failure of a vaccine engineered to generate cell-mediated immunity against HIV. Successful protective immunity against most intracellular pathogens involves several arms of the immune response. A successful vaccine should also stimulate both protective cell-mediated immunity and specific antibody. Efforts should be directed toward making a vaccine that will stimulate the production of 1) more antibody, 2) more broadly cross-reactive neutralizing antibody (broadly neutralizing antibodies), and 3) antibody with a particular functional activity (antibody-dependent cell-mediated cytotoxicity; catalytic antibodies).
Collapse
|
14
|
Long-lasting protective antiviral immunity induced by passive immunotherapies requires both neutralizing and effector functions of the administered monoclonal antibody. J Virol 2010; 84:10169-81. [PMID: 20610721 DOI: 10.1128/jvi.00568-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Using FrCas(E) retrovirus-infected newborn mice as a model system, we have shown recently that a long-lasting antiviral immune response essential for healthy survival emerges after a short treatment with a neutralizing (667) IgG2a isotype monoclonal antibody (MAb). This suggested that the mobilization of adaptive immunity by administered MAbs is key for the success in the long term for the MAb-based passive immunotherapy of chronic viral infections. We have addressed here whether the anti-FrCas(E) protective endogenous immunity is the mere consequence of viral propagation blunting, which would simply give time to the immune system to react, and/or to actual immunomodulation by the MAb during the treatment. To this aim, we have compared viral replication, disease progression, and antiviral immune responses between different groups of infected mice: (i) mice treated with either the 667 MAb, its F(ab')(2) fragment, or an IgM (672) with epitopic specificity similar to that of 667 but displaying different effector functions, and (ii) mice receiving no treatment but infected with a low viral inoculum reproducing the initial viral expansion observed in their infected/667 MAb-treated counterparts. Our data show that the reduction of FrCas(E) propagation is insufficient on its own to induce protective immunity and support a direct immunomodulatory action of the 667 MAb. Interestingly, they also point to sequential actions of the administered MAb. In a first step, viral propagation is exclusively controlled by 667 neutralizing activity, and in a second one, this action is complemented by FcgammaR-binding-dependent mechanisms, which most likely combine infected cell cytolysis and the modulation of the antiviral endogenous immune response. Such complementary effects of administered MAbs must be taken into consideration for the improvement of future antiviral MAb-based immunotherapies.
Collapse
|
15
|
Rieder P, Joos B, von Wyl V, Kuster H, Grube C, Leemann C, Böni J, Yerly S, Klimkait T, Bürgisser P, Weber R, Fischer M, Günthard HF. HIV-1 transmission after cessation of early antiretroviral therapy among men having sex with men. AIDS 2010; 24:1177-83. [PMID: 20386427 DOI: 10.1097/qad.0b013e328338e4de] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To study transmission dynamics during acute infection, during the aviremic phase over the period of early antiretroviral therapy (ART) and during the phase of viral rebound after early treatment was stopped. METHODS Transmission dynamics was assessed within 111 patients, enrolled in the Zurich primary HIV infection study, by molecular epidemiological methods using pol sequences from genotypic resistance tests and clonal env C2-V3-C3 sequences. Coclustering of Zurich primary HIV infection sequences with 12,303 sequences from 8837 HIV-positive patients enrolled in the multisite Swiss HIV Cohort Study was identified. Furthermore, we investigated transmission patterns within phylogenetic clusters by using longitudinal clinical data and analyzed HIV transmission by stage of infection and attempted to localize transmission events to periods before or after early ART. RESULTS Six transmission clusters comprising 20 men having sex with men were identified. Furthermore, linkage to eight men having sex with men from the Swiss HIV Cohort Study could be established. Strikingly, we detected at least five new primary infection events originating from Zurich primary HIV infection patients within 16-61 weeks after stopping early ART. Viral loads of likely index patients varied from 314 up to 1,690,000 HIV-1 RNA copies/ml of plasma at the estimated time of infection. CONCLUSION The large number of new infections originating from men having sex with men who stopped early ART indicates that current preventive efforts are insufficient. In contrast, these patients showed no adherence problems. These findings argue for early, continuous ART in sexually active HIV-1-infected persons not only for individual patient benefits but also specifically to reduce the spread of HIV-1.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Because complement is present in all fluids of the body, including serum, saliva and seminal fluid, and is found at mucosal surfaces and in the brain, all pathogens have to deal with complement proteins. Thus, immediately upon entering the host, independent on the route of infection, HIV activates the complement system. Although a first line of immune defense, complement cannot eliminate retroviral infections completely. RECENT FINDINGS Recent data indicate that complement, in concert with non-neutralizing antibodies, contributes to the control of HIV replication at early stages of infection. In parallel or at later stages, complement and non-neutralizing antibodies may counteract the immune response by enhancing HIV infection via complement and Fc-receptor-positive cells in 'cis' and 'trans'. SUMMARY This review highlights current knowledge in this field and emphasizes the contribution of complement and non-neutralizing antibodies in controlling versus and enhancing infection.
