1
|
Analysis of temporal changes in HIV-1 CRF01_AE gag genetic variability and CD8 T-cell epitope evolution. PLoS One 2022; 17:e0267130. [PMID: 35536783 PMCID: PMC9089901 DOI: 10.1371/journal.pone.0267130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/02/2022] [Indexed: 11/19/2022] Open
Abstract
Currently, little is known about the time-dependent evolution of human immunodeficiency virus-1 (HIV-1) circulating recombinant forms (CRF) 01_AE, a dominant recombinant form associated with HIV-1 epidemics worldwide. Since gag is a highly immunodominant HIV-1 protein, we performed a comparative analysis of the CRF01_AE gag protein’s time-dependent changes and evolution. A total of 3105 HIV-1 CRF01_AE gag sequences representing 17 countries from the timeline 1990–2017 were obtained. The sequences’ phylogenetic relationship and epidemic dynamics were analyzed through a Maximum Likelihood tree and Bayesian Skyline plot, respectively. Genomic variability was measured through Shannon entropy and time-dependent immunoevolution was analyzed using changes in proteasomal degradation pattern, cytotoxic T lymphocytes (CTL) epitopes, and Human leukocyte antigens (HLA) restriction profile. The most recent common ancestor of the HIV CRF01_AE epidemic was estimated to be 1974±1. A period of exponential growth in effective population size began in 1982, fluctuated, and then stabilized in 1999. Genetic variability (entropy) consistently increased, however, epitope variability remained comparable; the highest number of novel CTL epitopes were present in 1995–1999, which were lost over time. The spread of the HIV-1 CRF01_AE epidemic is predominant in countries within Asia. Population immunogenetic pressures in the region may have contributed to the initial changes and following adaptation/stabilization of epitope diversity within gag sequences.
Collapse
|
2
|
Sampathkumar R, Scott-Herridge J, Liang B, Kimani J, Plummer FA, Luo M. HIV-1 Subtypes and 5'LTR-Leader Sequence Variants Correlate with Seroconversion Status in Pumwani Sex Worker Cohort. Viruses 2017; 10:v10010004. [PMID: 29295533 PMCID: PMC5795417 DOI: 10.3390/v10010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 01/04/2023] Open
Abstract
Within the Pumwani sex worker cohort, a subgroup remains seronegative, despite frequent exposure to HIV-1; some of them seroconverted several years later. This study attempts to identify viral variations in 5′LTR-leader sequences (5′LTR-LS) that might contribute to the late seroconversion. The 5′LTR-LS contains sites essential for replication and genome packaging, viz, primer binding site (PBS), major splice donor (SD), and major packaging signal (PS). The 5′LTR-LS of 20 late seroconverters (LSC) and 122 early seroconverters (EC) were amplified, cloned, and sequenced. HelixTree 6.4.3 was employed to classify HIV subtypes and sequence variants based on seroconversion status. We find that HIV-1 subtypes A1.UG and D.UG were overrepresented in the viruses infecting the LSC (P < 0.0001). Specific variants of PBS (Pc < 0.0001), SD1 (Pc < 0.0001), and PS (Pc < 0.0001) were present only in the viral population from EC or LSC. Combinations of PBS [PBS-2 (Pc < 0.0001) and PBS-3 (Pc < 0.0001)] variants with specific SD sequences were only seen in LSC or EC. Combinations of A1.KE or D with specific PBS and SD variants were only present in LSC or EC (Pc < 0.0001). Furthermore, PBS variants only present in LSC co-clustered with PBS references utilizing tRNAArg; whereas, the PBS variants identified only in EC co-clustered with PBS references using tRNALys,3 and its variants. This is the first report that specific PBS, SD1, and PS sequence variants within 5′LTR-LS are associated with HIV-1 seroconversion, and it could aid designing effective anti-HIV strategies.
Collapse
Affiliation(s)
- Raghavan Sampathkumar
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada.
| | - Joel Scott-Herridge
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada.
| | - Binhua Liang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada.
