1
|
Shalamova L, Barth P, Pickin MJ, Kouti K, Ott B, Humpert K, Janssen S, Lorenzo G, Brun A, Goesmann A, Hain T, Hartmann RK, Rossbach O, Weber F. Nucleocapsids of the Rift Valley fever virus ambisense S segment contain an exposed RNA element in the center that overlaps with the intergenic region. Nat Commun 2024; 15:7602. [PMID: 39217162 PMCID: PMC11365940 DOI: 10.1038/s41467-024-52058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen. Its RNA genome consists of two negative-sense segments (L and M) with one gene each, and one ambisense segment (S) with two opposing genes separated by the noncoding "intergenic region" (IGR). These vRNAs and the complementary cRNAs are encapsidated by nucleoprotein (N). Using iCLIP2 (individual-nucleotide resolution UV crosslinking and immunoprecipitation) to map all N-vRNA and N-cRNA interactions, we detect N coverage along the L and M segments. However, the S segment vRNA and cRNA each contain approximately 100 non-encapsidated nucleotides stretching from the IGR into the 5'-adjacent reading frame. These exposed regions are RNase-sensitive and predicted to form stem-loop structures with the mRNA transcription termination motif positioned near the top. Moreover, optimal S segment transcription and replication requires the entire exposed region rather than only the IGR. Thus, the RVFV S segment contains a central, non-encapsidated RNA region with a functional role.
Collapse
Affiliation(s)
- Lyudmila Shalamova
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| | - Patrick Barth
- Bioinformatics & Systems Biology, Justus-Liebig University, Giessen, Germany
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Matthew J Pickin
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| | - Kiriaki Kouti
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| | - Benjamin Ott
- Institute for Medical Microbiology, FB11-Medicine, Justus-Liebig University, Giessen, Germany
| | - Katharina Humpert
- Institute for Medical Microbiology, FB11-Medicine, Justus-Liebig University, Giessen, Germany
- Institute of Molecular Oncology, Genomics Core Facility, Philipps-University, Marburg, Germany
| | - Stefan Janssen
- Algorithmic Bioinformatics, Justus-Liebig University, Giessen, Germany
| | - Gema Lorenzo
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, Madrid, Spain
| | - Alejandro Brun
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, Madrid, Spain
| | - Alexander Goesmann
- Bioinformatics & Systems Biology, Justus-Liebig University, Giessen, Germany
| | - Torsten Hain
- Institute for Medical Microbiology, FB11-Medicine, Justus-Liebig University, Giessen, Germany
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Oliver Rossbach
- Institute for Biochemistry, FB 08-Biology and Chemistry, Justus-Liebig University, Giessen, Germany
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany.
| |
Collapse
|
2
|
Moreno S, Lorenzo G, López-Valiñas Á, de la Losa N, Alonso C, Charro E, Núñez JI, Sánchez-Cordón PJ, Borrego B, Brun A. Safety and Efficacy upon Infection in Sheep with Rift Valley Fever Virus ZH548-rA2, a Triple Mutant Rescued Virus. Viruses 2024; 16:87. [PMID: 38257787 PMCID: PMC10819402 DOI: 10.3390/v16010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
The introduction of three single nucleotide mutations into the genome of the virulent RVFV ZH548 strain allows for the rescue of a fully attenuated virus in mice (ZH548-rA2). These mutations are located in the viral genes encoding the RdRp and the non-structural protein NSs. This paper shows the results obtained after the subcutaneous inoculation of ZH548-rA2 in adult sheep and the subsequent challenge with the parental virus (ZH548-rC1). Inoculation with the ZH548-rA2 virus caused no detectable clinical or pathological effect in sheep, whereas inoculation of the parental rC1 virus caused lesions compatible with viral infection characterised by the presence of scattered hepatic necrosis. Viral infection was confirmed via immunohistochemistry, with hepatocytes within the necrotic foci appearing as the main cells immunolabelled against viral antigen. Furthermore, the inoculation of sheep with the rA2 virus prevented the liver damage expected after rC1 virus inoculation, suggesting a protective efficacy in sheep which correlated with the induction of both humoral and cell-mediated immune responses.
Collapse
Affiliation(s)
- Sandra Moreno
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Valdeolmos, 28130 Madrid, Spain; (S.M.); (G.L.); (P.J.S.-C.)
| | - Gema Lorenzo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Valdeolmos, 28130 Madrid, Spain; (S.M.); (G.L.); (P.J.S.-C.)
| | - Álvaro López-Valiñas
- Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Bellaterra, 08193 Barcelona, Spain (J.I.N.)
| | - Nuria de la Losa
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Valdeolmos, 28130 Madrid, Spain; (S.M.); (G.L.); (P.J.S.-C.)
| | - Celia Alonso
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Valdeolmos, 28130 Madrid, Spain; (S.M.); (G.L.); (P.J.S.-C.)
| | - Elena Charro
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Valdeolmos, 28130 Madrid, Spain; (S.M.); (G.L.); (P.J.S.-C.)
| | - José I. Núñez
- Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Bellaterra, 08193 Barcelona, Spain (J.I.N.)
| | - Pedro J. Sánchez-Cordón
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Valdeolmos, 28130 Madrid, Spain; (S.M.); (G.L.); (P.J.S.-C.)
| | - Belén Borrego
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Valdeolmos, 28130 Madrid, Spain; (S.M.); (G.L.); (P.J.S.-C.)
| | - Alejandro Brun
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Valdeolmos, 28130 Madrid, Spain; (S.M.); (G.L.); (P.J.S.-C.)
| |
Collapse
|
3
|
Shalamova L, Lorenzo G, Brun A, Rossbach O, Weber F. Nucleotide Resolution Mapping of Rift Valley Fever Virus Nucleoprotein-Genome RNA Interactions. Methods Mol Biol 2024; 2824:281-318. [PMID: 39039419 DOI: 10.1007/978-1-0716-3926-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Rift Valley fever virus (RVFV; genus Phlebovirus, family Phenuiviridae, order Bunyavirales) is a mosquito-borne zoonotic pathogen endemic in Africa. Its negative-stranded genomic RNA (vRNA) is divided into three segments termed L, M, and S. Both vRNAs and antigenomic cRNAs are encapsidated by viral nucleoprotein (N) to form nucleocapsids, which constitute the template for genome transcription and replication. Based on a number of electron microscopy and structural studies, the viral RNAs of negative-strand RNA viruses, including phleboviruses, are commonly considered to be entirely and uniformly covered by N protein. However, high resolution data supporting this notion was missing to date.Here, we describe a method how to globally map all N-RNA interactions of RVFV by using iCLIP (individual-nucleotide resolution UV cross-linking and immunoprecipitation). The protocol is based on covalent cross-linking of direct protein-RNA interactions by UV irradiation. Following sample lysis, a selective isolation of N in complex with its RNA targets is achieved by immunoprecipitation. Then, N-RNA complexes are separated by SDS-PAGE, and after membrane transfer, RNA is isolated and subjected to library preparation and high-throughput sequencing. We explain how the standard iCLIP protocol can be adapted to RVFV N-RNA interaction studies. The protocol describes mapping of all N interactions with the vRNAs and cRNAs derived either from RVFV particles or from infected cells.
Collapse
Affiliation(s)
- Lyudmila Shalamova
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany.
| | - Gema Lorenzo
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Madrid, Spain
| | - Alejandro Brun
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Madrid, Spain
| | - Oliver Rossbach
- Institute for Biochemistry, FB 08-Biology and Chemistry, Justus-Liebig University, Giessen, Germany
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany.
| |
Collapse
|
4
|
Tercero B, Makino S. Reverse Genetics System for Rift Valley Fever Virus. Methods Mol Biol 2024; 2733:101-113. [PMID: 38064029 DOI: 10.1007/978-1-0716-3533-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Rift Valley fever virus (RVFV) is an important mosquito-borne virus that can cause severe disease manifestations in humans including ocular damage, vision loss, late-onset encephalitis, and hemorrhagic fever. In ruminants, RVFV can cause high mortality rates in young animals and high rates of abortion in pregnant animals resulting in an enormous negative impact on the economy of affected regions. To date, no licensed vaccines in humans or anti-RVFV therapeutics for animal or human use are available. The development of reverse genetics has facilitated the generation of recombinant infectious viruses that serve as powerful tools for investigating the molecular biology and pathogenesis of RVFV. Infectious recombinant RVFV can be rescued entirely from cDNAs containing predetermined mutations in their genomes to investigate virus-host interactions and mechanisms of pathogenesis and generate live-attenuated vaccines. In this chapter, we will describe the experimental procedures for the implementation of RVFV reverse genetics.
Collapse
Affiliation(s)
- Breanna Tercero
- Departments of Microbiology and Immunology, Galveston, TX, USA
| | - Shinji Makino
- Departments of Microbiology and Immunology, Galveston, TX, USA.
- Institute of Human Infection and Immunity, Galveston, TX, USA.
- Center for Biodefense and Emerging Infectious Diseases, Galveston, TX, USA.
- UTMB Center for Tropical Diseases, Galveston, TX, USA.
- The Sealy Institute for Vaccine Sciences, Galveston, TX, USA.
| |
Collapse
|
5
|
Tercero B, Terasaki K, Narayanan K, Makino S. Mechanistic insight into the efficient packaging of antigenomic S RNA into Rift Valley fever virus particles. Front Cell Infect Microbiol 2023; 13:1132757. [PMID: 36875526 PMCID: PMC9978001 DOI: 10.3389/fcimb.2023.1132757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Rift Valley fever virus (RVFV), a bunyavirus, has a single-stranded, negative-sense tri-segmented RNA genome, consisting of L, M and S RNAs. An infectious virion carries two envelope glycoproteins, Gn and Gc, along with ribonucleoprotein complexes composed of encapsidated viral RNA segments. The antigenomic S RNA, which serves as the template of the mRNA encoding a nonstructural protein, NSs, an interferon antagonist, is also efficiently packaged into RVFV particles. An interaction between Gn and viral ribonucleoprotein complexes, including the direct binding of Gn to viral RNAs, drives viral RNA packaging into RVFV particles. To understand the mechanism of efficient antigenomic S RNA packaging in RVFV, we identified the regions in viral RNAs that directly interact with Gn by performing UV-crosslinking and immunoprecipitation of RVFV-infected cell lysates with anti-Gn antibody followed by high-throughput sequencing analysis (CLIP-seq analysis). Our data suggested the presence of multiple Gn-binding sites in RVFV RNAs, including a prominent Gn-binding site within the 3' noncoding region of the antigenomic S RNA. We found that the efficient packaging of antigenomic S RNA was abrogated in a RVFV mutant lacking a part of this prominent Gn-binding site within the 3' noncoding region. Also, the mutant RVFV, but not the parental RVFV, triggered the early induction of interferon-β mRNA expression after infection. These data suggest that the direct binding of Gn to the RNA element within the 3' noncoding region of the antigenomic S RNA promoted the efficient packaging of antigenomic S RNA into virions. Furthermore, the efficient packaging of antigenomic S RNA into RVFV particles, driven by the RNA element, facilitated the synthesis of viral mRNA encoding NSs immediately after infection, resulting in the suppression of interferon-β mRNA expression.
