1
|
Xu C, Wang M, Cheng A, Yang Q, Huang J, Ou X, Sun D, He Y, Wu Z, Wu Y, Zhang S, Tian B, Zhao X, Liu M, Zhu D, Jia R, Chen S. Multiple functions of the nonstructural protein 3D in picornavirus infection. Front Immunol 2024; 15:1365521. [PMID: 38629064 PMCID: PMC11018997 DOI: 10.3389/fimmu.2024.1365521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
3D polymerase, also known as RNA-dependent RNA polymerase, is encoded by all known picornaviruses, and their structures are highly conserved. In the process of picornavirus replication, 3D polymerase facilitates the assembly of replication complexes and directly catalyzes the synthesis of viral RNA. The nuclear localization signal carried by picornavirus 3D polymerase, combined with its ability to interact with other viral proteins, viral RNA and cellular proteins, indicate that its noncatalytic role is equally important in viral infections. Recent studies have shown that 3D polymerase has multiple effects on host cell biological functions, including inducing cell cycle arrest, regulating host cell translation, inducing autophagy, evading immune responses, and triggering inflammasome formation. Thus, 3D polymerase would be a very valuable target for the development of antiviral therapies. This review summarizes current studies on the structure of 3D polymerase and its regulation of host cell responses, thereby improving the understanding of picornavirus-mediated pathogenesis caused by 3D polymerase.
Collapse
Affiliation(s)
- Chenxia Xu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Al-Rashedi NAM, Munahi MG, AH ALObaidi L. Prediction of potential inhibitors against SARS-CoV-2 endoribonuclease: RNA immunity sensing. J Biomol Struct Dyn 2022; 40:4879-4892. [PMID: 33357040 PMCID: PMC7784835 DOI: 10.1080/07391102.2020.1863265] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 12/07/2020] [Indexed: 02/03/2023]
Abstract
The World Health Organization has classified the COVID-19 outbreak a pandemic which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and declared it a global health emergency. Repurposing drugs with minimum side effects are one approach to quickly respond in attempt to prevent the spread of COVID-19. SARS-CoV-2 encodes several RNA processing enzymes that are unusual and unique for single-stranded RNA viruses, including Nsp15, a hexameric endoribonuclease that discriminatory cleaves immediately 3' of uridines. The structure of SARS-CoV-2 Nsp15 is reported to be homologous to that of the Nsp15 endoribonucleases of SARS-CoV and MERS-CoV, but it exhibits differences that may contribute to the greater virulence of SARS-CoV-2. This study aimed to identify drugs that targeted SARS-COV-2 Nsp15 using a molecular docking-based virtual screening of a library containing 10,000 approved and experimental drugs. The molecular docking results revealed 19 medications that demonstrated a good ability to inhibit Nsp15. Among all the candidated 19 drugs only five FDA approved drugs were used for further investigation by molecular dynamics simulation, the stability of Nsp15-ligand system was evaluated by calculating the RMSD, RMSF, radius of gyration and hydrogen bond profile. Furthermore, MM-PBSA method was employed to validate the binding affinity. According to the obtained results of MD, the complex of Olaparib was showed more stability and lower binding free energy than the control inhibitor during MD simulation time. Finally, we suggest that Olaparib is a potential drug for treating patients infected with SARS-CoV-2 and provide insight into the host immune response to viral RNA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Murad G. Munahi
- Department of Chemistry, College of Science, Al-Muthanna University, Samawah, Iraq
| | - Laith AH ALObaidi
- Department of Biology, College of Science, Al-Muthanna University, Samawah, Iraq
| |
Collapse
|
3
|
Abstract
Echinoderms are a phylum of marine invertebrates that include model organisms, keystone species, and animals commercially harvested for seafood. Despite their scientific, ecological, and economic importance, there is little known about the diversity of RNA viruses that infect echinoderms compared to other invertebrates. We screened over 900 transcriptomes and viral metagenomes to characterize the RNA virome of 38 echinoderm species from all five classes (Crinoidea, Holothuroidea, Asteroidea, Ophiuroidea and Echinoidea). We identified 347 viral genome fragments that were classified to genera and families within nine viral orders - Picornavirales, Durnavirales, Martellivirales, Nodamuvirales, Reovirales, Amarillovirales, Ghabrivirales, Mononegavirales, and Hepelivirales. We compared the relative viral representation across three life stages (embryo, larvae, adult) and characterized the gene content of contigs which encoded complete or near-complete genomes. The proportion of viral reads in a given transcriptome was not found to significantly differ between life stages though the majority of viral contigs were discovered from transcriptomes of adult tissue. This study illuminates the biodiversity of RNA viruses from echinoderms, revealing the occurrence of viral groups in natural populations.