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.
| | - Joshua Kimani
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya.
| | - Francis A Plummer
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada.
| | - Ma Luo
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, R3E 3R2, Canada.
| |
Collapse
|
3
|
Kletenkov K, Hoffmann D, Böni J, Yerly S, Aubert V, Schöni-Affolter F, Struck D, Verheyen J, Klimkait T. Role of Gag mutations in PI resistance in the Swiss HIV cohort study: bystanders or contributors? J Antimicrob Chemother 2017; 72:866-875. [PMID: 27999036 DOI: 10.1093/jac/dkw493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/15/2016] [Indexed: 12/24/2022] Open
Abstract
Background HIV Gag mutations have been reported to confer PI drug resistance. However, clinical implications are still controversial and most current genotyping algorithms consider solely the protease gene for assessing PI resistance. Objectives Our goal was to describe for HIV infections in Switzerland the potential role of the C-terminus of Gag (NC-p6) in PI resistance. We aimed to characterize resistance-relevant mutational patterns in Gag and protease and their possible interactions. Methods Resistance information on plasma samples from 2004-12 was collected for patients treated by two diagnostic centres of the Swiss HIV Cohort Study. Sequence information on protease and the C-terminal Gag region was paired with the corresponding patient treatment history. The prevalence of Gag and protease mutations was analysed for PI treatment-experienced patients versus PI treatment-naive patients. In addition, we modelled multiple paths of an assumed ordered accumulation of genetic changes using random tree mixture models. Results More than half of all PI treatment-experienced patients in our sample set carried HIV variants with at least one of the known Gag mutations, and 17.9% (66/369) carried at least one Gag mutation for which a phenotypic proof of PI resistance by in vitro mutagenesis has been reported. We were able to identify several novel Gag mutations that are associated with PI exposure and therapy failure. Conclusions Our analysis confirmed the association of Gag mutations, well known and new, with PI exposure. This could have clinical implications, since the level of potential PI drug resistance might be underestimated.
Collapse
Affiliation(s)
- K Kletenkov
- Molecular Virology, Department of Biomedicine - Petersplatz, University of Basel, Basel, Switzerland
| | - D Hoffmann
- Bioinformatics and Computational Biophysics, Centre for Medical Biotechnology, University of Duisburg-Essen, Duisburg, Germany
| | - J Böni
- Institute of Medical Virology, National Reference Center for Retroviruses, University of Zurich, Zurich, Switzerland
| | - S Yerly
- Laboratory of Virology, University Hospital Geneva, University of Geneva, Geneva, Switzerland
| | - V Aubert
- Division of Immunology and Allergy, University Hospital Lausanne, University of Lausanne, Lausanne, Switzerland
| | - F Schöni-Affolter
- Swiss HIV Cohort Study, Data Centre, Institute for Social and Preventive Medicine, University of Lausanne, Lausanne, Switzerland
| | - D Struck
- Department of Population Health, Luxembourg Institute of Health, Luxembourg
| | - J Verheyen
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Duisburg, Germany
| | - T Klimkait
- Molecular Virology, Department of Biomedicine - Petersplatz, University of Basel, Basel, Switzerland
| | | |
Collapse
|
4
|
Lamers SL, Barbier AE, Ratmann O, Fraser C, Rose R, Laeyendecker O, Grabowski MK. HIV-1 Sequence Data Coverage in Central East Africa from 1959 to 2013. AIDS Res Hum Retroviruses 2016; 32:904-8. [PMID: 27353049 DOI: 10.1089/aid.2016.0079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Central and Eastern African HIV sequence data have been most critical in understanding the establishment and evolution of the global HIV pandemic. Here we report on the extent of publicly available HIV genetic sequence data in the Los Alamos National Laboratory Sequence Database sampled from 1959 to 2013 from six African countries: Uganda, Kenya, Tanzania, Burundi, the Democratic Republic of Congo, and Rwanda. We have summarized these data, including HIV subtypes, the years sampled, and the genomic regions sequenced. We also provide curated alignments for this important geographic area in five HIV genomic regions with substantial coverage.
Collapse
Affiliation(s)
| | | | - Oliver Ratmann
- Medical Research Council Centre for Outbreak Analysis and Modeling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Christophe Fraser
- Medical Research Council Centre for Outbreak Analysis and Modeling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | | | - Oliver Laeyendecker
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mary K. Grabowski
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
5
|
Sadegh-Nasseri S. A step-by-step overview of the dynamic process of epitope selection by major histocompatibility complex class II for presentation to helper T cells. F1000Res 2016; 5. [PMID: 27347387 PMCID: PMC4902097 DOI: 10.12688/f1000research.7664.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2016] [Indexed: 11/25/2022] Open
Abstract
T cell antigen receptors (TCRs) expressed on cytotoxic or helper T cells can only see their specific target antigen as short sequences of peptides bound to the groove of proteins of major histocompatibility complex (MHC) class I, and class II respectively. In addition to the many steps, several participating proteins, and multiple cellular compartments involved in the processing of antigens, the MHC structure, with its dynamic and flexible groove, has perfectly evolved as the underlying instrument for epitope selection. In this review, I have taken a step-by-step, and rather historical, view to describe antigen processing and determinant selection, as we understand it today, all based on decades of intense research by hundreds of laboratories.