Collapse
Affiliation(s)
- Breanna Tercero
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Kaori Terasaki
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, United States
| | - Krishna Narayanan
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, United States
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, TX, United States
- UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, TX, United States
- The Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
6
|
Using Multiplex Amplicon PCR Technology to Efficiently and Timely Generate Rift Valley Fever Virus Sequence Data for Genomic Surveillance. Viruses 2023; 15:v15020477. [PMID: 36851690 PMCID: PMC9961268 DOI: 10.3390/v15020477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/04/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Rift Valley fever (RVF) is a febrile vector-borne disease endemic in Africa and continues to spread in new territories. It is a climate-sensitive disease mostly triggered by abnormal rainfall patterns. The disease is associated with high mortality and morbidity in both humans and livestock. RVF is caused by the Rift Valley fever virus (RVFV) of the genus Phlebovirus in the family Phenuiviridae. It is a tripartite RNA virus with three genomic segments: small (S), medium (M) and large (L). Pathogen genomic sequencing is becoming a routine procedure and a powerful tool for understanding the evolutionary dynamics of infectious organisms, including viruses. Inspired by the utility of amplicon-based sequencing demonstrated in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and Ebola, Zika and West Nile viruses, we report an RVFV sample preparation based on amplicon multiplex polymerase chain reaction (amPCR) for template enrichment and reduction of background host contamination. The technology can be implemented rapidly to characterize and genotype RVFV during outbreaks in a near-real-time manner. To achieve this, we designed 74 multiplex primer sets covering the entire RVFV genome to specifically amplify the nucleic acid of RVFV in clinical samples from an animal tissue. Using this approach, we demonstrate achieving complete RVFV genome coverage even from samples containing a relatively low viral load. We report the first primer scheme approach of generating multiplex primer sets for a tripartite virus which can be replicated for other segmented viruses.
Collapse
|
7
|
Malet H, Williams HM, Cusack S, Rosenthal M. The mechanism of genome replication and transcription in bunyaviruses. PLoS Pathog 2023; 19:e1011060. [PMID: 36634042 PMCID: PMC9836281 DOI: 10.1371/journal.ppat.1011060] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Bunyaviruses are negative sense, single-strand RNA viruses that infect a wide range of vertebrate, invertebrate and plant hosts. WHO lists three bunyavirus diseases as priority diseases requiring urgent development of medical countermeasures highlighting their high epidemic potential. While the viral large (L) protein containing the RNA-dependent RNA polymerase is a key enzyme in the viral replication cycle and therefore a suitable drug target, our knowledge on the structure and activities of this multifunctional protein has, until recently, been very limited. However, in the last few years, facilitated by the technical advances in the field of cryogenic electron microscopy, many structures of bunyavirus L proteins have been solved. These structures significantly enhance our mechanistic understanding of bunyavirus genome replication and transcription processes and highlight differences and commonalities between the L proteins of different bunyavirus families. Here, we provide a review of our current understanding of genome replication and transcription in bunyaviruses with a focus on the viral L protein. Further, we compare within bunyaviruses and with the related influenza virus polymerase complex and highlight open questions.
Collapse
Affiliation(s)
- Hélène Malet
- University Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
- Institut Universitaire de France (IUF), Paris, France
| | - Harry M. Williams
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | | | - Maria Rosenthal
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Discovery Research ScreeningPort, Hamburg, Germany
| |
Collapse
|
8
|
Pyle JD, Whelan SPJ, Bloyet LM. Structure and function of negative-strand RNA virus polymerase complexes. Enzymes 2021; 50:21-78. [PMID: 34861938 DOI: 10.1016/bs.enz.2021.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Viruses with negative-strand RNA genomes (NSVs) include many highly pathogenic and economically devastating disease-causing agents of humans, livestock, and plants-highlighted by recent Ebola and measles virus epidemics, and continuously circulating influenza virus. Because of their protein-coding orientation, NSVs face unique challenges for efficient gene expression and genome replication. To overcome these barriers, NSVs deliver a large and multifunctional RNA-dependent RNA polymerase into infected host cells. NSV-encoded polymerases contain all the enzymatic activities required for transcription and replication of their genome-including RNA synthesis and mRNA capping. Here, we review the structures and functions of NSV polymerases with a focus on key domains responsible for viral replication and gene expression. We highlight shared and unique features among polymerases of NSVs from the Mononegavirales, Bunyavirales, and Articulavirales orders.
Collapse
Affiliation(s)
- Jesse D Pyle
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States; Ph.D. Program in Virology, Harvard Medical School, Boston, MA, United States
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States.
| | - Louis-Marie Bloyet
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
9
|
Hayashi M, Schultz EP, Lanchy JM, Lodmell JS. Time-Resolved Analysis of N-RNA Interactions during RVFV Infection Shows Qualitative and Quantitative Shifts in RNA Encapsidation and Packaging. Viruses 2021; 13:2417. [PMID: 34960686 PMCID: PMC8704896 DOI: 10.3390/v13122417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a negative-sense, tripartite RNA virus that is endemic to Africa and the Arabian Peninsula. It can cause severe disease and mortality in humans and domestic livestock and is a concern for its potential to spread more globally. RVFV's nucleocapsid protein (N) is an RNA-binding protein that is necessary for viral transcription, replication, and the production of nascent viral particles. We have conducted crosslinking, immunoprecipitation, and sequencing (CLIP-seq) to characterize N interactions with host and viral RNAs during infection. In parallel, to precisely measure intracellular N levels, we employed multiple reaction monitoring mass spectrometry (MRM-MS). Our results show that N binds mostly to host RNAs at early stages of infection, yielding nascent virus particles of reduced infectivity. The expression of N plateaus 10 h post-infection, whereas the intracellular viral RNA concentration continues to increase. Moreover, the virions produced later in infection have higher infectivity. Taken together, the detailed examination of these N-RNA interactions provides insight into how the regulated expression of N and viral RNA produces both infectious and incomplete, noninfectious particles.
Collapse
Affiliation(s)
- Miyuki Hayashi
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA;
- Center for Biomolecular Structure and Dynamics, Missoula, MT 59812, USA;
| | - Eric P. Schultz
- Center for Biomolecular Structure and Dynamics, Missoula, MT 59812, USA;
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA;
| | - Jean-Marc Lanchy
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA;
| | - J. Stephen Lodmell
- Center for Biomolecular Structure and Dynamics, Missoula, MT 59812, USA;
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA;
| |
Collapse
|
10
|
Characterization of the Molecular Interactions That Govern the Packaging of Viral RNA Segments into Rift Valley Fever Phlebovirus Particles. J Virol 2021; 95:e0042921. [PMID: 33952635 DOI: 10.1128/jvi.00429-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rift Valley fever phlebovirus (RVFV) has a single-stranded, negative-sense RNA genome, consisting of L, M, and S segments. The virion carries two envelope glycoproteins, Gn and Gc, along with ribonucleoprotein complexes (RNPs), composed of encapsidated genomes carrying N protein and the viral polymerase, L protein. A quantitative analysis of the profile of viral RNA segments packaged into RVFV particles showed that all three genomic RNA segments had similar packaging abilities, whereas among antigenomic RNA segments, the antigenomic S RNA, which serves as the template for the transcription of mRNA expressing the RVFV virulence factor, NSs, displayed a significantly higher packaging ability. To delineate the factor(s) governing the packaging of RVFV RNA segments, we characterized the interactions between Gn and viral RNPs in RVFV-infected cells. Coimmunoprecipitation analysis demonstrated the interaction of Gn with N protein, L protein, and viral RNAs in RVFV-infected cells. Furthermore, UV-cross-linking and immunoprecipitation analysis revealed, for the first time in bunyaviruses, the presence of a direct interaction between Gn and all the viral RNA segments in RVFV-infected cells. Notably, analysis of the ability of Gn to bind to RVFV RNA segments indicated a positive correlation with their respective packaging abilities and highlighted a binding preference of Gn for antigenomic S RNA, among the antigenomic RNA segments, suggesting the presence of a selection mechanism for antigenomic S RNA incorporation into infectious RVFV particles. Collectively, the results of our study illuminate the importance of a direct interaction between Gn and viral RNA segments in determining their efficiency of incorporation into RVFV particles. IMPORTANCE Rift Valley fever phlebovirus, a bunyavirus, is a mosquito-borne, segmented RNA virus that can cause severe disease in humans and ruminants. An essential step in RVFV life cycle is the packaging of viral RNA segments to produce infectious virus particles for dissemination to new hosts. However, there are key gaps in knowledge regarding the mechanisms that regulate viral RNA packaging efficiency in bunyaviruses. Our studies investigating the mechanism of RNA packaging in RVFV revealed the presence of a direct interaction between the viral envelope glycoprotein, Gn, and the viral RNA segments in infected cells, for the first time in bunyaviruses. Furthermore, our data strongly indicate a critical role for the direct interaction between Gn and viral RNAs in determining the efficiency of incorporation of viral RNA segments into RVFV particles. Clarifying the fundamental mechanisms of RNA packaging in RVFV would be valuable for the development of antivirals and live-attenuated vaccines.
