1
|
Vlasiou MC, Nikolaou G, Spanoudes K, Mavrides DE. β-Tocotrienol and δ-Tocotrienol as Additional Inhibitors of the Main Protease of Feline Infectious Peritonitis Virus: An In Silico Analysis. Vet Sci 2024; 11:424. [PMID: 39330803 PMCID: PMC11435718 DOI: 10.3390/vetsci11090424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Feline infectious peritonitis (FIP) is a severe and invariably fatal disease affecting both domestic and wild felines with limited effective therapeutic options available. By considering the significant immunomodulatory effects of vitamin E observed in both animal and human models under physiological and pathological conditions, we have provided a full in silico investigation of vitamin E and related compounds and their effect on the crystal structure of feline infectious peritonitis virus 3C-like protease (FIPV-3CLpro). This work revealed the β-tocotrienol and δ-tocotrienol analogs as inhibitor candidates for this protein, suggesting their potential as possible drug compounds against FIP or their supplementary use with current medicines against this disease.
Collapse
Affiliation(s)
- Manos C Vlasiou
- Department of Veterinary Medicine, University of Nicosia School of Veterinary Medicine, 2414 Nicosia, Cyprus
| | - Georgios Nikolaou
- Department of Veterinary Medicine, University of Nicosia School of Veterinary Medicine, 2414 Nicosia, Cyprus
| | - Kyriakos Spanoudes
- Department of Veterinary Medicine, University of Nicosia School of Veterinary Medicine, 2414 Nicosia, Cyprus
| | - Daphne E Mavrides
- Department of Veterinary Medicine, University of Nicosia School of Veterinary Medicine, 2414 Nicosia, Cyprus
| |
Collapse
|
2
|
Lubin JH, Martinusen SG, Zardecki C, Olivas C, Bacorn M, Balogun M, Slaton EW, Wu AW, Sakeer S, Hudson BP, Denard CA, Burley SK, Khare SD. A comprehensive survey of coronaviral main protease active site diversity in 3D: Identifying and analyzing drug discovery targets in search of broad specificity inhibitors for the next coronavirus pandemic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526101. [PMID: 36778399 PMCID: PMC9915488 DOI: 10.1101/2023.01.30.526101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although the rapid development of therapeutic responses to combat SARS-CoV-2 represents a great human achievement, it also demonstrates untapped potential for advanced pandemic preparedness. Cross-species efficacy against multiple human coronaviruses by the main protease (MPro) inhibitor nirmatrelvir raises the question of its breadth of inhibition and our preparedness against future coronaviral threats. Herein, we describe sequence and structural analyses of 346 unique MPro enzymes from all coronaviruses represented in the NCBI Virus database. Cognate substrates of these representative proteases were inferred from their polyprotein sequences. We clustered MPro sequences based on sequence identity and AlphaFold2-predicted structures, showing approximate correspondence with known viral subspecies. Predicted structures of five representative MPros bound to their inferred cognate substrates showed high conservation in protease:substrate interaction modes, with some notable differences. Yeast-based proteolysis assays of the five representatives were able to confirm activity of three on inferred cognate substrates, and demonstrated that of the three, only one was effectively inhibited by nirmatrelvir. Our findings suggest that comprehensive preparedness against future potential coronaviral threats will require continued inhibitor development. Our methods may be applied to candidate coronaviral MPro inhibitors to evaluate in advance the breadth of their inhibition and identify target coronaviruses potentially meriting advanced development of alternative countermeasures.
Collapse
Affiliation(s)
- Joseph H. Lubin
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | | | - Christine Zardecki
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Cassandra Olivas
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- California State University Stanislaus, Turlock, California, USA
| | - Mickayla Bacorn
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- University Of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - MaryAgnes Balogun
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Morgan State University, Baltimore, Maryland, USA
| | - Ethan W. Slaton
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - Amy Wu Wu
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- University of Puerto Rico – Mayagüez, Mayagüez, Puerto Rico
| | - Sarah Sakeer
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Brian P. Hudson
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Carl A. Denard
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - Stephen K. Burley
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, La Jolla, California, USA
| | - Sagar D. Khare
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
3
|
Hu Q, Xiong Y, Zhu G, Zhang Y, Zhang Y, Huang P, Ge G. The SARS-CoV-2 main protease (M pro): Structure, function, and emerging therapies for COVID-19. MedComm (Beijing) 2022; 3:e151. [PMID: 35845352 PMCID: PMC9283855 DOI: 10.1002/mco2.151] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 12/21/2022] Open
Abstract
The main proteases (Mpro), also termed 3-chymotrypsin-like proteases (3CLpro), are a class of highly conserved cysteine hydrolases in β-coronaviruses. Increasing evidence has demonstrated that 3CLpros play an indispensable role in viral replication and have been recognized as key targets for preventing and treating coronavirus-caused infectious diseases, including COVID-19. This review is focused on the structural features and biological function of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease Mpro (also known as 3CLpro), as well as recent advances in discovering and developing SARS-CoV-2 3CLpro inhibitors. To better understand the characteristics of SARS-CoV-2 3CLpro inhibitors, the inhibition activities, inhibitory mechanisms, and key structural features of various 3CLpro inhibitors (including marketed drugs, peptidomimetic, and non-peptidomimetic synthetic compounds, as well as natural compounds and their derivatives) are summarized comprehensively. Meanwhile, the challenges in this field are highlighted, while future directions for designing and developing efficacious 3CLpro inhibitors as novel anti-coronavirus therapies are also proposed. Collectively, all information and knowledge presented here are very helpful for understanding the structural features and inhibitory mechanisms of SARS-CoV-2 3CLpro inhibitors, which offers new insights or inspiration to medicinal chemists for designing and developing more efficacious 3CLpro inhibitors as novel anti-coronavirus agents.