Collapse
Affiliation(s)
- Elliot W Jackson
- Department of Microbiology, Cornell University, Ithaca, NY, USA.,Scripps Institution of Oceanography, University of California San Diego, La Jolla CA, USA
| | - Roland C Wilhelm
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, NY, USA
| | - Daniel H Buckley
- Department of Microbiology, Cornell University, Ithaca, NY, USA.,School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, NY, USA
| | - Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
4
|
Kulsuptrakul J, Wang R, Meyers NL, Ott M, Puschnik AS. A genome-wide CRISPR screen identifies UFMylation and TRAMP-like complexes as host factors required for hepatitis A virus infection. Cell Rep 2021; 34:108859. [PMID: 33730579 PMCID: PMC8893346 DOI: 10.1016/j.celrep.2021.108859] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/21/2020] [Accepted: 02/19/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatitis A virus (HAV) is a positive-sense RNA virus causing acute inflammation of the liver. Here, using a genome-scale CRISPR screen, we provide a comprehensive picture of the cellular factors that are exploited by HAV. We identify genes involved in sialic acid/ganglioside biosynthesis and members of the eukaryotic translation initiation factor complex, corroborating their putative roles for HAV. Additionally, we uncover all components of the cellular machinery for UFMylation, a ubiquitin-like protein modification. We show that HAV translation specifically depends on UFM1 conjugation of the ribosomal protein RPL26. Furthermore, we find that components related to the yeast Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP) complex are required for viral translation independent of controlling viral poly(A) tails or RNA stability. Finally, we demonstrate that pharmacological inhibition of the TRAMP-like complex decreases HAV replication in hepatocyte cells and human liver organoids, thus providing a strategy for host-directed therapy of HAV infection. To identify host factors required for the infection with hepatitis A virus, Kulsuptrakul et al. conducted a genome-wide CRISPR knockout screen in human hepatocytes. They reveal that UFMylation of the ribosomal protein RPL26 as well as the polyadenylation activity of a TRAMP-like complex enhance viral translation.
Collapse
Affiliation(s)
| | - Ruofan Wang
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | | - Melanie Ott
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
5
|
Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors. Proc Natl Acad Sci U S A 2020; 117:8094-8103. [PMID: 32198201 PMCID: PMC7149396 DOI: 10.1073/pnas.1921485117] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cells carry sensors that are primed to detect invading viruses. To avoid being recognized, coronaviruses express factors that interfere with host immune sensing pathways. Previous studies revealed that a coronavirus endoribonuclease (EndoU) delays activation of the host sensor system, but the mechanism was not known. Here, we report that EndoU cleaves a viral polyuridine sequence that would otherwise activate host immune sensors. This information may be used in developing inhibitors that target EndoU activity and prevent diseases caused by coronaviruses. Coronaviruses (CoVs) are positive-sense RNA viruses that can emerge from endemic reservoirs and infect zoonotically, causing significant morbidity and mortality. CoVs encode an endoribonuclease designated EndoU that facilitates evasion of host pattern recognition receptor MDA5, but the target of EndoU activity was not known. Here, we report that EndoU cleaves the 5′-polyuridines from negative-sense viral RNA, termed PUN RNA, which is the product of polyA-templated RNA synthesis. Using a virus containing an EndoU catalytic-inactive mutation, we detected a higher abundance of PUN RNA in the cytoplasm compared to wild-type−infected cells. Furthermore, we found that transfecting PUN RNA into cells stimulates a robust, MDA5-dependent interferon response, and that removal of the polyuridine extension on the RNA dampens the response. Overall, the results of this study reveal the PUN RNA to be a CoV MDA5-dependent pathogen-associated molecular pattern (PAMP). We also establish a mechanism for EndoU activity to cleave and limit the accumulation of this PAMP. Since EndoU activity is highly conserved in all CoVs, inhibiting this activity may serve as an approach for therapeutic interventions against existing and emerging CoV infections.
Collapse
|
6
|
Kempf BJ, Watkins CL, Peersen OB, Barton DJ. Picornavirus RNA Recombination Counteracts Error Catastrophe. J Virol 2019; 93:e00652-19. [PMID: 31068422 PMCID: PMC6600191 DOI: 10.1128/jvi.00652-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/25/2019] [Indexed: 01/24/2023] Open
Abstract
Template-dependent RNA replication mechanisms render picornaviruses susceptible to error catastrophe, an overwhelming accumulation of mutations incompatible with viability. Viral RNA recombination, in theory, provides a mechanism for viruses to counteract error catastrophe. We tested this theory by exploiting well-defined mutations in the poliovirus RNA-dependent RNA polymerase (RDRP), namely, a G64S mutation and an L420A mutation. Our data reveal two distinct mechanisms by which picornaviral RDRPs influence error catastrophe: fidelity of RNA synthesis and RNA recombination. A G64S mutation increased the fidelity of the viral polymerase and rendered the virus resistant to ribavirin-induced error catastrophe, but only when RNA recombination was at wild-type levels. An L420A mutation in the viral polymerase inhibited RNA recombination and exacerbated ribavirin-induced error catastrophe. Furthermore, when RNA recombination was substantially reduced by an L420A mutation, a high-fidelity G64S polymerase failed to make the virus resistant to ribavirin. These data indicate that viral RNA recombination is required for poliovirus to evade ribavirin-induced error catastrophe. The conserved nature of L420 within RDRPs suggests that RNA recombination is a common mechanism for picornaviruses to counteract and avoid error catastrophe.IMPORTANCE Positive-strand RNA viruses produce vast amounts of progeny in very short periods of time via template-dependent RNA replication mechanisms. Template-dependent RNA replication, while efficient, can be disadvantageous due to error-prone viral polymerases. The accumulation of mutations in viral RNA genomes leads to error catastrophe. In this study, we substantiate long-held theories regarding the advantages and disadvantages of asexual and sexual replication strategies among RNA viruses. In particular, we show that picornavirus RNA recombination counteracts the negative consequences of asexual template-dependent RNA replication mechanisms, namely, error catastrophe.