Collapse
|
11
|
Fearns R. Negative‐strand RNA Viruses. Virology 2021. [DOI: 10.1002/9781119818526.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Zhang X, Sun K, Liang Y, Wang S, Wu K, Li Z. Development of Rice Stripe Tenuivirus Minireplicon Reverse Genetics Systems Suitable for Analyses of Viral Replication and Intercellular Movement. Front Microbiol 2021; 12:655256. [PMID: 33833749 PMCID: PMC8021733 DOI: 10.3389/fmicb.2021.655256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022] Open
Abstract
Rice stripe virus (RSV), a tenuivirus with four negative-sense/ambisense genome segments, is one of the most devastating viral pathogens affecting rice production in many Asian countries. Despite extensive research, our understanding of RSV infection cycles and pathogenesis has been severely impaired by the lack of reverse genetics tools. In this study, we have engineered RSV minireplicon (MR)/minigenome cassettes with reporter genes substituted for the viral open reading frames in the negative-sense RNA1 or the ambisense RNA2-4 segments. After delivery to Nicotiana benthamiana leaves via agroinfiltration, MR reporter gene expression was detected only when the codon-optimized large viral RNA polymerase protein (L) was coexpressed with the nucleocapsid (N) protein. MR activity was also critically dependent on the coexpressed viral suppressors of RNA silencing, but ectopic expression of the RSV-encoded NS3 silencing suppressor drastically decreased reporter gene expression. We also developed intercellular movement-competent MR systems with the movement protein expressed either in cis from an RNA4-based MR or in trans from a binary plasmid. Finally, we generated multicomponent replicon systems by expressing the N and L proteins directly from complementary-sense RNA1 and RNA3 derivatives, which enhanced reporter gene expression, permitted autonomous replication and intercellular movement, and reduced the number of plasmids required for delivery. In summary, this work enables reverse genetics analyses of RSV replication, transcription, and cell-to-cell movement and provides a platform for engineering more complex recombinant systems.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Kai Sun
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Liang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuo Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Kaili Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Ibrahim EH, Taha R, Ghramh HA, Kilany M. Development of Rift Valley fever (RVF) vaccine by genetic joining of the RVF-glycoprotein Gn with the strong adjuvant subunit B of cholera toxin (CTB) and expression in bacterial system. Saudi J Biol Sci 2019; 26:1676-1681. [PMID: 31762643 PMCID: PMC6864185 DOI: 10.1016/j.sjbs.2018.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 12/31/2022] Open
Abstract
One of the mosquito-borne zoonotic diseases is the Rift Valley fever virus (RVFV). Currently, there is no completely licensed vaccine that can be used to vaccinate animals or humans outside endemic areas. The aim of this work was to use the RVFV glycoprotein (Gn) and the subunit B of cholera toxin (CTB) at gene level and build up fused recombinant vaccine. The gene of CTB was joined to the gene Gn to work as an adjuvant in the resulting fusion protein. The designed merged genes (CTB-Gn) was tested for restriction sites, open reading frames, expected fusion protein tertiary structure and antigenicity using computer software. The insert sequence was submitted to the BioProject (GenBank). The insert was subcloned into the pQE-31 expression plasmid. The target recombinant protein (rCTB-Gn) was expressed in M15 bacteria, purified and identified by protein gel electrophoresis. The insert got the accession No: PRJNA386723. Analysis of the designed rCTB-Gn protein revealed that it had the right 3D structure, immunogenic and at the correct molecular weight. The presence of the CTB in the proposed vaccine will augment its immunogenicity. Doses and protection levels of the vaccine need to be manipulated.
Collapse
Affiliation(s)
- Essam H. Ibrahim
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Blood Products Quality Control and Research Department, National Organization for Research and Control of Biologicals, Cairo, Egypt
| | - Ramadan Taha
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Hamed A. Ghramh
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mona Kilany
- Biology Department, Faculty of Sciences and Arts, King Khalid University, Dhahran Al Janoub, Saudi Arabia
- Department of Microbiology, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| |
Collapse
|
14
|
A strand-specific real-time quantitative RT-PCR assay for distinguishing the genomic and antigenomic RNAs of Rift Valley fever phlebovirus. J Virol Methods 2019; 272:113701. [PMID: 31315022 DOI: 10.1016/j.jviromet.2019.113701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/13/2019] [Indexed: 11/21/2022]
Abstract
Rift Valley Fever phlebovirus (RVFV), genus Phlebovirus, family Phenuiviridae, order Bunyavirales, has a single-stranded, negative-sense RNA genome, consisting of L, M and S segments. Here, we report the establishment of a strand-specific, quantitative reverse transcription (RT)-PCR assay system that can selectively distinguish between the genomic and antigenomic RNAs of each of the three viral RNA segments produced in RVFV-infected cells. To circumvent the obstacle of primer-independent cDNA synthesis during RT, we used a tagged, strand-specific RT primer, carrying a non-viral 'tag' sequence at the 5' end, which ensured the strand-specificity through the selective amplification of only the tagged cDNA in the real-time PCR assay. We used this assay system to examine the kinetics of intracellular accumulation of genomic and antigenomic viral RNAs in mammalian cells infected with the MP-12 strain of RVFV. The genomic RNA copy numbers, for all three viral RNA segments, were higher than that of their corresponding antigenomic RNAs throughout the time-course of infection, with a notable exception, wherein the M segment genomic and antigenomic RNAs exhibited similar copy numbers at specific times post-infection. Overall, this assay system could be a useful tool to gain an insight into the mechanisms of RNA replication and packaging in RVFV.
Collapse
|
15
|
Takenaka-Uema A, Murakami S, Ushio N, Kobayashi-Kitamura T, Uema M, Uchida K, Horimoto T. Generation of a GFP Reporter Akabane Virus with Enhanced Fluorescence Intensity by Modification of Artificial Ambisense S Genome. Viruses 2019; 11:v11070634. [PMID: 31295861 PMCID: PMC6669763 DOI: 10.3390/v11070634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/04/2019] [Accepted: 07/09/2019] [Indexed: 11/16/2022] Open
Abstract
We previously generated a recombinant reporter Akabane virus expressing enhanced green fluorescence protein (eGFP-AKAV), with an artificial S genome encoding eGFP in the ambisense RNA. Although the eGFP-AKAV was able to detect infected cells in in vivo histopathological study, its fluorescent signal was too weak to apply to in vivo imaging study. Here, we successfully generated a modified reporter, eGFP/38-AKAV, with 38-nucleotide deletion of the internal region of the 5' untranslated region of S RNA. The eGFP/38-AKAV expressed higher intensity of eGFP fluorescence both in vitro and in vivo than the original eGFP-AKAV did. In addition, eGFP/38-AKAV was pathogenic in mice at a comparable level to that in wild-type AKAV. In the mice infected with eGFP/38-AKAV, the fluorescent signals, i.e., the virus-infected cells, were detected in the central nervous system using the whole-organ imaging. Our findings indicate that eGFP/38-AKAV could be used as a powerful tool to help elucidate the dynamics of AKAV in vivo.
Collapse
Affiliation(s)
- Akiko Takenaka-Uema
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shin Murakami
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Nanako Ushio
- Department of Veterinary Pathology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomoya Kobayashi-Kitamura
- Department of Veterinary Pathology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masashi Uema
- Division of Biomedical Food Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Kazuyuki Uchida
- Department of Veterinary Pathology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Taisuke Horimoto
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
16
|
Mutational analysis of Rift Valley fever phlebovirus nucleocapsid protein indicates novel conserved, functional amino acids. PLoS Negl Trop Dis 2017; 11:e0006155. [PMID: 29267287 PMCID: PMC5764413 DOI: 10.1371/journal.pntd.0006155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/11/2018] [Accepted: 12/07/2017] [Indexed: 11/19/2022] Open
Abstract
Rift Valley fever phlebovirus (RVFV; Phenuiviridae, Phlebovirus) is an important mosquito-borne pathogen of both humans and ruminants. The RVFV genome is composed of tripartite, single stranded, negative or ambisense RNAs. The small (S) segment encodes both the nucleocapsid protein (N) and the non-structural protein (NSs). The N protein is responsible for the formation of the viral ribonucleoprotein (RNP) complexes, which are essential in the virus life cycle and for the transcription and replication of the viral genome. There is currently limited knowledge surrounding the roles of the RVFV nucleocapsid protein in viral infection other than its key functions: N protein multimerisation, encapsidation of the RNA genome and interactions with the RNA-dependent RNA polymerase, L. By bioinformatic comparison of the N sequences of fourteen phleboviruses, mutational analysis, minigenome assays and packaging assays, we have further characterised the RVFV N protein. Amino acids P11 and F149 in RVFV N play an essential role in the function of RNPs and are neither associated with N protein multimerisation nor known nucleocapsid protein functions and may have additional roles in the virus life cycle. Amino acid Y30 exhibited increased minigenome activity despite reduced RNA binding capacity. Additionally, we have determined that the N-terminal arm of N protein is not involved in N-L interactions. Elucidating the fundamental processes that involve the nucleocapsid protein will add to our understanding of this important viral protein and may influence future studies in the development of novel antiviral strategies.
Collapse
|
17
|
Conserved RNA structures in the intergenic regions of ambisense viruses. Sci Rep 2017; 7:16625. [PMID: 29192224 PMCID: PMC5709424 DOI: 10.1038/s41598-017-16875-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/16/2017] [Indexed: 11/17/2022] Open
Abstract
Ambisense viruses are negative-sense single-stranded RNA viruses that use a unique expression strategy. Their genome contains at least one ambisense RNA segment that carries two oppositely oriented reading frames separated by an intergenic region. It is believed that a structural RNA element within the intergenic region is involved in transcription termination. However, a general overview over the structural repertoire of ambisense intergenic regions is currently lacking. In this study we investigated the structural potential of the intergenic regions of all known ambisense viruses and compared their structural repertoire by structure-guided clustering. Intergenic regions of most ambisense viruses possess a high potential to build stable secondary structures and many viruses share common structural motifs in the intergenic regions of their ambisense segments. We demonstrate that (i) within the phylogenetic virus groups sets of conserved functional structures are present, but that (ii) between the groups conservation is low to non-existent. These results reflect a high degree of freedom to regulate ambisense transcription termination and also imply that the genetic strategy of having an ambisense RNA genome has evolved several times independently.