Collapse
Affiliation(s)
- Qing Hu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Clinical Pharmacy CenterCancer CenterDepartment of PharmacyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical College, HangzhouZhejiangChina
| | - Yuan Xiong
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Guang‐Hao Zhu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ya‐Ni Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yi‐Wen Zhang
- Clinical Pharmacy CenterCancer CenterDepartment of PharmacyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical College, HangzhouZhejiangChina
| | - Ping Huang
- Clinical Pharmacy CenterCancer CenterDepartment of PharmacyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical College, HangzhouZhejiangChina
| | - Guang‐Bo Ge
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
4
|
Development of Colorimetric Reverse Transcription Loop-Mediated Isothermal Amplification Assay for Detecting Feline Coronavirus. Animals (Basel) 2022; 12:ani12162075. [PMID: 36009664 PMCID: PMC9405184 DOI: 10.3390/ani12162075] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/30/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Feline coronavirus infecting domestic cats can cause feline infectious peritonitis (FIP), a fatal infectious disease. Several relevant clinical diagnoses and molecular methods are complicated and often ambiguous for veterinarians. In this work developed a rapid, sensitive, specific, and easy-to-visualize colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay with a novel LAMP primer set that has high specificity was developed using neutral red as an indicator dye. This proposed procedure could reliably detect FCoV RNA from effusion fluids comparable to the conventional PCR method. Considering these advantages, the RT-LAMP developed here has great potential on FIP-associated FCoV surveillance. Together with other sophisticated molecular diagnostic tools, this method can further be exploited in clinical laboratories to inspect suspected cats with effusive FIP. Abstract Feline infectious peritonitis (FIP) is a worldwide fatal disease caused by a mutant feline coronavirus (FCoV). Simple and efficient molecular detection methods are needed. Here, sensitive, specific, rapid, and reliable colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) was developed to detect the ORF1a/1b gene of FCoV from cats with suspected FIP using neutral red as an indicator. Novel LAMP primers were specifically designed based on the gene of interest. The isothermal assay could visually detect FCoV at 58 °C for 50 min. The RT-LAMP assay was highly specific and had no cross-reactivity with other related feline viruses. The detection limit of FCoV detection by RT-LAMP was 20 fg/µL. A blind clinical test (n = 81) of the developed RT-LAMP procedure was in good agreement with the conventional PCR method. In the light of its performance specificity, sensitivity, and easy visualization, this neutral-red-based RT-LAMP approach would be a fruitful alternative molecular diagnostic tool for veterinary inspection of FCoV when combined with nucleotide sequencing or specific PCR to affirm the highly virulent FIP-associated FCoV.
Collapse
|
5
|
Katre SG, Asnani AJ, Pratyush K, Sakharkar NG, Bhope AG, Sawarkar KT, Nimbekar VS. Review on development of potential inhibitors of SARS-CoV-2 main protease (M Pro). FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022; 8:36. [PMID: 35756354 PMCID: PMC9209839 DOI: 10.1186/s43094-022-00423-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 06/03/2022] [Indexed: 11/10/2022] Open
Abstract
Background The etiological agent for the coronavirus illness outbreak in 2019-2020 is a novel coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (COVID-19), whereas coronavirus disease pandemic of 2019 (COVID-19) has compelled the implementation of novel therapeutic options. Main body of the abstract There are currently no targeted therapeutic medicines for this condition, and effective treatment options are quite restricted; however, new therapeutic candidates targeting the viral replication cycle are being investigated. The primary protease of the severe acute respiratory syndrome coronavirus 2 virus is a major target for therapeutic development (MPro). Severe acute respiratory syndrome coronavirus 2, severe acute respiratory syndrome coronavirus, and Middle East respiratory syndrome coronavirus (MERS-CoV) all seem to have a structurally conserved substrate-binding domain that can be used to develop novel protease inhibitors. Short conclusion With the recent publication of the X-ray crystal structure of the severe acute respiratory syndrome coronavirus 2 Mm, virtual and in vitro screening investigations to find MPro inhibitors are fast progressing. The focus of this review is on recent advancements in the quest for small-molecule inhibitors of the severe acute respiratory syndrome coronavirus 2 main protease.
Collapse
Affiliation(s)
- Soumya Gulab Katre
- Department of Pharmaceutical Chemistry, Priyadarshini J L College of Pharmacy, Nagpur, MH 440016 India
| | - Alpana Jagdish Asnani
- Department of Pharmaceutical Chemistry, Priyadarshini J L College of Pharmacy, Nagpur, MH 440016 India
| | - Kumar Pratyush
- Department of Pharmaceutical Chemistry, Priyadarshini J L College of Pharmacy, Nagpur, MH 440016 India
| | | | - Ashwini Gajanan Bhope
- Department of Pharmaceutical Chemistry, Priyadarshini J L College of Pharmacy, Nagpur, MH 440016 India
| | - Kanchan Tekram Sawarkar
- Department of Pharmaceutical Chemistry, Priyadarshini J L College of Pharmacy, Nagpur, MH 440016 India
| | - Vaibhav Santosh Nimbekar
- Department of Pharmaceutical Chemistry, Priyadarshini J L College of Pharmacy, Nagpur, MH 440016 India
| |
Collapse
|
6
|
Wang F, Chen C, Wang Z, Han X, Shi P, Zhou K, Liu X, Xiao Y, Cai Y, Huang J, Zhang L, Yang H. The Structure of the Porcine Deltacoronavirus Main Protease Reveals a Conserved Target for the Design of Antivirals. Viruses 2022; 14:v14030486. [PMID: 35336895 PMCID: PMC8949103 DOI: 10.3390/v14030486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
The existing zoonotic coronaviruses (CoVs) and viral genetic variants are important microbiological pathogens that cause severe disease in humans and animals. Currently, no effective broad-spectrum antiviral drugs against existing and emerging CoVs are available. The CoV main protease (Mpro) plays an essential role in viral replication, making it an ideal target for drug development. However, the structure of the Deltacoronavirus Mpro is still unavailable. Porcine deltacoronavirus (PDCoV) is a novel CoV that belongs to the genus Deltacoronavirus and causes atrophic enteritis, severe diarrhea, vomiting and dehydration in pigs. Here, we determined the structure of PDCoV Mpro complexed with a Michael acceptor inhibitor. Structural comparison showed that the backbone of PDCoV Mpro is similar to those of alpha-, beta- and gamma-CoV Mpros. The substrate-binding pocket of Mpro is well conserved in the subfamily Coronavirinae. In addition, we also observed that Mpros from the same genus adopted a similar conformation. Furthermore, the structure of PDCoV Mpro in complex with a Michael acceptor inhibitor revealed the mechanism of its inhibition of PDCoV Mpro. Our results provide a basis for the development of broad-spectrum antivirals against PDCoV and other CoVs.
Collapse
Affiliation(s)
- Fenghua Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (F.W.); (C.C.); (Z.W.); (X.H.); (P.S.); (Y.X.); (J.H.)
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China; (K.Z.); (X.L.); (Y.C.)
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Cheng Chen
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (F.W.); (C.C.); (Z.W.); (X.H.); (P.S.); (Y.X.); (J.H.)
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China; (K.Z.); (X.L.); (Y.C.)
| | - Zefang Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (F.W.); (C.C.); (Z.W.); (X.H.); (P.S.); (Y.X.); (J.H.)
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China; (K.Z.); (X.L.); (Y.C.)
| | - Xu Han
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (F.W.); (C.C.); (Z.W.); (X.H.); (P.S.); (Y.X.); (J.H.)
| | - Peidian Shi
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (F.W.); (C.C.); (Z.W.); (X.H.); (P.S.); (Y.X.); (J.H.)
| | - Kaixuan Zhou
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China; (K.Z.); (X.L.); (Y.C.)
| | - Xiaomei Liu
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China; (K.Z.); (X.L.); (Y.C.)
| | - Yunjie Xiao
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (F.W.); (C.C.); (Z.W.); (X.H.); (P.S.); (Y.X.); (J.H.)
| | - Yan Cai
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China; (K.Z.); (X.L.); (Y.C.)
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (F.W.); (C.C.); (Z.W.); (X.H.); (P.S.); (Y.X.); (J.H.)
| | - Lei Zhang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (F.W.); (C.C.); (Z.W.); (X.H.); (P.S.); (Y.X.); (J.H.)