Collapse
Affiliation(s)
- Brian J Kempf
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Colleen L Watkins
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Olve B Peersen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - David J Barton
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
7
|
Cross ST, Michalski D, Miller MR, Wilusz J. RNA regulatory processes in RNA virus biology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1536. [PMID: 31034160 PMCID: PMC6697219 DOI: 10.1002/wrna.1536] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022]
Abstract
Numerous post‐transcriptional RNA processes play a major role in regulating the quantity, quality and diversity of gene expression in the cell. These include RNA processing events such as capping, splicing, polyadenylation and modification, but also aspects such as RNA localization, decay, translation, and non‐coding RNA‐associated regulation. The interface between the transcripts of RNA viruses and the various RNA regulatory processes in the cell, therefore, has high potential to significantly impact virus gene expression, regulation, cytopathology and pathogenesis. Furthermore, understanding RNA biology from the perspective of an RNA virus can shed considerable light on the broad impact of these post‐transcriptional processes in cell biology. Thus the goal of this article is to provide an overview of the richness of cellular RNA biology and how RNA viruses use, usurp and/or avoid the associated machinery to impact the outcome of infection. This article is categorized under:RNA in Disease and Development > RNA in Disease
Collapse
Affiliation(s)
- Shaun T Cross
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Daniel Michalski
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Megan R Miller
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
8
|
Geng G, Yu C, Li X, Yuan X. Variable 3'polyadenylation of Wheat yellow mosaic virus and its novel effects on translation and replication. Virol J 2019; 16:23. [PMID: 30786887 PMCID: PMC6383263 DOI: 10.1186/s12985-019-1130-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/13/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Polyadenylation influences many aspects of mRNA as well as viral RNA. variable polyadenylation at the 3' end have been reported in RNA viruses. It is interesting to identify the characteristic and potential role of 3' polyadenylation of Wheat yellow mosaic virus (WYMV), which has been reported to contain two genomic RNAs with 3' poly(A) tails and caused severe disease on wheat in East Asia region. METHODS 3' RACE was used to identify sequences of the 3' end in WYMV RNAs from naturally infected wheat by WYMV. In vitro translation assay was performed to analyze effect of UTRs of WYMV with or without 3'polyadenylation on translation. In vitro replication mediated by WYMV NIb protein were performed to evaluate effect of variable polyadenylation on replication. RESULTS Variable polyadenylation in WYMV RNAs was identified via 3' RACE. WYMV RNAs in naturally infected wheat in China simultaneously present with regions of long, short, or no adenylation at the 3' ends. The effects of variable polyadenylation on translation and replication of WYMV RNAs were evaluated. 5'UTR and 3'UTR of WYMV RNA1 or RNA2 synergistically enhanced the translation of the firefly luciferase (Fluc) gene in in vitro WGE system, whereas additional adenylates had an oppositive effect on this enhancement on translation mediated by UTRs of WYMV. Additional adenylates remarkably inhibited the synthesis of complementary strand from viral genome RNA during the in vitro replication mediated by WYMV NIb protein. CONCLUSIONS 3' end of WYMV RNAs present variable polyadenylation even no polyadenylation. 3' polyadenylation have opposite effect on translation mediated by UTRs of WYMV RNA1 or RNA2. 3' polyadenylation have negative effect on minus-strand synthesis of WYMV RNA in vitro. Variable polyadenylation of WYMV RNAs may provide sufficient selection on the template for translation and replication.