Collapse
|
18
|
Ejiri H, Lim CK, Isawa H, Yamaguchi Y, Fujita R, Takayama-Ito M, Kuwata R, Kobayashi D, Horiya M, Posadas-Herrera G, Iizuka-Shiota I, Kakiuchi S, Katayama Y, Hayashi T, Sasaki T, Kobayashi M, Morikawa S, Maeda K, Mizutani T, Kaku K, Saijo M, Sawabe K. Isolation and characterization of Kabuto Mountain virus, a new tick-borne phlebovirus from Haemaphysalis flava ticks in Japan. Virus Res 2017; 244:252-261. [PMID: 29197549 DOI: 10.1016/j.virusres.2017.11.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/15/2017] [Accepted: 11/28/2017] [Indexed: 01/09/2023]
Abstract
In Japan, indigenous tick-borne phleboviruses (TBPVs) and their associated diseases first became evident in 2013 by reported human cases of severe fever with thrombocytopenia syndrome (SFTS). In this study, we report a novel member of the genus Phlebovirus designated as Kabuto Mountain virus (KAMV), which was isolated from the ixodid tick Haemaphysalis flava in Hyogo, Japan. A complete viral genome sequencing and phylogenetic analyses showed that KAMV is a novel member of TBPVs, which is closely related to the Uukuniemi and Kaisodi group viruses. However, unlike the Uukuniemi group viruses, the 165-nt intergenic region (IGR) in the KAMV S segment was highly C-rich in the genomic sense and not predicted to form a secondary structure, which are rather similar to those of the Kaisodi group viruses and most mosquito/sandfly-borne phleboviruses. Furthermore, the NSs protein of KAMV was highly divergent from those of other TBPVs. These results provided further insights into the genetic diversity and evolutionary relationships of TBPVs. KAMV could infect and replicate in some rodent and primate cell lines. We evaluated the infectivity and pathogenicity of KAMV in suckling mice, where we obtained a virulent strain after two passages via intracerebral inoculation. This is the first report showing the existence of a previously unrecognized TBPV in Japan, other than the SFTS virus.
Collapse
Affiliation(s)
- Hiroko Ejiri
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Division of infectious Diseases Epidemiology and Control, National Defense Medical Research Institute, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Chang-Kweng Lim
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yukie Yamaguchi
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Ryosuke Fujita
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Mutsuyo Takayama-Ito
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Ryusei Kuwata
- Laboratory of Veterinary Microbiology, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Madoka Horiya
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Guillermo Posadas-Herrera
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Itoe Iizuka-Shiota
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Satsuki Kakiuchi
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Toshihiko Hayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Toshinori Sasaki
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Mutsuo Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Shigeru Morikawa
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Ken Maeda
- Laboratory of Veterinary Microbiology, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Koki Kaku
- Division of infectious Diseases Epidemiology and Control, National Defense Medical Research Institute, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
19
|
Mapping of Transcription Termination within the S Segment of SFTS Phlebovirus Facilitated Generation of NSs Deletant Viruses. J Virol 2017; 91:JVI.00743-17. [PMID: 28592543 PMCID: PMC5533932 DOI: 10.1128/jvi.00743-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/31/2017] [Indexed: 12/15/2022] Open
Abstract
SFTS phlebovirus (SFTSV) is an emerging tick-borne bunyavirus that was first reported in China in 2009. Here we report the generation of a recombinant SFTSV (rHB29NSsKO) that cannot express the viral nonstructural protein (NSs) upon infection of cells in culture. We show that rHB29NSsKO replication kinetics are greater in interferon (IFN)-incompetent cells and that the virus is unable to suppress IFN induced in response to viral replication. The data confirm for the first time in the context of virus infection that NSs acts as a virally encoded IFN antagonist and that NSs is dispensable for virus replication. Using 3' rapid amplification of cDNA ends (RACE), we mapped the 3' end of the N and NSs mRNAs, showing that the mRNAs terminate within the coding region of the opposite open reading frame. We show that the 3' end of the N mRNA terminates upstream of a 5'-GCCAGCC-3' motif present in the viral genomic RNA. With this knowledge, and using virus-like particles, we could demonstrate that the last 36 nucleotides of the NSs open reading frame (ORF) were needed to ensure the efficient termination of the N mRNA and were required for recombinant virus rescue. We demonstrate that it is possible to recover viruses lacking NSs (expressing just a 12-amino-acid NSs peptide or encoding enhanced green fluorescent protein [eGFP]) or an NSs-eGFP fusion protein in the NSs locus. This opens the possibility for further studies of NSs and potentially the design of attenuated viruses for vaccination studies.IMPORTANCE SFTS phlebovirus (SFTSV) and related tick-borne viruses have emerged globally since 2009. SFTSV has been shown to cause severe disease in humans. For bunyaviruses, it has been well documented that the nonstructural protein (NSs) enables the virus to counteract the human innate antiviral defenses and that NSs is one of the major determinants of virulence in infection. Therefore, the use of reverse genetics systems to engineer viruses lacking NSs is an attractive strategy to rationally attenuate bunyaviruses. Here we report the generation of several recombinant SFTS viruses that cannot express the NSs protein or have the NSs open reading frame replaced with a reporter gene. These viruses cannot antagonize the mammalian interferon (IFN) response mounted to virus infection. The generation of NSs-lacking viruses was achieved by mapping the transcriptional termination of two S-segment-derived subgenomic mRNAs, which revealed that transcription termination occurs upstream of a 5'-GCCAGCC-3' motif present in the virus genomic S RNA.
Collapse
|
20
|
Molleston JM, Sabin LR, Moy RH, Menghani SV, Rausch K, Gordesky-Gold B, Hopkins KC, Zhou R, Jensen TH, Wilusz JE, Cherry S. A conserved virus-induced cytoplasmic TRAMP-like complex recruits the exosome to target viral RNA for degradation. Genes Dev 2017; 30:1658-70. [PMID: 27474443 PMCID: PMC4973295 DOI: 10.1101/gad.284604.116] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/27/2016] [Indexed: 12/25/2022]
Abstract
Here, Molleston et al. find that signals from viral infections repurpose TRAMP complex components to a cytoplasmic surveillance role where they selectively engage viral RNAs for degradation to restrict a broad range of viruses. RNA degradation is tightly regulated to selectively target aberrant RNAs, including viral RNA, but this regulation is incompletely understood. Through RNAi screening in Drosophila cells, we identified the 3′-to-5′ RNA exosome and two components of the exosome cofactor TRAMP (Trf4/5–Air1/2–Mtr4 polyadenylation) complex, dMtr4 and dZcchc7, as antiviral against a panel of RNA viruses. We extended our studies to human orthologs and found that the exosome as well as TRAMP components hMTR4 and hZCCHC7 are antiviral. While hMTR4 and hZCCHC7 are normally nuclear, infection by cytoplasmic RNA viruses induces their export, forming a cytoplasmic complex that specifically recognizes and induces degradation of viral mRNAs. Furthermore, the 3′ untranslated region (UTR) of bunyaviral mRNA is sufficient to confer virus-induced exosomal degradation. Altogether, our results reveal that signals from viral infection repurpose TRAMP components to a cytoplasmic surveillance role where they selectively engage viral RNAs for degradation to restrict a broad range of viruses.
Collapse
Affiliation(s)
- Jerome M Molleston
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Leah R Sabin
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Ryan H Moy
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Sanjay V Menghani
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Keiko Rausch
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Beth Gordesky-Gold
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Kaycie C Hopkins
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Rui Zhou
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | - Torben Heick Jensen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
21
|
RNA Interference Restricts Rift Valley Fever Virus in Multiple Insect Systems. mSphere 2017; 2:mSphere00090-17. [PMID: 28497117 PMCID: PMC5415632 DOI: 10.1128/msphere.00090-17] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 03/31/2017] [Indexed: 01/03/2023] Open
Abstract
The emerging bunyavirus Rift Valley fever virus (RVFV) is transmitted to humans and livestock by a large number of mosquito species. RNA interference (RNAi) has been characterized as an important innate immune defense mechanism used by mosquitoes to limit replication of positive-sense RNA flaviviruses and togaviruses; however, little is known about its role against negative-strand RNA viruses such as RVFV. We show that virus-specific small RNAs are produced in infected mosquito cells, in Drosophila melanogaster cells, and, most importantly, also in RVFV vector mosquitoes. By addressing the production of small RNAs in adult Aedes sp. and Culex quinquefasciatus mosquitoes, we showed the presence of virus-derived Piwi-interacting RNAs (piRNAs) not only in Aedes sp. but also in C. quinquefasciatus mosquitoes, indicating that antiviral RNA interference in C. quinquefasciatus mosquitoes is similar to the described activities of RNAi in Aedes sp. mosquitoes. We also show that these have antiviral activity, since silencing of RNAi pathway effectors enhances viral replication. Moreover, our data suggest that RVFV does not encode a suppressor of RNAi. These findings point toward a significant role of RNAi in the control of RVFV in mosquitoes. IMPORTANCE Rift Valley fever virus (RVFV; Phlebovirus, Bunyaviridae) is an emerging zoonotic mosquito-borne pathogen of high relevance for human and animal health. Successful strategies of intervention in RVFV transmission by its mosquito vectors and the prevention of human and veterinary disease rely on a better understanding of the mechanisms that govern RVFV-vector interactions. Despite its medical importance, little is known about the factors that govern RVFV replication, dissemination, and transmission in the invertebrate host. Here we studied the role of the antiviral RNA interference immune pathways in the defense against RVFV in natural vector mosquitoes and mosquito cells and draw comparisons to the model insect Drosophila melanogaster. We found that RVFV infection induces both the exogenous small interfering RNA (siRNA) and piRNA pathways, which contribute to the control of viral replication in insects. Furthermore, we demonstrate the production of virus-derived piRNAs in Culex quinquefasciatus mosquitoes. Understanding these pathways and the targets within them offers the potential of the development of novel RVFV control measures in vector-based strategies.