- Correspondence: (L.Z.); (H.Y.)
| | - Haitao Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (F.W.); (C.C.); (Z.W.); (X.H.); (P.S.); (Y.X.); (J.H.)
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China; (K.Z.); (X.L.); (Y.C.)
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- Correspondence: (L.Z.); (H.Y.)
| |
Collapse
|
7
|
Lu J, Chen SA, Khan MB, Brassard R, Arutyunova E, Lamer T, Vuong W, Fischer C, Young HS, Vederas JC, Lemieux MJ. Crystallization of Feline Coronavirus M pro With GC376 Reveals Mechanism of Inhibition. Front Chem 2022; 10:852210. [PMID: 35281564 PMCID: PMC8907848 DOI: 10.3389/fchem.2022.852210] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/01/2022] [Indexed: 12/28/2022] Open
Abstract
Coronaviruses infect a variety of hosts in the animal kingdom, and while each virus is taxonomically different, they all infect their host via the same mechanism. The coronavirus main protease (Mpro, also called 3CLpro), is an attractive target for drug development due to its essential role in mediating viral replication and transcription. An Mpro inhibitor, GC376, has been shown to treat feline infectious peritonitis (FIP), a fatal infection in cats caused by internal mutations in the feline enteric coronavirus (FECV). Recently, our lab demonstrated that the feline drug, GC373, and prodrug, GC376, are potent inhibitors of SARS-CoV-2 Mpro and solved the structures in complex with the drugs; however, no crystal structures of the FIP virus (FIPV) Mpro with the feline drugs have been published so far. Here, we present crystal structures of FIPV Mpro-GC373/GC376 complexes, revealing the inhibitors covalently bound to Cys144 in the active site, similar to SARS-CoV-2 Mpro. Additionally, GC376 has a higher affinity for FIPV Mpro with lower nanomolar Ki values compared to SARS-CoV and SARS-CoV-2 Mpro. We also show that improved derivatives of GC376 have higher potency for FIPV Mpro. Since GC373 and GC376 represent strong starting points for structure-guided drug design, determining the crystal structures of FIPV Mpro with these inhibitors are important steps in drug optimization and structure-based broad-spectrum antiviral drug discovery.
Collapse
Affiliation(s)
- Jimmy Lu
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Sizhu Amelia Chen
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | | | - Raelynn Brassard
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Elena Arutyunova
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Tess Lamer
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Wayne Vuong
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Conrad Fischer
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Howard S. Young
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - John C. Vederas
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - M. Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
Ungarala R, Munikumar M, Sinha SN, Kumar D, Sunder RS, Challa S. Assessment of Antioxidant, Immunomodulatory Activity of Oxidised Epigallocatechin-3-Gallate (Green Tea Polyphenol) and Its Action on the Main Protease of SARS-CoV-2—An In Vitro and In Silico Approach. Antioxidants (Basel) 2022; 11:antiox11020294. [PMID: 35204178 PMCID: PMC8868081 DOI: 10.3390/antiox11020294] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Owing to the instability of Epigallocatechin Gallate (EGCG), it may undergo auto-oxidation and form oxidised products or dimers. In the present study, we aimed to evaluate the therapeutic effects, including antioxidation and immunomodulatory action, of the Oxidised Epigallocatechin Gallate (O-EGCG) as compared to native EGCG and the action of these compounds on main protease (Mpro) docking against SARS-CoV-2. HCT-116 (Human Colon Cancer) cell lines were used to estimate the total antioxidant capacity and lipid peroxidation levels and pro-inflammatory markers (human IL-6, IL-1β, TNF-α). Further, molecular docking analysis was performed by AutoDock and visualised in Discovery studio. Improved antioxidant capacity of O-EGCG was observed, and there was a significant decrease in the inflammatory markers (IL-1β, IL-6, and TNF-α) when O-EGCG was applied as compared to EGCG. The O-EGCG was shown to be strongly associated with the highest docking score and active site residues of IL-1, IL-6, and TNF- α, as well as the Mpro of SARS-CoV-2, according to in silico approach. The in vitro and in silico analyses indicate an improved therapeutic action of the oxidised form of EGCG. The effective inhibitory action of O-EGCG against SARS-CoV-2 suggests further exploration of the compound against COVID-19 and its efficacy. However, in vivo studies and understanding of the mechanism of action of O-EGCG may yield a better opinion on the use of O-EGCG and future human clinical trials.
Collapse
Affiliation(s)
- Ramakrishna Ungarala
- Food Safety Division, ICMR- National Institute of Nutrition, Tarnaka, Hyderabad, Telangana 500007, India; (R.U.); (D.K.)
| | - Manne Munikumar
- Clinical Division, ICMR- National Institute of Nutrition, Tarnaka, Hyderabad, Telangana 500007, India;
| | - Sukesh Narayan Sinha
- Food Safety Division, ICMR- National Institute of Nutrition, Tarnaka, Hyderabad, Telangana 500007, India; (R.U.); (D.K.)
- Correspondence: ; Tel.: +91-7032426802
| | - Dileshwar Kumar
- Food Safety Division, ICMR- National Institute of Nutrition, Tarnaka, Hyderabad, Telangana 500007, India; (R.U.); (D.K.)
| | - R. Shyam Sunder
- University College of Technology, Osmania University, Tarnaka, Hyderabad, Telangana 500007, India;
| | - Suresh Challa
- Cell Biology Division, ICMR- National Institute of Nutrition, Tarnaka, Hyderabad, Telangana 500007, India;
| |
Collapse
|
9
|
Cereda G, Ciappolino V, Boscutti A, Cantù F, Enrico P, Oldani L, Delvecchio G, Brambilla P. Zinc as a Neuroprotective Nutrient for COVID-19-Related Neuropsychiatric Manifestations: A Literature Review. Adv Nutr 2021; 13:66-79. [PMID: 34634109 PMCID: PMC8524565 DOI: 10.1093/advances/nmab110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/25/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
The outbreak of the pandemic associated with Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) led researchers to find new potential treatments, including nonpharmacological molecules such as zinc (Zn2+). Specifically, the use of Zn2+ as a therapy for SARS-CoV-2 infection is based on several findings: 1) the possible role of the anti-inflammatory activity of Zn2+ on the aberrant inflammatory response triggered by COronaVIrus Disease 19 (COVID-19), 2) properties of Zn2+ in modulating the competitive balance between the host and the invading pathogens, and 3) the antiviral activity of Zn2+ on a number of pathogens, including coronaviruses. Furthermore, Zn2+ has been found to play a central role in regulating brain functioning and many disorders have been associated with Zn2+ deficiency, including neurodegenerative diseases, psychiatric disorders, and brain injuries. Within this context, we carried out a narrative review to provide an overview of the evidence relating to the effects of Zn2+ on the immune and nervous systems, and the therapeutic use of such micronutrients in both neurological and infective disorders, with the final goal of elucidating the possible use of Zn2+ as a preventive or therapeutic intervention in COVID-19. Overall, the results from the available evidence showed that, owing to its neuroprotective properties, Zn2+ supplementation could be effective not only on COVID-19-related symptoms but also on virus replication, as well as on COVID-19-related inflammation and neurological damage. However, further clinical trials evaluating the efficacy of Zn2+ as a nonpharmacological treatment of COVID-19 are required to achieve an overall improvement in outcome and prognosis.