Collapse
Affiliation(s)
- Guowei Geng
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University; Shandong Province Key Laboratory of Agricultural Microbiology, No 61, Daizong Street, Shandong Province Tai’an, 271018 People’s Republic of China
| | - Chengming Yu
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University; Shandong Province Key Laboratory of Agricultural Microbiology, No 61, Daizong Street, Shandong Province Tai’an, 271018 People’s Republic of China
| | - Xiangdong Li
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University; Shandong Province Key Laboratory of Agricultural Microbiology, No 61, Daizong Street, Shandong Province Tai’an, 271018 People’s Republic of China
| | - Xuefeng Yuan
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University; Shandong Province Key Laboratory of Agricultural Microbiology, No 61, Daizong Street, Shandong Province Tai’an, 271018 People’s Republic of China
| |
Collapse
|
9
|
Lehrer S, Rheinstein PH. Three Poliovirus Sequences in the Human Genome Associated With Colorectal Cancer. Cancer Genomics Proteomics 2018; 16:65-70. [PMID: 30587500 DOI: 10.21873/cgp.20112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIM In a previous study we analyzed poliomyelitis incidence in US states, before the introduction of the polio vaccine. We noted an inverse correlation between polio incidence in US states, between 1937 and 1951, and colorectal cancer incidence (2005-2009). To further elucidate the role that poliovirus could play in colorectal cancer, the full human genome for poliovirus sequences was analyzed using the UCSC Genome Browser. MATERIALS AND METHODS BLAT, the Blast-Like Alignment Tool of the UCSC Genome Browser, was used to compare the poliovirus genome to the human genome. RESULTS BLAT revealed three poliovirus sequences in three chromosomes: Chromosome 20p12.1 (MACROD2 gene), chromosome 1p13.3 (SLC25A24 gene), and chromosome 2p25.1. CONCLUSION Poliovirus sequences in the human genome may contribute to programmed cell death and lysis of colorectal cancer cells. A recombinant poliovirus, incapable of reverting to neurovirulence, might be given orally at intervals as a colorectal cancer vaccine to prevent colorectal cancer.
Collapse
Affiliation(s)
- Steven Lehrer
- Radiation Oncology, Mount Sinai Medical Center, New York, NY, U.S.A.
| | | |
Collapse
|
10
|
Stewart H, Olspert A, Butt BG, Firth AE. Propensity of a picornavirus polymerase to slip on potyvirus-derived transcriptional slippage sites. J Gen Virol 2018; 100:199-205. [PMID: 30507373 PMCID: PMC6591135 DOI: 10.1099/jgv.0.001189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The substitution rates of viral polymerases have been studied extensively. However less is known about the tendency of these enzymes to 'slip' during RNA synthesis to produce progeny RNAs with nucleotide insertions or deletions. We recently described the functional utilization of programmed polymerase slippage in the family Potyviridae. This slippage results in either an insertion or a substitution, depending on whether the RNA duplex realigns following the insertion. In this study we investigated whether this phenomenon is a conserved feature of superfamily I viral RdRps, by inserting a range of potyvirus-derived slip-prone sequences into a picornavirus, Theiler's murine encephalomyelitis virus (TMEV). Deep-sequencing analysis of viral transcripts indicates that the TMEV polymerase 'slips' at the sequences U6-7 and A6-7 to insert additional nucleotides. Such sequences are under-represented within picornaviral genomes, suggesting that slip-prone sequences create a fitness cost. Nonetheless, the TMEV insertional and substitutional spectrum differed from that previously determined for the potyvirus polymerase.
Collapse
Affiliation(s)
- Hazel Stewart
- 1Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Allan Olspert
- 2School of Science, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Benjamin G Butt
- 1Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Andrew E Firth
- 1Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Abstract
Reproduction of RNA viruses is typically error-prone due to the infidelity of their replicative machinery and the usual lack of proofreading mechanisms. The error rates may be close to those that kill the virus. Consequently, populations of RNA viruses are represented by heterogeneous sets of genomes with various levels of fitness. This is especially consequential when viruses encounter various bottlenecks and new infections are initiated by a single or few deviating genomes. Nevertheless, RNA viruses are able to maintain their identity by conservation of major functional elements. This conservatism stems from genetic robustness or mutational tolerance, which is largely due to the functional degeneracy of many protein and RNA elements as well as to negative selection. Another relevant mechanism is the capacity to restore fitness after genetic damages, also based on replicative infidelity. Conversely, error-prone replication is a major tool that ensures viral evolvability. The potential for changes in debilitated genomes is much higher in small populations, because in the absence of stronger competitors low-fit genomes have a choice of various trajectories to wander along fitness landscapes. Thus, low-fit populations are inherently unstable, and it may be said that to run ahead it is useful to stumble. In this report, focusing on picornaviruses and also considering data from other RNA viruses, we review the biological relevance and mechanisms of various alterations of viral RNA genomes as well as pathways and mechanisms of rehabilitation after loss of fitness. The relationships among mutational robustness, resilience, and evolvability of viral RNA genomes are discussed.
Collapse
|
12
|
Characterization of the Role of Hexamer AGUAAA and Poly(A) Tail in Coronavirus Polyadenylation. PLoS One 2016; 11:e0165077. [PMID: 27760233 PMCID: PMC5070815 DOI: 10.1371/journal.pone.0165077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/05/2016] [Indexed: 01/21/2023] Open
Abstract
Similar to eukaryotic mRNA, the positive-strand coronavirus genome of ~30 kilobases is 5’-capped and 3’-polyadenylated. It has been demonstrated that the length of the coronaviral poly(A) tail is not static but regulated during infection; however, little is known regarding the factors involved in coronaviral polyadenylation and its regulation. Here, we show that during infection, the level of coronavirus poly(A) tail lengthening depends on the initial length upon infection and that the minimum length to initiate lengthening may lie between 5 and 9 nucleotides. By mutagenesis analysis, it was found that (i) the hexamer AGUAAA and poly(A) tail are two important elements responsible for synthesis of the coronavirus poly(A) tail and may function in concert to accomplish polyadenylation and (ii) the function of the hexamer AGUAAA in coronaviral polyadenylation is position dependent. Based on these findings, we propose a process for how the coronaviral poly(A) tail is synthesized and undergoes variation. Our results provide the first genetic evidence to gain insight into coronaviral polyadenylation.