Collapse
|
17
|
Freissmuth D, Hiltgartner A, Stahl-Hennig C, Fuchs D, Tenner-Racz K, Racz P, Uberla K, Strasak A, Dierich MP, Stoiber H, Falkensammer B. Analysis of humoral immune responses in rhesus macaques vaccinated with attenuated SIVmac239Deltanef and challenged with pathogenic SIVmac251. J Med Primatol 2009; 39:97-111. [PMID: 20015159 DOI: 10.1111/j.1600-0684.2009.00398.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND To determine the correlation between protection and humoral immune response against simian immunodeficiency virus (SIVmac251), 11 macaques were immunized with live-attenuated SIVmac239Deltanef either intravenously or via the tonsils and exposed to SIVmac251 after either 6 or 15 months along with unvaccinated controls. RESULTS Independent of the route of vaccine application, viremia was significantly reduced in vaccinees compared with controls 2 weeks post-challenge. Concomitantly, viremia correlated inversely with SIV-specific IgG, complement-mediated lysis and neutralizing antibodies and these parameters seemed to contribute to reduced viremia. During chronic infection, six monkeys controlled viremia in the circulation (two or fewer infectious units per 10(6) PBMCs) and showed no signs of trapping in lymphatic tissues (Appendix S1). CONCLUSIONS As no significant differences were observed throughout the study, with respect to the humoral immune response and viremia control, between the two vaccinated cohorts, mucosal immunization strategies are recommended due to more simplified application.
Collapse
Affiliation(s)
- Doris Freissmuth
- Department of Hygiene, Microbiology and Social Medicine, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Falkensammer B, Rubner B, Hiltgartner A, Wilflingseder D, Stahl Hennig C, Kuate S, Uberla K, Norley S, Strasak A, Racz P, Stoiber H. Role of complement and antibodies in controlling infection with pathogenic simian immunodeficiency virus (SIV) in macaques vaccinated with replication-deficient viral vectors. Retrovirology 2009; 6:60. [PMID: 19545395 PMCID: PMC2713197 DOI: 10.1186/1742-4690-6-60] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 06/21/2009] [Indexed: 01/13/2023] Open
Abstract
Background We investigated the interplay between complement and antibodies upon priming with single-cycle replicating viral vectors (SCIV) encoding SIV antigens combined with Adeno5-SIV or SCIV pseudotyped with murine leukemia virus envelope boosting strategies. The vaccine was applied via spray-immunization to the tonsils of rhesus macaques and compared with systemic regimens. Results Independent of the application regimen or route, viral loads were significantly reduced after challenge with SIVmac239 (p < 0.03) compared to controls. Considerable amounts of neutralizing antibodies were induced in systemic immunized monkeys. Most of the sera harvested during peak viremia exhibited a trend with an inverse correlation between complement C3-deposition on viral particles and plasma viral load within the different vaccination groups. In contrast, the amount of the observed complement-mediated lysis did not correlate with the reduction of SIV titres. Conclusion The heterologous prime-boost strategy with replication-deficient viral vectors administered exclusively via the tonsils did not induce any neutralizing antibodies before challenge. However, after challenge, comparable SIV-specific humoral immune responses were observed in all vaccinated animals. Immunization with single cycle immunodeficiency viruses mounts humoral immune responses comparable to live-attenuated immunodeficiency virus vaccines.
Collapse
Affiliation(s)
- Barbara Falkensammer
- Department of Hygiene, Microbiology and Social Medicine, Innsbruck Medical University, 6020 Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW To summarize the in-vivo efficacy of neutralizing human monoclonal antibodies against HIV-1, to discuss the recent finding that an engineered human antibody VH domain, domain antibody (dAb), exhibits exceptionally potent and broadly cross-reactive neutralizing activity against HIV-1 primary isolates by targeting a hidden conserved epitope that is not accessible by larger antibodies and to suggest the possibility of developing a novel class of potent HIV-1 inhibitors based on human dAbs. RECENT FINDINGS HIV-1 has evolved a number of strategies to evade humoral immunity, including protecting highly conserved and important structures from the access of antibodies generated by the immune system. We have recently demonstrated that a human dAb (size approximately 15 kDa), m36, targets a highly protected structure on the HIV-1 envelope glycoprotein (Env), gp120, and exhibits exceptionally potent neutralizing activity against HIV-1 primary isolates, with potency on average higher than those of the broadly cross-reactive neutralizing human monoclonal antibody, scFv m9, and the inhibitory peptide, C34. SUMMARY The efficacy of the anti-HIV-1 therapy is significantly compromised by resistance to the currently used US Food and Drug Administration-approved antiretroviral drugs, which suggests an urgent need to develop novel classes of potent inhibitors. Several broadly cross-reactive neutralizing human monoclonal antibodies are highly effective against HIV-1 infection in vitro, but their administration to HIV-1-infected humans has only resulted in modest antiviral effects. Engineered human antibody fragments, dAbs, could be more potent because of their small size (about 10-fold smaller than that of an IgG), which allows targeting of highly conserved structures on the HIV-1 envelope glycoprotein that are not accessible by full-size antibodies and relatively efficient penetration into the densely packed lymphoid environment in which HIV-1 mostly replicates and spreads.
Collapse
|
20
|
Stoiber H, Soederholm A, Wilflingseder D, Gusenbauer S, Hildgartner A, Dierich MP. Complement and antibodies: a dangerous liaison in HIV infection? Vaccine 2009; 26 Suppl 8:I79-85. [PMID: 19388170 DOI: 10.1016/j.vaccine.2008.11.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Due to ongoing recombination and mutations, HIV permanently escapes from neutralizing antibody (nAb) responses of the host. By the masking of epitopes or shedding of gp120, HIV-1 further impedes an efficient neutralization by Abs. Therefore, nAbs responses of the host are chasing behind a rapidly evolving virus and mainly non-neutralizing antibodies (non-nAbs) are present in the host. At the same time, complement deposition on immune-complexed HIV may counteract the immune response by enhancing the infection. On the other hand, complement-mediated lysis is a putative effector mechanism to control viral replication. Here we review the complex interplay between complement, neutralizing and non-neutralizing Abs during HIV infection and discuss the contribution of Abs and complement in blocking versus enhancing the course of infection.
Collapse
Affiliation(s)
- Heribert Stoiber
- Department Hygiene and Microbiology, Innsbruck Medical University, Fritz-Preglstr. 3, A-6020 Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|