Collapse
Affiliation(s)
- Guido Cereda
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Valentina Ciappolino
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Boscutti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Filippo Cantù
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Paolo Enrico
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Lucio Oldani
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | | |
Collapse
|
10
|
Nicholls RA, Wojdyr M, Joosten RP, Catapano L, Long F, Fischer M, Emsley P, Murshudov GN. The missing link: covalent linkages in structural models. Acta Crystallogr D Struct Biol 2021; 77:727-745. [PMID: 34076588 PMCID: PMC8171067 DOI: 10.1107/s2059798321003934] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/13/2021] [Indexed: 11/10/2022] Open
Abstract
Covalent linkages between constituent blocks of macromolecules and ligands have been subject to inconsistent treatment during the model-building, refinement and deposition process. This may stem from a number of sources, including difficulties with initially detecting the covalent linkage, identifying the correct chemistry, obtaining an appropriate restraint dictionary and ensuring its correct application. The analysis presented herein assesses the extent of problems involving covalent linkages in the Protein Data Bank (PDB). Not only will this facilitate the remediation of existing models, but also, more importantly, it will inform and thus improve the quality of future linkages. By considering linkages of known type in the CCP4 Monomer Library (CCP4-ML), failure to model a covalent linkage is identified to result in inaccurate (systematically longer) interatomic distances. Scanning the PDB for proximal atom pairs that do not have a corresponding type in the CCP4-ML reveals a large number of commonly occurring types of unannotated potential linkages; in general, these may or may not be covalently linked. Manual consideration of the most commonly occurring cases identifies a number of genuine classes of covalent linkages. The recent expansion of the CCP4-ML is discussed, which has involved the addition of over 16 000 and the replacement of over 11 000 component dictionaries using AceDRG. As part of this effort, the CCP4-ML has also been extended using AceDRG link dictionaries for the aforementioned linkage types identified in this analysis. This will facilitate the identification of such linkage types in future modelling efforts, whilst concurrently easing the process involved in their application. The need for a universal standard for maintaining link records corresponding to covalent linkages, and references to the associated dictionaries used during modelling and refinement, following deposition to the PDB is emphasized. The importance of correctly modelling covalent linkages is demonstrated using a case study, which involves the covalent linkage of an inhibitor to the main protease in various viral species, including SARS-CoV-2. This example demonstrates the importance of properly modelling covalent linkages using a comprehensive restraint dictionary, as opposed to just using a single interatomic distance restraint or failing to model the covalent linkage at all.
Collapse
Affiliation(s)
- Robert A. Nicholls
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Marcin Wojdyr
- Global Phasing Limited, Sheraton House, Castle Park, Cambridge CB3 0AX, United Kingdom
| | - Robbie P. Joosten
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, The Netherlands
| | - Lucrezia Catapano
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, United Kingdom
| | - Fei Long
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Marcus Fischer
- Chemical Biology and Therapeutics and Structural Biology, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Paul Emsley
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Garib N. Murshudov
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
11
|
Banerjee R, Perera L, Tillekeratne LMV. Potential SARS-CoV-2 main protease inhibitors. Drug Discov Today 2021; 26:804-816. [PMID: 33309533 PMCID: PMC7724992 DOI: 10.1016/j.drudis.2020.12.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/16/2020] [Accepted: 12/03/2020] [Indexed: 01/12/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has prompted an urgent need for new treatment strategies. No target-specific drugs are currently available for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but new drug candidates targeting the viral replication cycle are being explored. A prime target of drug-discovery efforts is the SARS-CoV-2 main protease (Mpro). The main proteases of different coronaviruses, including SARS-CoV-2, SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), share a structurally conserved substrate-binding region that can be exploited to design new protease inhibitors. With the recent reporting of the X-ray crystal structure of the SARS-CoV-2 Mpro, studies to discover Mpro inhibitors using both virtual and in vitro screening are progressing rapidly. This review focusses on the recent developments in the search for small-molecule inhibitors targeting the SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Riddhidev Banerjee
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Lalith Perera
- Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
| | - L M Viranga Tillekeratne
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
12
|
Tekpinar M, Yildirim A. Impact of dimerization and N3 binding on molecular dynamics of SARS-CoV and SARS-CoV-2 main proteases. J Biomol Struct Dyn 2021; 40:6243-6254. [PMID: 33525993 PMCID: PMC7869440 DOI: 10.1080/07391102.2021.1880481] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SARS-CoV-2 main protease is one of the major targets in drug development efforts against Covid-19. Even though several structures were reported to date, its dynamics is not understood well. In particular, impact of dimerization and ligand binding on the dynamics is an important issue to investigate. In this study, we performed molecular dynamics simulations of SARS-CoV and SARS-CoV-2 main proteases to investigate influence of dimerization on the dynamics by modeling monomeric and dimeric apo and holo forms. The dimerization causes an organization of the interdomain dynamics as well as some local structural changes. Moreover, we investigated impact of a peptide mimetic (N3) on the dynamics of SARS-CoV and SARS-CoV-2 Mpro. The ligand binding to the dimeric forms causes some key local changes at the dimer interface and it causes an allosteric interaction between the active sites of two protomers. Our results support the idea that only one protomer is active on SARS-CoV-2 due to this allosteric interaction. Additionally, we analyzed the molecular dynamics trajectories from graph theoretical perspective and found that the most influential residues – as measured by eigenvector centrality – are a group of residues in active site and dimeric interface of the protease. This study may form a bridge between what we know about the dynamics of SARS-CoV and SARS-CoV-2 Mpro. We think that enlightening allosteric communication of the active sites and the role of dimerization in SARS-CoV-2 Mpro can contribute to development of novel drugs against this global health problem as well as other similar proteases. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Mustafa Tekpinar
- Unit of Structural Dynamics of Biological Macromolecules, Pasteur Institute, UMR 3528 CNRS, Paris, France
| | | |
Collapse
|
13
|
Jin Z, Wang H, Duan Y, Yang H. The main protease and RNA-dependent RNA polymerase are two prime targets for SARS-CoV-2. Biochem Biophys Res Commun 2021; 538:63-71. [PMID: 33288200 PMCID: PMC7680044 DOI: 10.1016/j.bbrc.2020.10.091] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 01/18/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), poses an unprecedented global health crisis. It is particularly urgent to develop clinically effective therapies to contain the pandemic. The main protease (Mpro) and the RNA-dependent RNA polymerase (RdRP), which are responsible for the viral polyprotein proteolytic process and viral genome replication and transcription, respectively, are two attractive drug targets for SARS-CoV-2. This review summarizes up-to-date progress in the structural and pharmacological aspects of those two key targets above. Different classes of inhibitors individually targeting Mpro and RdRP are discussed, which could promote drug development to treat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Zhenming Jin
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China,School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Haofeng Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China,School of Life Sciences, Tianjin University, Tianjin, China,Corresponding author. Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Yinkai Duan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China,Corresponding author
| |
Collapse
|
14
|
Xiong M, Su H, Zhao W, Xie H, Shao Q, Xu Y. What coronavirus 3C-like protease tells us: From structure, substrate selectivity, to inhibitor design. Med Res Rev 2021; 41:1965-1998. [PMID: 33460213 PMCID: PMC8014231 DOI: 10.1002/med.21783] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/17/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
The emergence of a variety of coronaviruses (CoVs) in the last decades has posed huge threats to human health. Especially, the ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to more than 70 million infections and over 1.6 million of deaths worldwide in the past few months. None of the efficacious antiviral agents against human CoVs have been approved yet. 3C-like protease (3CLpro ) is an attractive target for antiviral intervention due to its essential role in processing polyproteins translated from viral RNA, and its conserved structural feature and substrate specificity among CoVs in spite of the sequence variation. This review focuses on all available crystal structures of 12 CoV 3CLpro s and their inhibitors, and intends to provide a comprehensive understanding of this protease from multiple aspects including its structural features, substrate specificity, inhibitor binding modes, and more importantly, to recapitulate the similarity and diversity among different CoV 3CLpro s and the structure-activity relationship of various types of inhibitors. Such an attempt could gain a deep insight into the inhibition mechanisms and drive future structure-based drug discovery targeting 3CLpro s.