Collapse
|
13
|
Kempf BJ, Peersen OB, Barton DJ. Poliovirus Polymerase Leu420 Facilitates RNA Recombination and Ribavirin Resistance. J Virol 2016; 90:8410-21. [PMID: 27412593 PMCID: PMC5021434 DOI: 10.1128/jvi.00078-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/29/2016] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED RNA recombination is important in the formation of picornavirus species groups and the ongoing evolution of viruses within species groups. In this study, we examined the structure and function of poliovirus polymerase, 3D(pol), as it relates to RNA recombination. Recombination occurs when nascent RNA products exchange one viral RNA template for another during RNA replication. Because recombination is a natural aspect of picornavirus replication, we hypothesized that some features of 3D(pol) may exist, in part, to facilitate RNA recombination. Furthermore, we reasoned that alanine substitution mutations that disrupt 3D(pol)-RNA interactions within the polymerase elongation complex might increase and/or decrease the magnitudes of recombination. We found that an L420A mutation in 3D(pol) decreased the frequency of RNA recombination, whereas alanine substitutions at other sites in 3D(pol) increased the frequency of recombination. The 3D(pol) Leu420 side chain interacts with a ribose in the nascent RNA product 3 nucleotides from the active site of the polymerase. Notably, the L420A mutation that reduced recombination also rendered the virus more susceptible to inhibition by ribavirin, coincident with the accumulation of ribavirin-induced G→A and C→U mutations in viral RNA. We conclude that 3D(pol) Leu420 is critically important for RNA recombination and that RNA recombination contributes to ribavirin resistance. IMPORTANCE Recombination contributes to the formation of picornavirus species groups and the emergence of circulating vaccine-derived polioviruses (cVDPVs). The recombinant viruses that arise in nature are occasionally more fit than either parental strain, especially when the two partners in recombination are closely related, i.e., members of characteristic species groups, such as enterovirus species groups A to H or rhinovirus species groups A to C. Our study shows that RNA recombination requires conserved features of the viral polymerase. Furthermore, a polymerase mutation that disables recombination renders the virus more susceptible to the antiviral drug ribavirin, suggesting that recombination contributes to ribavirin resistance. Elucidating the molecular mechanisms of RNA replication and recombination may help mankind achieve and maintain poliovirus eradication.
Collapse
Affiliation(s)
- Brian J Kempf
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Olve B Peersen
- Department of Biochemistry, Colorado State University, Fort Collins, Colorado, USA
| | - David J Barton
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
14
|
Yang Q, Jie Q, Shaw N, Li L, Rao Z, Yin Z, Lou Z. Studies on Inhibition of Proliferation of Enterovirus-71 by Compound YZ-LY-0. Int J Biol Sci 2015; 11:1337-47. [PMID: 26640412 PMCID: PMC4643065 DOI: 10.7150/ijbs.12996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/16/2015] [Indexed: 02/05/2023] Open
Abstract
In recent years, hand-foot-and-mouth disease (HFMD), which is caused by Enteroviruses, has emerged as a serious illness. It affects mainly children under the age of five and results in high fatality rates. Enterovirus 71 (EV71) is the main causative agent of HFMD in China and currently there are no effective anti-viral drugs available to treat HFMD. In the present study, we screened compounds for inhibition of proliferation of EV71. Compound YZ-LY-0 stalled the life cycle of EV71. The inhibitor exhibited EC50 value of 0.29 μm against SK-EV006 strain of EV71. Notably, YZ-LY-0 had low cytotoxicity (CC50 > 100 μM) and a high selectivity index (over 300) in Vero and RD cells. YZ-LY-0 in combination with an EV71 RdRp inhibitor or an entry inhibitor showed an antagonistic effect at very low concentrations. However, at higher concentrations the inhibitors exhibited a synergistic effect in inhibiting viral replication. Preliminary results on investigation of the mechanism of inhibition indicate that YZ-LY-0 does not block the entry of the virus in the host cell, but instead inhibits an early stage of EV71 replication. Our studies provide a potential clinical therapeutic option against EV71 infections and suggest that a combined application of YZ-LY-0 with other inhibitors could be more effective in the treatment of HFMD.