Collapse
|
22
|
Amroun A, Priet S, de Lamballerie X, Quérat G. Bunyaviridae RdRps: structure, motifs, and RNA synthesis machinery. Crit Rev Microbiol 2017; 43:753-778. [PMID: 28418734 DOI: 10.1080/1040841x.2017.1307805] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bunyaviridae family is the largest and most diverse family of RNA viruses. It has more than 350 members divided into five genera: Orthobunyavirus, Phlebovirus, Nairovirus, Hantavirus, and Tospovirus. They are present in the five continents, causing recurrent epidemics, epizootics, and considerable agricultural loss. The genome of bunyaviruses is divided into three segments of negative single-stranded RNA according to their relative size: L (Large), M (Medium) and S (Small) segment. Bunyaviridae RNA-dependent RNA polymerase (RdRp) is encoded by the L segment, and is in charge of the replication and transcription of the viral RNA in the cytoplasm of the infected cell. Viral RdRps share a characteristic right hand-like structure with three subdomains: finger, palm, and thumb subdomains that define the formation of the catalytic cavity. In addition to the N-terminal endonuclease domain, eight conserved motifs (A-H) have been identified in the RdRp of Bunyaviridae. In this review, we have summarized the recent insights from the structural and functional studies of RdRp to understand the roles of different motifs shared by RdRps, the mechanism of viral RNA replication, genome segment packaging by the nucleoprotein, cap-snatching, mRNA transcription, and other RNA mechanisms of bunyaviruses.
Collapse
Affiliation(s)
- Abdennour Amroun
- a Faculté de Médecine , UMR "Emergence des Pathologies Virales" (Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP), Fondation IHU Méditerranée Infection, APHM Public Hospitals of Marseille , Marseille , France
| | - Stéphane Priet
- a Faculté de Médecine , UMR "Emergence des Pathologies Virales" (Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP), Fondation IHU Méditerranée Infection, APHM Public Hospitals of Marseille , Marseille , France
| | - Xavier de Lamballerie
- a Faculté de Médecine , UMR "Emergence des Pathologies Virales" (Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP), Fondation IHU Méditerranée Infection, APHM Public Hospitals of Marseille , Marseille , France
| | - Gilles Quérat
- a Faculté de Médecine , UMR "Emergence des Pathologies Virales" (Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP), Fondation IHU Méditerranée Infection, APHM Public Hospitals of Marseille , Marseille , France
| |
Collapse
|
23
|
Ferron F, Weber F, de la Torre JC, Reguera J. Transcription and replication mechanisms of Bunyaviridae and Arenaviridae L proteins. Virus Res 2017; 234:118-134. [PMID: 28137457 PMCID: PMC7114536 DOI: 10.1016/j.virusres.2017.01.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/17/2017] [Accepted: 01/21/2017] [Indexed: 12/15/2022]
Abstract
Bunyavirus and arenavirus are important public health threats. Bunyavirus and arenavirus molecular biology, common and differential features. Implications of LACV L protein structure for understanding viral RNA synthesis. Current state and future perspectives on bunya- and arenavirus antivirals.
Bunyaviridae and Arenaviridae virus families include an important number of highly pathogenic viruses for humans. They are enveloped viruses with negative stranded RNA genomes divided into three (bunyaviruses) or two (arenaviruses) segments. Each genome segment is coated by the viral nucleoproteins (NPs) and the polymerase (L protein) to form a functional ribonucleoprotein (RNP) complex. The viral RNP provides the necessary context on which the L protein carries out the biosynthetic processes of RNA replication and gene transcription. Decades of research have provided a good understanding of the molecular processes underlying RNA synthesis, both RNA replication and gene transcription, for these two families of viruses. In this review we will provide a global view of the common features, as well as differences, of the molecular biology of Bunyaviridae and Arenaviridae. We will also describe structures of protein and protein-RNA complexes so far determined for these viral families, mainly focusing on the L protein, and discuss their implications for understanding the mechanisms of viral RNA replication and gene transcription within the architecture of viral RNPs, also taking into account the cellular context in which these processes occur. Finally, we will discuss the implications of these structural findings for the development of antiviral drugs to treat human diseases caused by members of the Bunyaviridae and Arenaviridae families.
Collapse
Affiliation(s)
- François Ferron
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France; CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, D-35392 Giessen, Germany
| | | | - Juan Reguera
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France; CNRS, AFMB UMR 7257, 13288 Marseille, France; INSERM, AFMB UMR 7257, 13288 Marseille, France.
| |
Collapse
|
24
|
Ly HJ, Ikegami T. Rift Valley fever virus NSs protein functions and the similarity to other bunyavirus NSs proteins. Virol J 2016; 13:118. [PMID: 27368371 PMCID: PMC4930582 DOI: 10.1186/s12985-016-0573-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/23/2016] [Indexed: 12/31/2022] Open
Abstract
Rift Valley fever is a mosquito-borne zoonotic disease that affects both ruminants and humans. The nonstructural (NS) protein, which is a major virulence factor for Rift Valley fever virus (RVFV), is encoded on the S-segment. Through the cullin 1-Skp1-Fbox E3 ligase complex, the NSs protein promotes the degradation of at least two host proteins, the TFIIH p62 and the PKR proteins. NSs protein bridges the Fbox protein with subsequent substrates, and facilitates the transfer of ubiquitin. The SAP30-YY1 complex also bridges the NSs protein with chromatin DNA, affecting cohesion and segregation of chromatin DNA as well as the activation of interferon-β promoter. The presence of NSs filaments in the nucleus induces DNA damage responses and causes cell-cycle arrest, p53 activation, and apoptosis. Despite the fact that NSs proteins have poor amino acid similarity among bunyaviruses, the strategy utilized to hijack host cells are similar. This review will provide and summarize an update of recent findings pertaining to the biological functions of the NSs protein of RVFV as well as the differences from those of other bunyaviruses.
Collapse
Affiliation(s)
- Hoai J Ly
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA. .,The Sealy Center for Vaccine Development, The University of Texas Medical Branch at Galveston, Galveston, TX, USA. .,The Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
25
|
Wuerth JD, Weber F. Phleboviruses and the Type I Interferon Response. Viruses 2016; 8:v8060174. [PMID: 27338447 PMCID: PMC4926194 DOI: 10.3390/v8060174] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 12/16/2022] Open
Abstract
The genus Phlebovirus of the family Bunyaviridae contains a number of emerging virus species which pose a threat to both human and animal health. Most prominent members include Rift Valley fever virus (RVFV), sandfly fever Naples virus (SFNV), sandfly fever Sicilian virus (SFSV), Toscana virus (TOSV), Punta Toro virus (PTV), and the two new members severe fever with thrombocytopenia syndrome virus (SFTSV) and Heartland virus (HRTV). The nonstructural protein NSs is well established as the main phleboviral virulence factor in the mammalian host. NSs acts as antagonist of the antiviral type I interferon (IFN) system. Recent progress in the elucidation of the molecular functions of a growing list of NSs proteins highlights the astonishing variety of strategies employed by phleboviruses to evade the IFN system.
Collapse
Affiliation(s)
- Jennifer Deborah Wuerth
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen 35392, Germany.
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen 35392, Germany.
| |
Collapse
|
26
|
The L, M, and S Segments of Rift Valley Fever Virus MP-12 Vaccine Independently Contribute to a Temperature-Sensitive Phenotype. J Virol 2016; 90:3735-44. [PMID: 26819307 DOI: 10.1128/jvi.02241-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/14/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Rift Valley fever (RVF) is endemic to Africa, and the mosquito-borne disease is characterized by "abortion storms" in ruminants and by hemorrhagic fever, encephalitis, and blindness in humans. Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus) has a tripartite negative-stranded RNA genome (L, M, and S segments). A live-attenuated vaccine for RVF, the MP-12 vaccine, is conditionally licensed for veterinary use in the United States. MP-12 is fully attenuated by the combination of the partially attenuated L, M, and S segments. Temperature sensitivity (ts) limits viral replication at a restrictive temperature and may be involved with viral attenuation. In this study, we aimed to characterize the ts mutations for MP-12. The MP-12 vaccine showed restricted replication at 38°C and replication shutoff (100-fold or greater reduction in virus titer compared to that at 37°C) at 39°C in Vero and MRC-5 cells. Using rZH501 reassortants with either the MP-12 L, M, or S segment, we found that all three segments encode a temperature-sensitive phenotype. However, the ts phenotype of the S segment was weaker than that of the M or L segment. We identified Gn-Y259H, Gc-R1182G, L-V172A, and L-M1244I as major ts mutations for MP-12. The ts mutations in the L segment decreased viral RNA synthesis, while those in the M segment delayed progeny production from infected cells. We also found that a lack of NSs and/or 78kD/NSm protein expression minimally affected the ts phenotype. Our study revealed that MP-12 is a unique vaccine carrying ts mutations in the L, M, and S segments. IMPORTANCE Rift Valley fever (RVF) is a mosquito-borne viral disease endemic to Africa, characterized by high rates of abortion in ruminants and severe diseases in humans. Vaccination is important to prevent the spread of disease, and a live-attenuated MP-12 vaccine is currently the only vaccine with a conditional license in the United States. This study determined the temperature sensitivity (ts) of MP-12 vaccine to understand virologic characteristics. Our study revealed that MP-12 vaccine contains ts mutations independently in the L, M, and S segments and that MP-12 displays a restrictive replication at 38°C.
Collapse
|
27
|
Generation of a Recombinant Akabane Virus Expressing Enhanced Green Fluorescent Protein. J Virol 2015; 89:9477-84. [PMID: 26157127 DOI: 10.1128/jvi.00681-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/29/2015] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED We generated a recombinant Akabane virus (AKAV) expressing enhanced green fluorescence protein (eGFP-AKAV) by using reverse genetics. We artificially constructed an ambisense AKAV S genome encoding N/NSs on the negative-sense strand, and eGFP on the positive-sense strand with an intergenic region (IGR) derived from the Rift Valley fever virus (RVFV) S genome. The recombinant virus exhibited eGFP fluorescence and had a cytopathic effect in cell cultures, even after several passages. These results indicate that the gene encoding eGFP in the ambisense RNA could be stably maintained. Transcription of N/NSs and eGFP mRNAs of eGFP-AKAV was terminated within the IGR. The mechanism responsible for this appears to be different from that in RVFV, where the termination sites for N and NSs are determined by a defined signal sequence. We inoculated suckling mice intraperitoneally with eGFP-AKAV, which resulted in neurological signs and lethality equivalent to those seen for the parent AKAV. Fluorescence from eGFP in frozen brain slices from the eGFP-AKAV-infected mice was localized to the cerebellum, pons, and medulla oblongata. Our approach to producing a fluorescent virus, using an ambisense genome, helped obtain eGFP-AKAV, a fluorescent bunyavirus whose viral genes are intact and which can be easily visualized. IMPORTANCE AKAV is the etiological agent of arthrogryposis-hydranencephaly syndrome in ruminants, which causes considerable economic loss to the livestock industry. We successfully generated a recombinant enhanced green fluorescent protein-tagged AKAV containing an artificial ambisense S genome. This virus could become a useful tool for analyzing AKAV pathogenesis in host animals. In addition, our approach of using an ambisense genome to generate an orthobunyavirus stably expressing a foreign gene could contribute to establishing alternative vaccine strategies, such as bivalent vaccine virus constructs, for veterinary use against infectious diseases.