Collapse
Affiliation(s)
- Muya Xiong
- CAS Key Laboratory of Receptor Research
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Haixia Su
- CAS Key Laboratory of Receptor Research
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenfeng Zhao
- CAS Key Laboratory of Receptor Research
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hang Xie
- CAS Key Laboratory of Receptor Research
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Shao
- CAS Key Laboratory of Receptor Research
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yechun Xu
- CAS Key Laboratory of Receptor Research
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
15
|
El‐Baba TJ, Lutomski CA, Kantsadi AL, Malla TR, John T, Mikhailov V, Bolla JR, Schofield CJ, Zitzmann N, Vakonakis I, Robinson CV. Allosteric Inhibition of the SARS-CoV-2 Main Protease: Insights from Mass Spectrometry Based Assays*. Angew Chem Int Ed Engl 2020; 59:23544-23548. [PMID: 32841477 PMCID: PMC7461284 DOI: 10.1002/anie.202010316] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/20/2020] [Indexed: 12/14/2022]
Abstract
The SARS-CoV-2 main protease (Mpro ) cleaves along the two viral polypeptides to release non-structural proteins required for viral replication. MPro is an attractive target for antiviral therapies to combat the coronavirus-2019 disease. Here, we used native mass spectrometry to characterize the functional unit of Mpro . Analysis of the monomer/dimer equilibria reveals a dissociation constant of Kd =0.14±0.03 μM, indicating MPro has a strong preference to dimerize in solution. We characterized substrate turnover rates by following temporal changes in the enzyme-substrate complexes, and screened small molecules, that bind distant from the active site, for their ability to modulate activity. These compounds, including one proposed to disrupt the dimer, slow the rate of substrate processing by ≈35 %. This information, together with analysis of the x-ray crystal structures, provides a starting point for the development of more potent molecules that allosterically regulate MPro activity.
Collapse
Affiliation(s)
- Tarick J. El‐Baba
- Physical and Theoretical Chemistry LaboratoryUniversity of OxfordSouth Parks Rd.OX1 3QZOxfordUK
| | - Corinne A. Lutomski
- Physical and Theoretical Chemistry LaboratoryUniversity of OxfordSouth Parks Rd.OX1 3QZOxfordUK
| | | | - Tika R. Malla
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RdOX1 3TAOxfordUK
| | - Tobias John
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RdOX1 3TAOxfordUK
| | - Victor Mikhailov
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RdOX1 3TAOxfordUK
| | - Jani R. Bolla
- Physical and Theoretical Chemistry LaboratoryUniversity of OxfordSouth Parks Rd.OX1 3QZOxfordUK
| | | | - Nicole Zitzmann
- Department of BiochemistryUniversity of OxfordSouth Parks Rd.OX1 3QUOxfordUK
| | - Ioannis Vakonakis
- Department of BiochemistryUniversity of OxfordSouth Parks Rd.OX1 3QUOxfordUK
| | - Carol V. Robinson
- Physical and Theoretical Chemistry LaboratoryUniversity of OxfordSouth Parks Rd.OX1 3QZOxfordUK
| |
Collapse
|
16
|
Cui W, Yang K, Yang H. Recent Progress in the Drug Development Targeting SARS-CoV-2 Main Protease as Treatment for COVID-19. Front Mol Biosci 2020; 7:616341. [PMID: 33344509 PMCID: PMC7746807 DOI: 10.3389/fmolb.2020.616341] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/17/2020] [Indexed: 12/28/2022] Open
Abstract
The sudden outbreak of 2019 novel coronavirus (2019-nCoV, later named SARS-CoV-2) rapidly turned into an unprecedented pandemic of coronavirus disease 2019 (COVID-19). This global healthcare emergency marked the third occurrence of a deadly coronavirus (CoV) into the human society after entering the new millennium, which overwhelmed the worldwide healthcare system and affected the global economy. However, therapeutic options for COVID-19 are still very limited. Developing drugs targeting vital proteins in viral life cycle is a feasible approach to overcome this dilemma. Main protease (Mpro) plays a dominant role in processing CoV-encoded polyproteins which mediate the assembly of replication-transcription machinery and is thus recognized as an ideal antiviral target. Here we summarize the recent progress in the discovery of anti-SARS-CoV-2 agents against Mpro. Combining structural study, virtual screen, and experimental screen, numerous therapeutic candidates including repurposed drugs and ab initio designed compounds have been proposed. Such collaborative effort from the scientific community would accelerate the pace of developing efficacious treatment for COVID-19.