Collapse
Affiliation(s)
- Qingzhan Yang
- 1. School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qing Jie
- 2. Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Neil Shaw
- 1. School of Medicine, Tsinghua University, Beijing 100084, China ; 3. National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Lei Li
- 5. State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zihe Rao
- 1. School of Medicine, Tsinghua University, Beijing 100084, China ; 3. National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China ; 5. State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zheng Yin
- 4. College of Pharmacy & State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Zhiyong Lou
- 1. School of Medicine, Tsinghua University, Beijing 100084, China ; 5. State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| |
Collapse
|
15
|
He M, Jiang Z, Li S, He P. Presence of poly(A) tails at the 3'-termini of some mRNAs of a double-stranded RNA virus, southern rice black-streaked dwarf virus. Viruses 2015; 7:1642-50. [PMID: 25835534 PMCID: PMC4411670 DOI: 10.3390/v7041642] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 03/22/2015] [Accepted: 03/23/2015] [Indexed: 12/27/2022] Open
Abstract
Southern rice black-streaked dwarf virus (SRBSDV), a new member of the genus Fijivirus, is a double-stranded RNA virus known to lack poly(A) tails. We now showed that some of SRBSDV mRNAs were indeed polyadenylated at the 3' terminus in plant hosts, and investigated the nature of 3' poly(A) tails. The non-abundant presence of SRBSDV mRNAs bearing polyadenylate tails suggested that these viral RNA were subjected to polyadenylation-stimulated degradation. The discovery of poly(A) tails in different families of viruses implies potentially a wide occurrence of the polyadenylation-assisted RNA degradation in viruses.
Collapse
Affiliation(s)
- Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Ziqiong Jiang
- Plant Protection Station, Rural work office, Rongjiang County, Guizhou 557200, China.
| | - Shuo Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing 210014, China.
| | - Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
16
|
Paul AV, Wimmer E. Initiation of protein-primed picornavirus RNA synthesis. Virus Res 2015; 206:12-26. [PMID: 25592245 DOI: 10.1016/j.virusres.2014.12.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/16/2014] [Accepted: 12/24/2014] [Indexed: 12/14/2022]
Abstract
Plus strand RNA viruses use different mechanisms to initiate the synthesis of their RNA chains. The Picornaviridae family constitutes a large group of plus strand RNA viruses that possess a small terminal protein (VPg) covalently linked to the 5'-end of their genomes. The RNA polymerases of these viruses use VPg as primer for both minus and plus strand RNA synthesis. In the first step of the initiation reaction the RNA polymerase links a UMP to the hydroxyl group of a tyrosine in VPg using as template a cis-replicating element (cre) positioned in different regions of the viral genome. In this review we will summarize what is known about the initiation reaction of protein-primed RNA synthesis by the RNA polymerases of the Picornaviridae. As an example we will use the RNA polymerase of poliovirus, the prototype of Picornaviridae. We will also discuss models of how these nucleotidylylated protein primers might be used, together with viral and cellular replication proteins and other cis-replicating RNA elements, during minus and plus strand RNA synthesis.
Collapse
Affiliation(s)
- Aniko V Paul
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11790, United States.
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11790, United States
| |
Collapse
|
17
|
Kempf BJ, Barton DJ. Picornavirus RNA polyadenylation by 3D(pol), the viral RNA-dependent RNA polymerase. Virus Res 2015; 206:3-11. [PMID: 25559071 PMCID: PMC4801031 DOI: 10.1016/j.virusres.2014.12.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/15/2014] [Accepted: 12/24/2014] [Indexed: 11/06/2022]
Abstract
Picornaviral RdRPs are responsible for the polyadenylation of viral RNA. Reiterative transcription mechanisms occur during replication of poly(A) tails. Conserved RdRP structures influence the size of poly(A) tails. Common features of picornavirus RdRPs and telomerase reverse transcriptase. Poly(A) tails are a telomere of picornavirus RNA genomes.
Poly(A) tails are functionally important features of all picornavirus RNA genomes. Some viruses have genomes with relatively short poly(A) tails (encephalomyocarditis virus) whereas others have genomes with longer poly(A) tails (polioviruses and rhinoviruses). Here we review the polyadenylation of picornavirus RNA as it relates to the structure and function of 3Dpol. Poliovirus 3Dpol uses template-dependent reiterative transcription mechanisms as it replicates the poly(A) tails of viral RNA (Steil et al., 2010). These mechanisms are analogous to those involved in the polyadenylation of vesicular stomatitis virus and influenza virus mRNAs. 3Dpol residues intimately associated with viral RNA templates and products regulate the size of poly(A) tails in viral RNA (Kempf et al., 2013). Consistent with their ancient evolutionary origins, picornavirus 3Dpol and telomerase reverse transcriptase (TERT) share structural and functional features. Structurally, both 3Dpol and TERT assume a “right-hand” conformation with thumb, palm and fingers domains encircling templates and products. Functionally, both 3Dpol and TERT use template-dependent reiterative transcription mechanisms to synthesize repetitive sequences: poly(A) tails in the case of picornavirus RNA genomes and DNA telomeres in the case of eukaryotic chromosomes. Thus, picornaviruses and their eukaryotic hosts (humans and animals) maintain the 3′ ends of their respective genomes via evolutionarily related mechanisms.