Collapse
|
28
|
The consequences of reconfiguring the ambisense S genome segment of Rift Valley fever virus on viral replication in mammalian and mosquito cells and for genome packaging. PLoS Pathog 2014; 10:e1003922. [PMID: 24550727 PMCID: PMC3923772 DOI: 10.1371/journal.ppat.1003922] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 12/23/2013] [Indexed: 11/19/2022] Open
Abstract
Rift Valley fever virus (RVFV, family Bunyaviridae) is a mosquito-borne pathogen of both livestock and humans, found primarily in Sub-Saharan Africa and the Arabian Peninsula. The viral genome comprises two negative-sense (L and M segments) and one ambisense (S segment) RNAs that encode seven proteins. The S segment encodes the nucleocapsid (N) protein in the negative-sense and a nonstructural (NSs) protein in the positive-sense, though NSs cannot be translated directly from the S segment but rather from a specific subgenomic mRNA. Using reverse genetics we generated a virus, designated rMP12:S-Swap, in which the N protein is expressed from the NSs locus and NSs from the N locus within the genomic S RNA. In cells infected with rMP12:S-Swap NSs is expressed at higher levels with respect to N than in cells infected with the parental rMP12 virus. Despite NSs being the main interferon antagonist and determinant of virulence, growth of rMP12:S-Swap was attenuated in mammalian cells and gave a small plaque phenotype. The increased abundance of the NSs protein did not lead to faster inhibition of host cell protein synthesis or host cell transcription in infected mammalian cells. In cultured mosquito cells, however, infection with rMP12:S-Swap resulted in cell death rather than establishment of persistence as seen with rMP12. Finally, altering the composition of the S segment led to a differential packaging ratio of genomic to antigenomic RNA into rMP12:S-Swap virions. Our results highlight the plasticity of the RVFV genome and provide a useful experimental tool to investigate further the packaging mechanism of the segmented genome. Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus found primarily in sub-Saharan Africa that can infect both domestic animals and humans. RVFV has a tripartite RNA genome that encodes seven proteins. The smallest (S) segment has an unusual ambisense coding strategy whereby two genes (for the nucleocapsid N and nonstructural NSs proteins) are encoded in opposite orientations on the genomic RNA, and are translated from specific subgenomic mRNAs. N is the major structural protein of the virus while NSs is the major virulence factor. To investigate the biological significance of this coding arrangement, we used reverse genetics to create a recombinant virus in which the N and NSs coding sequences were swapped on the S segment. The recombinant virus grew less well in tissue culture cells compared to the parental virus, and rather than maintain persistence in insect cells, infection resulted in their death. In addition, packaging of the modified S genome segment into new virus particles was altered. We also showed that a foreign protein could be expressed to high levels when cloned in place of the NSs gene in the recombinant virus. These studies have implications for vaccine development and vector control strategies.
Collapse
|
29
|
Coupeau D, Claine F, Wiggers L, Martin B, Kirschvink N, Muylkens B. Characterization of messenger RNA termini in Schmallenberg virus and related Simbuviruses. J Gen Virol 2013; 94:2399-2405. [PMID: 23939979 DOI: 10.1099/vir.0.055954-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Schmallenberg virus (SBV) is an emerging arbovirus infecting ruminants in Europe. SBV belongs to the Bunyaviridae family within the Simbu serogroup. Its genome comprises three segments, small (S), medium (M) and large (L), that together encode six proteins and contain NTRs. NTRs are involved in initiation and termination of transcription and in genome packaging. This study explored the 3' mRNA termini of SBV and related Simbuviruses. In addition, the 5' termini of SBV messenger RNA (mRNA) were characterized. For the three SBV segments, cap-snatching was found to initiate mRNA transcription both in vivo and in vitro. The presence of extraneous nucleotides between host RNA leaders and the viral termini fits with the previously described prime-and-realign theory. At the 3' termini, common features were identified for SBV and related Simbuviruses. However, different patterns were observed for the termini of the three segments from the same virus type.
Collapse
Affiliation(s)
- Damien Coupeau
- Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences, University of Namur, 5000 Namur, Belgium
| | - François Claine
- Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences, University of Namur, 5000 Namur, Belgium
| | - Laetitia Wiggers
- Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences, University of Namur, 5000 Namur, Belgium
| | - Beer Martin
- Friedrich-Loeffler-Institut, Greifswald-Insel-Riems, Germany
| | - Nathalie Kirschvink
- Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences, University of Namur, 5000 Namur, Belgium
| | - Benoît Muylkens
- Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences, University of Namur, 5000 Namur, Belgium
| |
Collapse
|
30
|
Wu G, Lu Y, Zheng H, Lin L, Yan F, Chen J. Transcription of ORFs on RNA2 and RNA4 of Rice stripe virus terminate at an AUCCGGAU sequence that is conserved in the genus Tenuivirus. Virus Res 2013; 175:71-7. [PMID: 23624227 DOI: 10.1016/j.virusres.2013.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/05/2013] [Accepted: 04/12/2013] [Indexed: 11/28/2022]
Abstract
Rice stripe virus, the type member of the genus Tenuivirus, has four genomic RNAs. RNAs 2-4 have an ambisense coding strategy and the noncoding intergenic regions (IRs) separating the two ORFs are thought to function in termination of transcription. Sequencing the 3'-untranslated region of transcripts from RNA2 and RNA4 in virus-infected Oryza sativa (the natural host), Nicotiana benthamiana (an experimental host) and Laodelphax striatellus (the vector), showed that the sequences of p2 and pc2 transcripts on RNA2, and p4 and pc4 transcripts on RNA4 terminated with high frequency at a palindromic sequence AUCCGGAU that was located in a region predicted to form a hairpin secondary structure. The AUCCGGAU sequence is highly conserved in RNA2 and RNA4 of different RSV isolates and is also conserved among the corresponding genomic RNAs of other tenuiviruses. p3 transcripts from the three hosts all had the same dominant termination site, while pc3 transcripts from different hosts terminated at different sites. All pc1 3'-UTR sequences ended at the 3'-end of the viral complementary strand of RNA1 (data not shown), indicating that the pc1 transcript may be synthesized by runoff of viral polymerase, but had no characteristic termination sequence. This is the first experimental report determining the exact transcription termination sites of a plant ambisense virus, and has implications for understanding the transcription of RSV as well as other plant viruses with an ambisense coding strategy.
Collapse
Affiliation(s)
- Gentu Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | |
Collapse
|
31
|
Systems to establish bunyavirus genome replication in the absence of transcription. J Virol 2013; 87:8205-12. [PMID: 23698297 DOI: 10.1128/jvi.00371-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The L polymerase of bunyaviruses replicates and transcribes the viral genome. While replication products are faithful copies of the uncapped genomic RNA, transcription products contain capped 5' extensions which had been cleaved from host cell mRNAs. For La Crosse virus (LACV; genus Orthobunyavirus), the nuclease responsible for host cell mRNA cleavage is located at the N terminus of the L protein, with an active site of five conserved amino acids (H34, D52, D79, D92, and K94) surrounding two Mn(2+) ions (J. Reguera, F. Weber, and S. Cusack, PLoS Pathog. 6:e1001101, 2010). Here, we present reverse genetics systems and L mutants enabling us to study bunyaviral genome replication in the absence of transcription. Transcription was evaluated with an enhanced minigenome system consisting of the viral polymerase L, nucleocapsid protein N, a negative-sense minigenome, and--to alleviate antiviral host responses--a dominant-negative mutant (PKRΔE7) of the antiviral kinase protein kinase R (PKR). The transcriptional activity was strongly reduced by mutation of any of the five key amino acids, and the H34K, D79A, D92A, and K94A LACV L mutants were almost entirely silent in transcription. The replication activity of the L mutants was measured by packaging of progeny minigenomes into virus-like particles (VLPs). All mutant L proteins except K94A retained full replication activity. To test the broader applicability of our results, we introduced the homolog of mutation D79A (D111A) into the L sequence of Rift Valley fever virus (RVFV; genus Phlebovirus). As for LACV D79A, the RVFV D111A was incapable of transcription but fully active in replication. Thus, we generated mutants of LACV and RVFV L polymerases that are specifically deficient in transcription. Genome replication by bunyavirus polymerases can now be studied in the absence of transcription using convenient reverse genetics systems.
Collapse
|
32
|
Dicer-2- and Piwi-mediated RNA interference in Rift Valley fever virus-infected mosquito cells. J Virol 2012; 87:1631-48. [PMID: 23175368 DOI: 10.1128/jvi.02795-12] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a Phlebovirus (Bunyaviridae family) transmitted by mosquitoes. It infects humans and ruminants, causing dramatic epidemics and epizootics in Africa, Yemen, and Saudi Arabia. While recent studies demonstrated the importance of the nonstructural protein NSs as a major component of virulence in vertebrates, little is known about infection of mosquito vectors. Here we studied RVFV infection in three different mosquito cell lines, Aag2 cells from Aedes aegypti and U4.4 and C6/36 cells from Aedes albopictus. In contrast with mammalian cells, where NSs forms nuclear filaments, U4.4 and Aag2 cells downregulated NSs expression such that NSs filaments were never formed in nuclei of U4.4 cells and disappeared at an early time postinfection in the case of Aag2 cells. On the contrary, in C6/36 cells, NSs nuclear filaments were visible during the entire time course of infection. Analysis of virus-derived small interfering RNAs (viRNAs) by deep sequencing indicated that production of viRNAs was very low in C6/36 cells, which are known to be Dicer-2 deficient but expressed some viRNAs presenting a Piwi signature. In contrast, Aag2 and U4.4 cells produced large amounts of viRNAs predominantly matching the S segment and displaying Dicer-2 and Piwi signatures. Whereas 21-nucleotide (nt) Dicer-2 viRNAs were prominent during early infection, the population of 24- to 27-nt Piwi RNAs (piRNAs) increased progressively and became predominant later during the acute infection and during persistence. In Aag2 and U4.4 cells, the combined actions of the Dicer-2 and Piwi pathways triggered an efficient antiviral response permitting, among other actions, suppression of NSs filament formation and allowing establishment of persistence. In C6/36 cells, Piwi-mediated RNA interference (RNAi) appeared to be sufficient to mount an antiviral response against a secondary infection with a superinfecting virus. This study provides new insights into the role of Dicer and Piwi in mosquito antiviral defense and the development of the antiviral response in mosquitoes.