Collapse
Affiliation(s)
- Wen Cui
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.,School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Kailin Yang
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, United States
| | - Haitao Yang
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
17
|
Abu-Saleh AAAA, Awad IE, Yadav A, Poirier RA. Discovery of potent inhibitors for SARS-CoV-2's main protease by ligand-based/structure-based virtual screening, MD simulations, and binding energy calculations. Phys Chem Chem Phys 2020; 22:23099-23106. [PMID: 33025993 DOI: 10.1039/d0cp04326e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
COVID-19 has caused lockdowns all over the world in early 2020, as a global pandemic. Both theoretical and experimental efforts are seeking to find an effective treatment to suppress the virus. In silico drug design can play a vital role in identifying promising drug candidates against COVID-19. Herein, we focused on the main protease of SARS-CoV-2 that has crucial biological functions in the virus. We performed a ligand-based virtual screening followed by a docking screening for testing approved drugs and bioactive compounds listed in the DrugBank and ChEMBL databases. The top 8 docking results were advanced to all-atom MD simulations to study the relative stability of the protein-ligand interactions. MD simulations support that the catalytic residue, His41, has a neutral side chain with a protonated delta position. An absolute binding energy (ΔG) of -42 kJ mol-1 for the protein-ligand (Mpro-N3) complex has been calculated using the potential-of-mean-force (geometrical) approach. Furthermore, the relative binding energies were computed for the top docking results. Our results suggest several promising approved and bioactive inhibitors of SARS-CoV-2 Mpro as follows: a bioactive compound, ChEMBL275592, which has the best MM/GBSA binding energy; the second-best compound, montelukast, is an approved drug used in the treatment of asthma and allergic rhinitis; the third-best compound, ChEMBL288347, is a bioactive compound. Bromocriptine and saquinavir are other approved drugs that also demonstrate stability in the active site of Mpro, albeit their relative binding energies are low compared to the N3 inhibitor. This study provides useful insights into de novo protein design and novel inhibitor development, which could reduce the cost and time required for the discovery of a potent drug to combat SARS-CoV-2.
Collapse
|
18
|
El‐Baba TJ, Lutomski CA, Kantsadi AL, Malla TR, John T, Mikhailov V, Bolla JR, Schofield CJ, Zitzmann N, Vakonakis I, Robinson CV. Allosteric Inhibition of the SARS‐CoV‐2 Main Protease: Insights from Mass Spectrometry Based Assays**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Tarick J. El‐Baba
- Physical and Theoretical Chemistry Laboratory University of Oxford South Parks Rd. OX1 3QZ Oxford UK
| | - Corinne A. Lutomski
- Physical and Theoretical Chemistry Laboratory University of Oxford South Parks Rd. OX1 3QZ Oxford UK
| | | | - Tika R. Malla
- Chemistry Research Laboratory University of Oxford 12 Mansfield Rd OX1 3TA Oxford UK
| | - Tobias John
- Chemistry Research Laboratory University of Oxford 12 Mansfield Rd OX1 3TA Oxford UK
| | - Victor Mikhailov
- Chemistry Research Laboratory University of Oxford 12 Mansfield Rd OX1 3TA Oxford UK
| | - Jani R. Bolla
- Physical and Theoretical Chemistry Laboratory University of Oxford South Parks Rd. OX1 3QZ Oxford UK
| | | | - Nicole Zitzmann
- Department of Biochemistry University of Oxford South Parks Rd. OX1 3QU Oxford UK
| | - Ioannis Vakonakis
- Department of Biochemistry University of Oxford South Parks Rd. OX1 3QU Oxford UK
| | - Carol V. Robinson
- Physical and Theoretical Chemistry Laboratory University of Oxford South Parks Rd. OX1 3QZ Oxford UK
| |
Collapse
|
19
|
Theerawatanasirikul S, Kuo CJ, Phecharat N, Chootip J, Lekcharoensuk C, Lekcharoensuk P. Structural-based virtual screening and in vitro assays for small molecules inhibiting the feline coronavirus 3CL protease as a surrogate platform for coronaviruses. Antiviral Res 2020; 182:104927. [PMID: 32910955 PMCID: PMC7476565 DOI: 10.1016/j.antiviral.2020.104927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Feline infectious peritonitis (FIP) which is caused by feline infectious peritonitis virus (FIPV), a variant of feline coronavirus (FCoV), is a member of family Coronaviridae, together with severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2. So far, neither effective vaccines nor approved antiviral therapeutics are currently available for the treatment of FIPV infection. Both human and animal CoVs shares similar functional proteins, particularly the 3CL protease (3CLpro), which plays the pivotal role on viral replication. We investigated the potential drug-liked compounds and their inhibitory interaction on the 3CLpro active sites of CoVs by the structural-bases virtual screening. Fluorescence resonance energy transfer (FRET) assay revealed that three out of twenty-eight compounds could hamper FIPV 3CLpro activities with IC50 of 3.57 ± 0.36 μM to 25.90 ± 1.40 μM, and Ki values of 2.04 ± 0.08 to 15.21 ± 1.76 μM, respectively. Evaluation of antiviral activity using cell-based assay showed that NSC629301 and NSC71097 could strongly inhibit the cytopathic effect and also reduced replication of FIPV in CRFK cells in all examined conditions with the low range of EC50 (6.11 ± 1.90 to 7.75 ± 0.48 μM and 1.99 ± 0.30 to 4.03 ± 0.60 μM, respectively), less than those of ribavirin and lopinavir. Analysis of FIPV 3CLpro-ligand interaction demonstrated that the selected compounds reacted to the crucial residues (His41 and Cys144) of catalytic dyad. Our investigations provide a fundamental knowledge for the further development of antiviral agents and increase the number of anti-CoV agent pools for feline coronavirus and other related CoVs. Virtual screening and molecular docking revealed three lead compounds bound to FIPV 3CLpro active site. The 3D structures of 3CLpro of coronaviruses including SARS-CoV-2 are highly conserved. These compounds showed inhibitory effects on the proteases of FIPV, PEDV, SARS-CoV and SARS-CoV-2. Their antiviral activities are better than Ribavirin and Lopinavir while comparable to GC376.
Collapse
Affiliation(s)
- Sirin Theerawatanasirikul
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Chih Jung Kuo
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Nanthawan Phecharat
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Jullada Chootip
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Chalermpol Lekcharoensuk
- Department of Companion Animals Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Porntippa Lekcharoensuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand; Center of Advanced Studies in Agriculture and Food, KU Institute, Thailand.