Collapse
Affiliation(s)
- Brian J Kempf
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - David J Barton
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, United States.
| |
Collapse
|
18
|
Li W, Zhang Y, Zhang C, Pei X, Wang Z, Jia S. Presence of poly(A) and poly(A)-rich tails in a positive-strand RNA virus known to lack 3׳ poly(A) tails. Virology 2014; 454-455:1-10. [PMID: 24725926 DOI: 10.1016/j.virol.2014.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/08/2013] [Accepted: 02/01/2014] [Indexed: 01/08/2023]
Abstract
Here we show that Tobacco mosaic virus (TMV), a positive-strand RNA virus known to end with 3׳ tRNA-like structures, does possess a small fraction of gRNA bearing polyadenylate tails. Particularly, many tails are at sites corresponding to the 3׳ end of near full length gRNA, and are composed of poly(A)-rich sequences containing the other nucleotides in addition to adenosine, resembling the degradation-stimulating poly(A) tails observed in all biological kingdoms. Further investigations demonstrate that these polyadenylated RNA species are not enriched in chloroplasts. Silencing of cpPNPase, a chloroplast-localized polynucleotide polymerase known to not only polymerize the poly(A)-rich tails but act as a 3׳ to 5׳ exoribonuclease, does not change the profile of polyadenylate tails associated with TMV RNA. Nevertheless, because similar tails were also detected in other phylogenetically distinct positive-strand RNA viruses lacking poly(A) tails, such kind of polyadenylation may reflect a common but as-yet-unknown interface between hosts and viruses.
Collapse
Affiliation(s)
- Weimin Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Yongqiang Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinwu Pei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhixing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shirong Jia
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
19
|
Wu HY, Ke TY, Liao WY, Chang NY. Regulation of coronaviral poly(A) tail length during infection. PLoS One 2013; 8:e70548. [PMID: 23923003 PMCID: PMC3726627 DOI: 10.1371/journal.pone.0070548] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 06/19/2013] [Indexed: 12/14/2022] Open
Abstract
The positive-strand coronavirus genome of ~30 kilobase in length and subgenomic (sg) mRNAs of shorter lengths, are 5’ and 3’-co-terminal by virtue of a common 5’-capped leader and a common 3’-polyadenylated untranslated region. Here, by ligating head-to-tail viral RNAs from bovine coronavirus-infected cells and sequencing across the ligated junctions, it was learned that at the time of peak viral RNA synthesis [6 hours postinfection (hpi)] the 3’ poly(A) tail on genomic and sgmRNAs is ~65 nucleotides (nt) in length. Surprisingly, this length was found to vary throughout infection from ~45 nt immediately after virus entry (at 0 to 4 hpi) to ~65 nt later on (at 6 h to 9 hpi) and from ~65 nt (at 6 h to 9 hpi) to ~30 nt (at 120-144 hpi). With the same method, poly(U) sequences of the same lengths were simultaneously found on the ligated viral negative-strand RNAs. Functional analyses of poly(A) tail length on specific viral RNA species, furthermore, revealed that translation, in vivo, of RNAs with the longer poly(A) tail was enhanced over those with the shorter poly(A). Although the mechanisms by which the tail lengths vary is unknown, experimental results together suggest that the length of the poly(A) and poly(U) tails is regulated. One potential function of regulated poly(A) tail length might be that for the coronavirus genome a longer poly(A) favors translation. The regulation of coronavirus translation by poly(A) tail length resembles that during embryonal development suggesting there may be mechanistic parallels.
Collapse
Affiliation(s)
- Hung-Yi Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan ROC.
| | | | | | | |
Collapse
|
20
|
Kempf BJ, Kelly MM, Springer CL, Peersen OB, Barton DJ. Structural features of a picornavirus polymerase involved in the polyadenylation of viral RNA. J Virol 2013; 87:5629-44. [PMID: 23468507 PMCID: PMC3648189 DOI: 10.1128/jvi.02590-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 03/03/2013] [Indexed: 01/04/2023] Open
Abstract
Picornaviruses have 3' polyadenylated RNA genomes, but the mechanisms by which these genomes are polyadenylated during viral replication remain obscure. Based on prior studies, we proposed a model wherein the poliovirus RNA-dependent RNA polymerase (3D(pol)) uses a reiterative transcription mechanism while replicating the poly(A) and poly(U) portions of viral RNA templates. To further test this model, we examined whether mutations in 3D(pol) influenced the polyadenylation of virion RNA. We identified nine alanine substitution mutations in 3D(pol) that resulted in shorter or longer 3' poly(A) tails in virion RNA. These mutations could disrupt structural features of 3D(pol) required for the recruitment of a cellular poly(A) polymerase; however, the structural orientation of these residues suggests a direct role of 3D(pol) in the polyadenylation of RNA genomes. Reaction mixtures containing purified 3D(pol) and a template RNA with a defined poly(U) sequence provided data consistent with a template-dependent reiterative transcription mechanism for polyadenylation. The phylogenetically conserved structural features of 3D(pol) involved in the polyadenylation of virion RNA include a thumb domain alpha helix that is positioned in the minor groove of the double-stranded RNA product and lysine and arginine residues that interact with the phosphates of both the RNA template and product strands.