Collapse
|
6
|
Sanjuán R, Nebot MR, Peris JB, Alcamí J. Immune activation promotes evolutionary conservation of T-cell epitopes in HIV-1. PLoS Biol 2013; 11:e1001523. [PMID: 23565057 PMCID: PMC3614509 DOI: 10.1371/journal.pbio.1001523] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 02/14/2013] [Indexed: 01/06/2023] Open
Abstract
HIV, unlike other viruses, may benefit from immune recognition by preserving the sequence of its T cell epitopes, thereby enhancing transmission between cells. The immune system should constitute a strong selective pressure promoting viral genetic diversity and evolution. However, HIV shows lower sequence variability at T-cell epitopes than elsewhere in the genome, in contrast with other human RNA viruses. Here, we propose that epitope conservation is a consequence of the particular interactions established between HIV and the immune system. On one hand, epitope recognition triggers an anti-HIV response mediated by cytotoxic T-lymphocytes (CTLs), but on the other hand, activation of CD4+ helper T lymphocytes (TH cells) promotes HIV replication. Mathematical modeling of these opposite selective forces revealed that selection at the intrapatient level can promote either T-cell epitope conservation or escape. We predict greater conservation for epitopes contributing significantly to total immune activation levels (immunodominance), and when TH cell infection is concomitant to epitope recognition (trans-infection). We suggest that HIV-driven immune activation in the lymph nodes during the chronic stage of the disease may offer a favorable scenario for epitope conservation. Our results also support the view that some pathogens draw benefits from the immune response and suggest that vaccination strategies based on conserved TH epitopes may be counterproductive. A key component of the immune response against viruses and other pathogens is the recognition of short foreign protein sequences called epitopes. However, viruses can escape the immune system by mutating, so epitopes should accumulate high levels of genetic variability. This has been documented in several human viruses, but in HIV, unexpectedly, epitopes tend to be relatively conserved. Here, we propose that this is a consequence of the peculiar interactions that occur between HIV and the immune system. As with other viruses, recognition of HIV epitopes promotes the activation of cytotoxic and helper T lymphocytes, which then orchestrate a cellular immune response. However, HIV infects helper T lymphocytes as their target cell in the body and does so more efficiently when these cells have been activated to participate in an immune response. Mathematical modeling showed that, in some cases, HIV may take advantage of immune activation, thus favoring epitope conservation. This should be more likely to occur with epitopes that trigger more vigorous T-cell responses, and during the process known as “trans-infection,” in which helper T lymphocytes are infected while being activated. Our results highlight the potential advantages of an HIV vaccination strategy based on epitopes that stimulate cytotoxic T lymphocytes without specifically stimulating helper T lymphocytes.
Collapse
Affiliation(s)
- Rafael Sanjuán
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, València, Spain.
| | | | | | | |
Collapse
|
7
|
Abidi SH, Shahid A, Lakhani LS, Khanani MR, Ojwang P, Okinda N, Shah R, Abbas F, Rowland-Jones S, Ali S. Population-specific evolution of HIV Gag epitopes in genetically diverged patients. INFECTION GENETICS AND EVOLUTION 2013; 16:78-86. [PMID: 23403357 DOI: 10.1016/j.meegid.2013.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/30/2013] [Accepted: 02/03/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Under the host selection pressure HIV evolves rapidly to override crucial steps in the antigen presentation pathway. This allows the virus to escape binding and recognition by cytotoxic T lymphocytes. Selection pressures on HIV can be unique depending on the immunogenetics of host populations. It is therefore logical to hypothesize that the virus evolving in a given population will carry signature mutations that will allow it to survive in that particular host milieu. OBJECTIVES The aim of this study was to perform a comparative analysis of HIV-1 Gag subtype A sequences from two genetically diverged populations, namely, Kenyan and Pakistani. We analyzed unique mutations that could intercept the antigen processing pathway and potentially change the repertoire of Gag epitopes in each study group. METHODS Twenty-nine Kenyan and 56 Pakistani samples from HIV-1 subtype A-infected patients were used in this study. The HIV-1 gag region p24 and p2p7p1p6 was sequenced and mutations affecting proteasomal degradation, TAP binding, HLA binding and CTL epitope generation, were analyzed using the in silico softwares NetChop and MAPPP, TAPPred, nHLAPred and CTLPred, respectively. RESULTS Certain mutations unique to either Pakistani or Kenyan patients were observed to affect sites for proteasomal degradation, TAP binding, and HLA binding. As a consequence of these mutations, epitope pattern in these populations was altered. CONCLUSION Unique selection pressures can steer the direction of viral epitope evolution in the host populations. Population-specific HIV epitopes have to be taken into account while designing treatment as well as vaccine for HIV.