| |
Collapse
|
20
|
Rao P, Shukla A, Parmar P, Rawal RM, Patel B, Saraf M, Goswami D. Reckoning a fungal metabolite, Pyranonigrin A as a potential Main protease (M pro) inhibitor of novel SARS-CoV-2 virus identified using docking and molecular dynamics simulation. Biophys Chem 2020; 264:106425. [PMID: 32663708 PMCID: PMC7836334 DOI: 10.1016/j.bpc.2020.106425] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/21/2020] [Accepted: 06/21/2020] [Indexed: 11/25/2022]
Abstract
The novel SARS-CoV-2 is the etiological agent causing the Coronavirus disease 2019 (COVID-19), which continues to become an inevitable pandemic outbreak. Over a short span of time, the structures of therapeutic target proteins for SARS-CoV-2 were identified based on the homology modelled structure of similar SARS-CoV transmission of 2003. Since the onset of the disease, the research community has been looking for a potential drug lead. Out of all the known resolved structures related to SARS-CoV, Main protease (Mpro) is considered an attractive anti-viral drug target on the grounds of its role in viral replication and probable non-interactive competency to bind to any viral host protein. To the best of our knowledge, till date only one compound has been identified and tested in-vivo as a potent inhibitor of Mpro protein, addressed as N3 (PubChem Compound CID: 6323191) and is known to bind irreversibly to Mpro suppressing its activity. Using computational approach, we intend to identify a probable natural fungal metabolite to interact and inhibit Mpro. After screening various small molecules for molecular docking and dynamics simulation, we propose Pyranonigrin A, a secondary fungal metabolite to possess potent inhibitory potential against the Main protease (Mpro) expressed in SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Priyashi Rao
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Arpit Shukla
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Paritosh Parmar
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Rakesh M Rawal
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Baldev Patel
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Meenu Saraf
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
21
|
Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, Duan Y, Yu J, Wang L, Yang K, Liu F, Jiang R, Yang X, You T, Liu X, Yang X, Bai F, Liu H, Liu X, Guddat LW, Xu W, Xiao G, Qin C, Shi Z, Jiang H, Rao Z, Yang H. Structure of M pro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020. [PMID: 32272481 DOI: 10.1016/j.dyepig.2018.04.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
A new coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the aetiological agent responsible for the 2019-2020 viral pneumonia outbreak of coronavirus disease 2019 (COVID-19)1-4. Currently, there are no targeted therapeutic agents for the treatment of this disease, and effective treatment options remain very limited. Here we describe the results of a programme that aimed to rapidly discover lead compounds for clinical use, by combining structure-assisted drug design, virtual drug screening and high-throughput screening. This programme focused on identifying drug leads that target main protease (Mpro) of SARS-CoV-2: Mpro is a key enzyme of coronaviruses and has a pivotal role in mediating viral replication and transcription, making it an attractive drug target for SARS-CoV-25,6. We identified a mechanism-based inhibitor (N3) by computer-aided drug design, and then determined the crystal structure of Mpro of SARS-CoV-2 in complex with this compound. Through a combination of structure-based virtual and high-throughput screening, we assayed more than 10,000 compounds-including approved drugs, drug candidates in clinical trials and other pharmacologically active compounds-as inhibitors of Mpro. Six of these compounds inhibited Mpro, showing half-maximal inhibitory concentration values that ranged from 0.67 to 21.4 μM. One of these compounds (ebselen) also exhibited promising antiviral activity in cell-based assays. Our results demonstrate the efficacy of our screening strategy, which can lead to the rapid discovery of drug leads with clinical potential in response to new infectious diseases for which no specific drugs or vaccines are available.
Collapse
Affiliation(s)
- Zhenming Jin
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Xiaoyu Du
- Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Yechun Xu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yongqiang Deng
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Meiqin Liu
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yao Zhao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaofeng Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Leike Zhang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Yinkai Duan
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jing Yu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lin Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Kailin Yang
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Fengjiang Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Rendi Jiang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Xinglou Yang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Tian You
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaoce Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hong Liu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
| | - Wenqing Xu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Gengfu Xiao
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Chengfeng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Zhengli Shi
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hualiang Jiang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China.
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin, China.
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
22
|
Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, Duan Y, Yu J, Wang L, Yang K, Liu F, Jiang R, Yang X, You T, Liu X, Yang X, Bai F, Liu H, Liu X, Guddat LW, Xu W, Xiao G, Qin C, Shi Z, Jiang H, Rao Z, Yang H. Structure of M pro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020; 582:289-293. [PMID: 32272481 DOI: 10.1101/2020.02.26.964882] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/01/2020] [Indexed: 05/25/2023]
Abstract
A new coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the aetiological agent responsible for the 2019-2020 viral pneumonia outbreak of coronavirus disease 2019 (COVID-19)1-4. Currently, there are no targeted therapeutic agents for the treatment of this disease, and effective treatment options remain very limited. Here we describe the results of a programme that aimed to rapidly discover lead compounds for clinical use, by combining structure-assisted drug design, virtual drug screening and high-throughput screening. This programme focused on identifying drug leads that target main protease (Mpro) of SARS-CoV-2: Mpro is a key enzyme of coronaviruses and has a pivotal role in mediating viral replication and transcription, making it an attractive drug target for SARS-CoV-25,6. We identified a mechanism-based inhibitor (N3) by computer-aided drug design, and then determined the crystal structure of Mpro of SARS-CoV-2 in complex with this compound. Through a combination of structure-based virtual and high-throughput screening, we assayed more than 10,000 compounds-including approved drugs, drug candidates in clinical trials and other pharmacologically active compounds-as inhibitors of Mpro. Six of these compounds inhibited Mpro, showing half-maximal inhibitory concentration values that ranged from 0.67 to 21.4 μM. One of these compounds (ebselen) also exhibited promising antiviral activity in cell-based assays. Our results demonstrate the efficacy of our screening strategy, which can lead to the rapid discovery of drug leads with clinical potential in response to new infectious diseases for which no specific drugs or vaccines are available.
Collapse
Affiliation(s)
- Zhenming Jin
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Xiaoyu Du
- Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Yechun Xu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yongqiang Deng
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Meiqin Liu
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yao Zhao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaofeng Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Leike Zhang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Yinkai Duan
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jing Yu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lin Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Kailin Yang
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Fengjiang Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Rendi Jiang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Xinglou Yang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Tian You
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaoce Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hong Liu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
| | - Wenqing Xu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Gengfu Xiao
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Chengfeng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Zhengli Shi
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hualiang Jiang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China.
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin, China.
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
23
|
Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, Duan Y, Yu J, Wang L, Yang K, Liu F, Jiang R, Yang X, You T, Liu X, Yang X, Bai F, Liu H, Liu X, Guddat LW, Xu W, Xiao G, Qin C, Shi Z, Jiang H, Rao Z, Yang H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020; 582:289-293. [DOI: 10.1038/s41586-020-2223-y] [Citation(s) in RCA: 2158] [Impact Index Per Article: 539.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/01/2020] [Indexed: 11/09/2022]
|
24
|
Cui W, Yang K, Yang H. Recent Progress in the Drug Development Targeting SARS-CoV-2 Main Protease as Treatment for COVID-19. Front Mol Biosci 2020. [PMID: 33344509 DOI: 10.3389/fmolb.2020.616341/bibtex] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
The sudden outbreak of 2019 novel coronavirus (2019-nCoV, later named SARS-CoV-2) rapidly turned into an unprecedented pandemic of coronavirus disease 2019 (COVID-19). This global healthcare emergency marked the third occurrence of a deadly coronavirus (CoV) into the human society after entering the new millennium, which overwhelmed the worldwide healthcare system and affected the global economy. However, therapeutic options for COVID-19 are still very limited. Developing drugs targeting vital proteins in viral life cycle is a feasible approach to overcome this dilemma. Main protease (Mpro) plays a dominant role in processing CoV-encoded polyproteins which mediate the assembly of replication-transcription machinery and is thus recognized as an ideal antiviral target. Here we summarize the recent progress in the discovery of anti-SARS-CoV-2 agents against Mpro. Combining structural study, virtual screen, and experimental screen, numerous therapeutic candidates including repurposed drugs and ab initio designed compounds have been proposed. Such collaborative effort from the scientific community would accelerate the pace of developing efficacious treatment for COVID-19.