Collapse
Affiliation(s)
| | | | - Courtney L. Springer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Olve B. Peersen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - David J. Barton
- Department of Microbiology
- Program in Molecular Biology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
21
|
Bhattacharya S, Stojaković J, Saha BK, MacGillivray LR. A Product of a Templated Solid-State Photodimerization Acts as a Template: Single-Crystal Reactivity in a Single Polymorph of a Cocrystal. Org Lett 2013; 15:744-7. [DOI: 10.1021/ol303283s] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Suman Bhattacharya
- Department of Chemistry, Pondicherry University, Puducherry 605 014, India, and Department of Chemistry, University of Iowa, 305 Chemistry Building, Iowa City, Iowa 52242, United States
| | - Jelena Stojaković
- Department of Chemistry, Pondicherry University, Puducherry 605 014, India, and Department of Chemistry, University of Iowa, 305 Chemistry Building, Iowa City, Iowa 52242, United States
| | - Binoy K. Saha
- Department of Chemistry, Pondicherry University, Puducherry 605 014, India, and Department of Chemistry, University of Iowa, 305 Chemistry Building, Iowa City, Iowa 52242, United States
| | - Leonard R. MacGillivray
- Department of Chemistry, Pondicherry University, Puducherry 605 014, India, and Department of Chemistry, University of Iowa, 305 Chemistry Building, Iowa City, Iowa 52242, United States
| |
Collapse
|
22
|
Buskiewicz IA, Koenig A, Huber SA, Budd RC. Caspase-8 and FLIP regulate RIG-I/MDA5-induced innate immune host responses to picornaviruses. Future Virol 2012; 7:1221-1236. [PMID: 23503762 DOI: 10.2217/fvl.12.115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Picornaviruses are small, nonenveloped, positive-stranded RNA viruses, which cause a wide range of animal and human diseases, based on their distinct tissue and cell type tropisms. Myocarditis, poliomyelitis, hepatitis and the common cold are the most significant human illnesses caused by picornaviruses. The host response to picornaviruses is complex, and the damage to tissues occurs not only from direct viral replication within infected cells. Picornaviruses exhibit an exceptional ability to evade the early innate immune response, resulting in chronic infection and autoimmunity. This review discusses the detailed aspects of the early innate host response to picornaviruses infection mediated by RIG-I-like helicases, their adaptor, mitochondrial ant iviral signaling protein, innate immune-induced apoptosis, and the role of caspase-8 and its regulatory paralog, FLIP, in these processes.
Collapse
Affiliation(s)
- Iwona A Buskiewicz
- Department of Pathology, Vermont Center for Immunology & Infectious Diseases, University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
23
|
Abstract
The genomic RNA of poliovirus and closely related picornaviruses perform template and non-template functions during viral RNA replication. The non-template functions are mediated by cis-active RNA sequences that bind viral and cellular proteins to form RNP complexes. The RNP complexes mediate temporally dynamic, long-range interactions in the viral genome and ensure the specificity of replication. The 5' cloverleaf (5' CL)-RNP complex serves as a key cis-active element in all of the non-template functions of viral RNA. The 5'CL-RNP complex is proposed to interact with the cre-RNP complex during VPgpUpU synthesis, the 3'NTR-poly(A) RNP complex during negative-strand initiation and the 30 end negative-strand-RNP complex during positive-strand initiation. Co-ordinating these long-range interactions is important in regulating each step in the replication cycle.
Collapse
Affiliation(s)
- Sushma A Ogram
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, United States
| | | |
Collapse
|
24
|
Abstract
Metazoan cells form cytoplasmic mRNA granules such as stress granules (SG) and processing bodies (P bodies) that are proposed to be sites of aggregated, translationally silenced mRNAs and mRNA degradation. Poliovirus (PV) is a plus-strand RNA virus containing a genome that is a functional mRNA; thus, we investigated if PV antagonizes the processes that lead to formation of these structures. We have previously shown that PV infection inhibits the ability of cells to form stress granules by cleaving RasGAP-SH3-binding protein (G3BP). Here, we show that P bodies are also disrupted during PV infection in cells by 4 h postinfection. The disruption of P bodies is more rapid and more complete than disruption of stress granules. The kinetics of P body disruption correlated with production of viral proteinases and required substantial viral gene product expression. The organizing mechanism that forms P body foci in cells is unknown; however, potential scaffolding, aggregating, or other regulatory proteins found in P bodies were investigated for degradation. Two factors involved in 5'-end mRNA decapping and degradation, Xrn1 and Dcp1a, and the 3' deadenylase complex component Pan3 underwent accelerated degradation during infection, and Dcp1a may be a direct substrate of PV 3C proteinase. Several other key factors proposed to be essential for P body formation, GW182, Edc3, and Edc4, were unaffected by poliovirus infection. Since deadenylation has been reported to be required for P body formation, viral inhibition of deadenylation, through Pan3 degradation, is a potential mechanism of P body disruption.
Collapse
|