Collapse
|
33
|
Ikegami T. Molecular biology and genetic diversity of Rift Valley fever virus. Antiviral Res 2012; 95:293-310. [PMID: 22710362 DOI: 10.1016/j.antiviral.2012.06.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/05/2012] [Accepted: 06/05/2012] [Indexed: 01/25/2023]
Abstract
Rift Valley fever virus (RVFV), a member of the family Bunyaviridae, genus Phlebovirus, is the causative agent of Rift Valley fever (RVF), a mosquito-borne disease of ruminant animals and humans. The generation of a large sequence database has facilitated studies of the evolution and spread of the virus. Bayesian analyses indicate that currently circulating strains of RVFV are descended from an ancestral species that emerged from a natural reservoir in Africa when large-scale cattle and sheep farming were introduced during the 19th century. Viruses descended from multiple lineages persist in that region, through infection of reservoir animals and vertical transmission in mosquitoes, emerging in years of heavy rainfall to cause epizootics and epidemics. On a number of occasions, viruses from these lineages have been transported outside the enzootic region through the movement of infected animals or mosquitoes, triggering outbreaks in countries such as Egypt, Saudi Arabia, Mauritania and Madagascar, where RVF had not previously been seen. Such viruses could potentially become established in their new environments through infection of wild and domestic ruminants and other animals and vertical transmission in local mosquito species. Despite their extensive geographic dispersion, all strains of RVFV remain closely related at the nucleotide and amino acid level. The high degree of conservation of genes encoding the virion surface glycoproteins suggests that a single vaccine should protect against all currently circulating RVFV strains. Similarly, preservation of the sequence of the RNA-dependent RNA polymerase across viral lineages implies that antiviral drugs targeting the enzyme should be effective against all strains. Researchers should be encouraged to collect additional RVFV isolates and perform whole-genome sequencing and phylogenetic analysis, so as to enhance our understanding of the continuing evolution of this important virus. This review forms part of a series of invited papers in Antiviral Research on the genetic diversity of emerging viruses.
Collapse
Affiliation(s)
- Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch, MMNP3.206D, 301 University Blvd. Galveston, TX 77555-0436, USA.
| |
Collapse
|
34
|
Blakqori G, Lowen AC, Elliott RM. The small genome segment of Bunyamwera orthobunyavirus harbours a single transcription-termination signal. J Gen Virol 2012; 93:1449-1455. [PMID: 22513389 PMCID: PMC3542733 DOI: 10.1099/vir.0.042390-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transcription termination of the mRNA produced from the small (S) genome segment of Bunyamwera orthobunyavirus (BUNV) has previously been mapped to two cis-acting sequences located within the 5' UTR using a virus-free replication assay. The ability of these sequences to terminate transcription was attributed to the shared pentanucleotide motif 3'-UGUCG-5'. Taking advantage of our plasmid-based rescue system to generate recombinant viruses, we re-evaluated the importance of both pentanucleotide motifs as well as that of two other conserved sequences in transcription termination in vivo. Analysis of the 3' ends of positive-stranded viral RNAs derived from the S segment revealed that only the region around the upstream pentanucleotide motif mediated transcription termination in cells infected with wild-type BUNV, leading to mRNAs that were about 100 nt shorter than antigenome RNA. Furthermore, the downstream motif was not recognized in recombinant viruses in which the upstream signal has been disrupted. Our results suggest that in the context of virus infection transcription termination of the BUNV S genome segment mRNA is exclusively directed by the upstream-termination signal. Interestingly, within this region we identified a motif similar to a transcription-termination sequence used by Rift Valley fever phlebovirus.
Collapse
Affiliation(s)
- Gjon Blakqori
- Biomedical Sciences Research Complex, School of Biology, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, Scotland, UK
| | - Anice C Lowen
- Biomedical Sciences Research Complex, School of Biology, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, Scotland, UK
| | - Richard M Elliott
- Biomedical Sciences Research Complex, School of Biology, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, Scotland, UK
| |
Collapse
|
35
|
Roles of the coding and noncoding regions of rift valley Fever virus RNA genome segments in viral RNA packaging. J Virol 2012; 86:4034-9. [PMID: 22278239 DOI: 10.1128/jvi.06700-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We characterized the RNA elements involved in the packaging of Rift Valley fever virus RNA genome segments, L, M, and S. The 5'-terminal 25 nucleotides of each RNA segment were equally competent for RNA packaging and carried an RNA packaging signal, which overlapped with the RNA replication signal. Only the deletion mutants of L RNA, but not full-length L RNA, were efficiently packaged, implying the possible requirement of RNA compaction for L RNA packaging.
Collapse
|
36
|
Characterization of wild-type and alternate transcription termination signals in the Rift Valley fever virus genome. J Virol 2011; 85:12134-45. [PMID: 21917943 DOI: 10.1128/jvi.05322-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rift Valley fever (RVF) is a mosquito-borne zoonotic disease caused by a phlebovirus of the family Bunyaviridae, which affects humans and ruminants in Africa and the Middle East. RFV virus (RVFV) possesses a single-stranded tripartite RNA genome of negative/ambisense polarity. The S segment utilizes the ambisense strategy and codes for two proteins, the N nucleoprotein and the nonstructural NSs protein, in opposite orientations. The two open reading frames (ORFs) are separated by an intergenic region (IGR) highly conserved among strains and containing a motif, 5'-GCUGC-3', present on the genome and antigenome, which was shown previously to play a role in transcription termination (C. G. Albarino, B. H. Bird, and S. T. Nichol, J. Virol. 81:5246-5256, 2007; T. Ikegami, S. Won, C. J. Peters, and S. Makino, J. Virol. 81:8421-8438, 2007). Here, we created recombinant RVFVs with mutations or deletions in the IGR and showed that the substitution of the motif sequence by a series of five A's inactivated transcription termination at the wild-type site but allowed the transcriptase to recognize another site with the consensus sequence present in the opposite ORF. Similar situations were observed for mutants in which the motif was still present in the IGR but located close to the stop codon of the translated ORF, supporting a model in which transcription is coupled to translation and translocating ribosomes abrogate transcription termination. Our data also showed that the signal tolerated some sequence variations, since mutation into 5'-GCAGC-3' was functional, and 5'-GUAGC-3' is likely the signal for the termination of the 3' end of the L mRNA.
Collapse
|
37
|
Walter CT, Barr JN. Recent advances in the molecular and cellular biology of bunyaviruses. J Gen Virol 2011; 92:2467-2484. [PMID: 21865443 DOI: 10.1099/vir.0.035105-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The family Bunyaviridae of segmented, negative-stranded RNA viruses includes over 350 members that infect a bewildering variety of animals and plants. Many of these bunyaviruses are the causative agents of serious disease in their respective hosts, and are classified as emerging viruses because of their increased incidence in new populations and geographical locations throughout the world. Emerging bunyaviruses, such as Crimean-Congo hemorrhagic fever virus, tomato spotted wilt virus and Rift Valley fever virus, are currently attracting great interest due to migration of their arthropod vectors, a situation possibly linked to climate change. These and other examples of continued emergence suggest that bunyaviruses will probably continue to pose a sustained global threat to agricultural productivity, animal welfare and human health. The threat of emergence is particularly acute in light of the lack of effective preventative or therapeutic treatments for any of these viruses, making their study an important priority. This review presents recent advances in the understanding of the bunyavirus life cycle, including aspects of their molecular, cellular and structural biology. Whilst special emphasis is placed upon the emerging bunyaviruses, we also describe the extensive body of work involving model bunyaviruses, which have been the subject of major contributions to our overall understanding of this important group of viruses.
Collapse
Affiliation(s)
- Cheryl T Walter
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| | - John N Barr
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| |
Collapse
|
38
|
Abstract
Rift Valley fever virus (RVFV; family Bunyaviridae) is a clinically important, mosquito-borne pathogen of both livestock and humans, which is found mainly in sub-Saharan Africa and the Arabian Peninsula. RVFV has a trisegmented single-stranded RNA (ssRNA) genome. The L and M segments are negative sense and encode the L protein (viral polymerase) on the L segment and the virion glycoproteins Gn and Gc as well as two other proteins, NSm and 78K, on the M segment. The S segment uses an ambisense coding strategy to express the nucleocapsid protein, N, and the nonstructural protein, NSs. Both the NSs and NSm proteins are dispensable for virus growth in tissue culture. Using reverse genetics, we generated a recombinant virus, designated r2segMP12, containing a two-segmented genome in which the NSs coding sequence was replaced with that for the Gn and Gc precursor. Thus, r2segMP12 lacks an M segment, and although it was attenuated in comparison to the three-segmented parental virus in both mammalian and insect cell cultures, it was genetically stable over multiple passages. We further show that the virus can stably maintain an M-like RNA segment encoding the enhanced green fluorescent protein gene. The implications of these findings for RVFV genome packaging and the potential to develop multivalent live-attenuated vaccines are discussed.