Collapse
Affiliation(s)
- Wen Cui
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Kailin Yang
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, United States
| | - Haitao Yang
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
25
|
In silico and in vitro analysis of small molecules and natural compounds targeting the 3CL protease of feline infectious peritonitis virus. Antiviral Res 2019; 174:104697. [PMID: 31863793 PMCID: PMC7114316 DOI: 10.1016/j.antiviral.2019.104697] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022]
Abstract
The computational search of chemical libraries has been used as a powerful tool for the rapid discovery of candidate compounds. To find small molecules with anti-feline infectious peritonitis virus (FIPV) properties, we utilized a virtual screening technique to identify the active site on the viral protease for the binding of the available natural compounds. The protease 3CL (3CLpro) plays an important role in the replication cycle of FIPV and other viruses within the family Coronaviridae. The 15 best-ranked candidate consensus compounds, based on three docking tools, were evaluated for further assays. The protease inhibitor assay on recombinant FIPV 3CLpro was performed to screen the inhibitory effect of the candidate compounds with IC50 ranging from 6.36 ± 2.15 to 78.40 ± 2.60 μM. As determined by the cell-based assay, the compounds NSC345647, NSC87511, and NSC343256 showed better EC50 values than the broad-spectrum antiviral drug ribavirin and the protease inhibitor lopinavir, under all the test conditions including pre-viral entry, post-viral entry, and prophylactic activity. The NSC87511 particularly yielded the best selective index (>4; range of SI = 13.80-22.90). These results indicated that the natural small-molecular compounds specifically targeted the 3CLpro of FIPV and inhibited its replication. Structural modification of these compounds may generate a higher anti-viral potency for the further development of a novel therapy against FIP.
Collapse
|
26
|
Cui W, Cui S, Chen C, Chen X, Wang Z, Yang H, Zhang L. The crystal structure of main protease from mouse hepatitis virus A59 in complex with an inhibitor. Biochem Biophys Res Commun 2019; 511:794-799. [PMID: 30833083 PMCID: PMC7185540 DOI: 10.1016/j.bbrc.2019.02.105] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 02/20/2019] [Indexed: 01/07/2023]
Abstract
Mouse hepatitis virus A59 (MHV-A59) is a representative member of the genus betacoronavirus within the subfamily Coronavirinae, which infects the liver, brain and respiratory tract. Through different inoculation routes, MHV-A59 can provide animal models for encephalitis, hepatitis and pneumonia to explore viral life machinery and virus-host interactions. In viral replication, non-structural protein 5 (Nsp5), also termed main protease (Mpro), plays a dominant role in processing coronavirus-encoded polyproteins and is thus recognized as an ideal target of anti-coronavirus agents. However, no structure of the MHV-A59 Mpro has been reported, and molecular exploration of the catalysis mechanism remains hindered. Here, we solved the crystal structure of the MHV-A59 Mpro complexed with a Michael acceptor-based inhibitor, N3. Structural analysis revealed that the Cβ of the vinyl group of N3 covalently bound to C145 of the catalytic dyad of Mpro, which irreversibly inactivated cysteine protease activity. The lactam ring of the P1 side chain and the isobutyl group of the P2 side chain, which mimic the conserved residues at the same positions of the substrate, fit well into the S1 and S2 pockets. Through a comparative study with Mpro of other coronaviruses, we observed that the substrate-recognition pocket and enzyme inhibitory mechanism is highly conservative. Altogether, our study provided structural features of MHV-A59 Mpro and indicated that a Michael acceptor inhibitor is an ideal scaffold for antiviral drugs.
Collapse
Affiliation(s)
- Wen Cui
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Shanshan Cui
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China,State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Cheng Chen
- School of Life Sciences, Tianjin University, Tianjin, China,Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Xia Chen
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Zefang Wang
- School of Life Sciences, Tianjin University, Tianjin, China,Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China,Corresponding author. School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Haitao Yang
- School of Life Sciences, Tianjin University, Tianjin, China,Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China,State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Lei Zhang
- School of Life Sciences, Tianjin University, Tianjin, China,Corresponding author. School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
27
|
Wang L, Bao BB, Song GQ, Chen C, Zhang XM, Lu W, Wang Z, Cai Y, Li S, Fu S, Song FH, Yang H, Wang JG. Discovery of unsymmetrical aromatic disulfides as novel inhibitors of SARS-CoV main protease: Chemical synthesis, biological evaluation, molecular docking and 3D-QSAR study. Eur J Med Chem 2017. [PMID: 28624700 PMCID: PMC7115414 DOI: 10.1016/j.ejmech.2017.05.045] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The worldwide outbreak of severe acute respiratory syndrome (SARS) in 2003 had caused a high rate of mortality. Main protease (Mpro) of SARS-associated coronavirus (SARS-CoV) is an important target to discover pharmaceutical compounds for the therapy of this life-threatening disease. During the course of screening new anti-SARS agents, we have identified that a series of unsymmetrical aromatic disulfides inhibited SARS-CoV Mpro significantly for the first time. Herein, 40 novel unsymmetrical aromatic disulfides were synthesized chemically and their biological activities were evaluated in vitro against SARS-CoV Mpro. These novel compounds displayed excellent IC50 data in the range of 0.516–5.954 μM. Preliminary studies indicated that these disulfides are reversible and mpetitive inhibitors. A possible binding mode was generated via molecular docking simulation and a comparative field analysis (CoMFA) model was constructed to understand the structure-activity relationships. The present research therefore has provided some meaningful guidance to design and identify anti-SARS drugs with totally new chemical structures. 40 novel unsymmetrical aromatic disulfides were synthesized. The synthesized disulfide compounds are potent inhibitors of SARS main protease. Possible binding mode and structure-activity relationships of the compounds were established.
Collapse
Affiliation(s)
- Li Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bo-Bo Bao
- School of Life Sciences, Tianjin University, Tianjin 300072, China; Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Guo-Qing Song
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Cheng Chen
- School of Life Sciences, Tianjin University, Tianjin 300072, China; Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China.
| | - Xu-Meng Zhang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei Lu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zefang Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Yan Cai
- School of Life Sciences, Tianjin University, Tianjin 300072, China; Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Shuang Li
- School of Life Sciences, Tianjin University, Tianjin 300072, China; Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Sheng Fu
- School of Life Sciences, Tianjin University, Tianjin 300072, China; Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Fu-Hang Song
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haitao Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Jian-Guo Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
28
|
Recent progress in the discovery of inhibitors targeting coronavirus proteases. Virol Sin 2016; 31:24-30. [PMID: 26920707 PMCID: PMC7090653 DOI: 10.1007/s12250-015-3711-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/22/2016] [Indexed: 12/20/2022] Open
Abstract
Coronaviruses (CoVs) can cause highly prevalent diseases in humans and animals. The fatal outbreak of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) highlights the threat posed by this unique virus subfamily. However, no specific drugs have been approved to treat CoV-associated diseases to date. The CoV proteases, which play pivotal roles in viral gene expression and replication through a highly complex cascade involving the proteolytic processing of replicase polyproteins, are attractive targets for drug design. This review summarizes the recent advances in biological and structural studies, together with the development of inhibitors targeting CoV proteases, particularly main proteases (M(pro)s), which could help develop effective treatments to prevent CoV infection.
Collapse
|