Collapse
|
39
|
Hoenen T, Groseth A, de Kok-Mercado F, Kuhn JH, Wahl-Jensen V. Minigenomes, transcription and replication competent virus-like particles and beyond: reverse genetics systems for filoviruses and other negative stranded hemorrhagic fever viruses. Antiviral Res 2011; 91:195-208. [PMID: 21699921 DOI: 10.1016/j.antiviral.2011.06.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 06/02/2011] [Accepted: 06/08/2011] [Indexed: 12/27/2022]
Abstract
Reverse-genetics systems are powerful tools enabling researchers to study the replication cycle of RNA viruses, including filoviruses and other hemorrhagic fever viruses, as well as to discover new antivirals. They include full-length clone systems as well as a number of life cycle modeling systems. Full-length clone systems allow for the generation of infectious, recombinant viruses, and thus are an important tool for studying the virus replication cycle in its entirety. In contrast, life cycle modeling systems such as minigenome and transcription and replication competent virus-like particle systems can be used to simulate and dissect parts of the virus life cycle outside of containment facilities. Minigenome systems are used to model viral genome replication and transcription, whereas transcription and replication competent virus-like particle systems also model morphogenesis and budding as well as infection of target cells. As such, these modeling systems have tremendous potential to further the discovery and screening of new antivirals targeting hemorrhagic fever viruses. This review provides an overview of currently established reverse genetics systems for hemorrhagic fever-causing negative-sense RNA viruses, with a particular emphasis on filoviruses, and the potential application of these systems for antiviral research.
Collapse
Affiliation(s)
- Thomas Hoenen
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA; Department of Virology, Philipps University Marburg, Marburg, Germany
| | | | | | | | | |
Collapse
|
40
|
Piper ME, Sorenson DR, Gerrard SR. Efficient cellular release of Rift Valley fever virus requires genomic RNA. PLoS One 2011; 6:e18070. [PMID: 21445316 PMCID: PMC3061922 DOI: 10.1371/journal.pone.0018070] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 02/20/2011] [Indexed: 01/08/2023] Open
Abstract
The Rift Valley fever virus is responsible for periodic, explosive epizootics throughout sub-Saharan Africa. The development of therapeutics targeting this virus is difficult due to a limited understanding of the viral replicative cycle. Utilizing a virus-like particle system, we have established roles for each of the viral structural components in assembly, release, and virus infectivity. The envelope glycoprotein, Gn, was discovered to be necessary and sufficient for packaging of the genome, nucleocapsid protein and the RNA-dependent RNA polymerase into virus particles. Additionally, packaging of the genome was found to be necessary for the efficient release of particles, revealing a novel mechanism for the efficient generation of infectious virus. Our results identify possible conserved targets for development of anti-phlebovirus therapies.
Collapse
Affiliation(s)
- Mary E. Piper
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Dorothy R. Sorenson
- Microscopy and Image-Analysis Laboratory, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sonja R. Gerrard
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
41
|
Mechanism of tripartite RNA genome packaging in Rift Valley fever virus. Proc Natl Acad Sci U S A 2010; 108:804-9. [PMID: 21187405 DOI: 10.1073/pnas.1013155108] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Bunyaviridae family includes pathogens of medical and veterinary importance. Rift Valley fever virus (RVFV), a member in the Phlebovirus genus of the family Bunyaviridae, is endemic to sub-Saharan Africa and causes a mosquito-borne disease in ruminants and humans. Viruses in the family Bunyaviridae carry a tripartite, single-stranded, negative-sense RNA genome composed of L, M, and S RNAs. Little is known about how the three genomic RNA segments are copackaged to generate infectious bunyaviruses. We explored the mechanism that governs the copackaging of the three genomic RNAs into RVFV particles. The expression of viral structural proteins along with replicating S and M RNAs resulted in the copackaging of both RNAs into RVFV-like particles, while replacing M RNA with M1 RNA, lacking a part of the M RNA 5' UTR, abrogated the RNA copackaging. L RNA was efficiently packaged into virus particles released from cells supporting the replication of L, M, and S RNAs, and replacing M RNA with M1 RNA abolished the packaging of L RNA. Detailed analyses using various combinations of replicating viral RNAs suggest that M RNA alone or a coordinated function of M and S RNAs exerted efficient L RNA packaging either directly or indirectly. Collectively, these data are consistent with the possibility that specific intermolecular interactions among the three viral RNAs drive the copackaging of these RNAs to produce infectious RVFV.
Collapse
|
42
|
Pepin M, Bouloy M, Bird BH, Kemp A, Paweska J. Rift Valley fever virus(Bunyaviridae: Phlebovirus): an update on pathogenesis, molecular epidemiology, vectors, diagnostics and prevention. Vet Res 2010; 41:61. [PMID: 21188836 PMCID: PMC2896810 DOI: 10.1051/vetres/2010033] [Citation(s) in RCA: 426] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 05/21/2010] [Indexed: 12/24/2022] Open
Abstract
Rift Valley fever(RVF) virus is an arbovirus in the Bunyaviridae family that, from phylogenetic analysis, appears to have first emerged in the mid-19th century and was only identified at the beginning of the 1930's in the Rift Valley region of Kenya. Despite being an arbovirus with a relatively simple but temporally and geographically stable genome, this zoonotic virus has already demonstrated a real capacity for emerging in new territories, as exemplified by the outbreaks in Egypt (1977), Western Africa (1988) and the Arabian Peninsula (2000), or for re-emerging after long periods of silence as observed very recently in Kenya and South Africa. The presence of competent vectors in countries previously free of RVF, the high viral titres in viraemic animals and the global changes in climate, travel and trade all contribute to make this virus a threat that must not be neglected as the consequences of RVF are dramatic, both for human and animal health. In this review, we present the latest advances in RVF virus research. In spite of this renewed interest, aspects of the epidemiology of RVF virus are still not fully understood and safe, effective vaccines are still not freely available for protecting humans and livestock against the dramatic consequences of this virus.
Collapse
|
43
|
Bouloy M, Weber F. Molecular biology of rift valley Fever virus. Open Virol J 2010; 4:8-14. [PMID: 20517489 PMCID: PMC2878978 DOI: 10.2174/1874357901004020008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 11/25/2009] [Accepted: 11/25/2009] [Indexed: 12/25/2022] Open
Abstract
Rift Valley fever virus (RVFV) causes large outbreaks of acute febrile and often fatal illness among humans and domesticated animals in sub-saharan Africa and the Arabian peninsula. RVFV is a member of the family Bunyaviridae, genus Phlebovirus. Like all members of this large virus family, it contains a three-segmented genome of negative/ambisense strand RNA, packaged into viral nucleocapsid protein, and enveloped by a lipid bilayer containing two viral glycoproteins. During the past years, there was an increased interest in RVFV epidemiology, molecular biology, and virulence mechanisms. Here, we will try to provide an overview over the basic features of this significant pathogen, and review the latest developments in this highly active research field.
Collapse
Affiliation(s)
- Michele Bouloy
- Unite de Genetique Moleculaire des Bunyavirus, Institut Pasteur, Paris, France
| | - Friedemann Weber
- Department of Virology, University of Freiburg, D-79008 Freiburg, Germany
| |
Collapse
|
44
|
Bunyaviruses and the type I interferon system. Viruses 2009; 1:1003-21. [PMID: 21994579 PMCID: PMC3185543 DOI: 10.3390/v1031003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 11/11/2009] [Accepted: 11/20/2009] [Indexed: 12/15/2022] Open
Abstract
The family Bunyaviridae contains more than 350 viruses that are distributed throughout the world. Most members of the family are transmitted by arthopods, and several cause disease in man, domesticated animals and crop plants. Despite being recognized as an emerging threat, details of the virulence mechanisms employed by bunyaviruses are scant. In this article we summarise the information currently available on how these viruses are able to establish infection when confronted with a powerful antiviral interferon system.
Collapse
|
45
|
Bouloy M, Flick R. Reverse genetics technology for Rift Valley fever virus: current and future applications for the development of therapeutics and vaccines. Antiviral Res 2009; 84:101-18. [PMID: 19682499 PMCID: PMC2801414 DOI: 10.1016/j.antiviral.2009.08.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/22/2009] [Accepted: 08/06/2009] [Indexed: 11/30/2022]
Abstract
The advent of reverse genetics technology has revolutionized the study of RNA viruses, making it possible to manipulate their genomes and evaluate the effects of these changes on their biology and pathogenesis. The fundamental insights gleaned from reverse genetics-based studies over the last several years provide a new momentum for the development of designed therapies for the control and prevention of these viral pathogens. This review summarizes the successes and stumbling blocks in the development of reverse genetics technologies for Rift Valley fever virus and their application to the further dissection of its pathogenesis and the design of new therapeutics and safe and effective vaccines.
Collapse
Affiliation(s)
- Michele Bouloy
- Institut Pasteur, Unité de Génétique Moléculaire des Bunyavirus, 25 rue du Dr Roux, 75724 Paris Cedex, France
| | - Ramon Flick
- BioProtection Systems Corporation, 2901 South Loop Drive, Suite 3360, Ames, IA 50010-8646, USA
| |
Collapse
|
46
|
Habjan M, Penski N, Wagner V, Spiegel M, Overby AK, Kochs G, Huiskonen JT, Weber F. Efficient production of Rift Valley fever virus-like particles: The antiviral protein MxA can inhibit primary transcription of bunyaviruses. Virology 2009; 385:400-8. [PMID: 19155037 DOI: 10.1016/j.virol.2008.12.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 10/30/2008] [Accepted: 12/08/2008] [Indexed: 11/15/2022]
Abstract
Rift Valley fever virus (RVFV) is a highly pathogenic member of the family Bunyaviridae that needs to be handled under biosafety level (BSL) 3 conditions. Here, we describe reverse genetics systems to measure RVFV polymerase activity in mammalian cells and to generate virus-like particles (VLPs). Recombinant polymerase (L) and nucleocapsid protein (N), expressed together with a minireplicon RNA, formed transcriptionally active nucleocapsids. These could be packaged into VLPs by additional expression of viral glycoproteins. The VLPs resembled authentic virus particles and were able to infect new cells. After infection, VLP-associated nucleocapsids autonomously performed primary transcription, and co-expression of L and N in VLP-infected cells allowed subsequent replication and secondary transcription. Bunyaviruses are potently inhibited by a human interferon-induced protein, MxA. However, the affected step in the infection cycle is not entirely characterized. Using the VLP system, we demonstrate that MxA inhibits both primary and secondary transcriptions of RVFV. A set of infection assays distinguishing between virus attachment, entry, and subsequent RNA synthesis confirmed that MxA is able to target immediate early RNA synthesis of incoming RVFV particles. Thus, our reverse genetics systems are useful for dissecting individual steps of RVFV infection under non-BSL3 conditions.
Collapse
Affiliation(s)
- Matthias Habjan
- Department of Virology, University of Freiburg, D-79008 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|