Collapse
Affiliation(s)
- Syed H Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Peterson TA, Kimani J, Wachihi C, Bielawny T, Mendoza L, Thavaneswaran S, Narayansingh MJ, Kariri T, Liang B, Ball TB, Ngugi EN, Plummer FA, Luo M. HLA class I associations with rates of HIV-1 seroconversion and disease progression in the Pumwani Sex Worker Cohort. ACTA ACUST UNITED AC 2013; 81:93-107. [DOI: 10.1111/tan.12051] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 11/20/2012] [Accepted: 12/16/2012] [Indexed: 12/01/2022]
Affiliation(s)
- T. A. Peterson
- HIV and Human Genetics, National Microbiology Laboratory; Winnipeg; MB; Canada
| | | | - C. Wachihi
- Department of Medical Microbiology; University of Nairobi; Nairobi; Kenya
| | - T. Bielawny
- HIV and Human Genetics, National Microbiology Laboratory; Winnipeg; MB; Canada
| | - L. Mendoza
- HIV and Human Genetics, National Microbiology Laboratory; Winnipeg; MB; Canada
| | - S. Thavaneswaran
- Department of Medical Microbiology; University of Manitoba; Winnipeg; MB; Canada
| | - M. J. Narayansingh
- Department of Medical Microbiology; University of Manitoba; Winnipeg; MB; Canada
| | - T. Kariri
- Department of Medical Microbiology; University of Nairobi; Nairobi; Kenya
| | - B. Liang
- Department of Medical Microbiology; University of Manitoba; Winnipeg; MB; Canada
| | | | - E. N. Ngugi
- Department of Community Health; University of Nairobi; Nairobi; Kenya
| | | | | |
Collapse
|
9
|
Abstract
HIV-1 is grouped phylogenetically into clades, which may impact rates of HIV-1 disease progression. Clade D infection in particular has been shown to be more pathogenic. Here we confirm in a Nairobi-based prospective female sex worker cohort (1985–2004) that Clade D (n = 54) is associated with a more rapid CD4 decline than clade A1 (n = 150, 20.6% vs 13.4% decline per year, 1.53-fold increase, p = 0.015). This was independent of “protective” HLA and country of origin (p = 0.053), which in turn were also independent predictors of the rate of CD4 decline (p = 0.026 and 0.005, respectively). These data confirm that clade D is more pathogenic than clade A1. The precise reason for this difference is currently unclear, and requires further study. This is first study to demonstrate difference in HIV-1 disease progression between clades while controlling for protective HLA alleles.
Collapse
|
10
|
Combination of immune and viral factors distinguishes low-risk versus high-risk HIV-1 disease progression in HLA-B*5701 subjects. J Virol 2012; 86:9802-16. [PMID: 22761389 DOI: 10.1128/jvi.01165-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HLA-B*5701 is the host factor most strongly associated with slow HIV-1 disease progression, although rates can vary within this group. Underlying mechanisms are not fully understood but likely involve both immunological and virological dynamics. The present study investigated HIV-1 in vivo evolution and epitope-specific CD8(+) T cell responses in six HLA-B*5701 patients who had not received antiretroviral treatment, monitored from early infection for up to 7 years. The subjects were classified as high-risk progressors (HRPs) or low-risk progressors (LRPs) based on baseline CD4(+) T cell counts. Dynamics of HIV-1 Gag p24 evolution and multifunctional CD8(+) T cell responses were evaluated by high-resolution phylogenetic analysis and polychromatic flow cytometry, respectively. In all subjects, substitutions occurred more frequently in flanking regions than in HLA-B*5701-restricted epitopes. In LRPs, p24 sequence diversity was significantly lower; sequences exhibited a higher degree of homoplasy and more constrained mutational patterns than HRPs. The HIV-1 intrahost evolutionary rate was also lower in LRPs and followed a strict molecular clock, suggesting neutral genetic drift rather than positive selection. Additionally, polyfunctional CD8(+) T cell responses, particularly to TW10 and QW9 epitopes, were more robust in LRPs, who also showed significantly higher interleukin-2 (IL-2) production in early infection. Overall, the findings indicate that HLA-B*5701 patients with higher CD4 counts at baseline have a lower risk of HIV-1 disease progression because of the interplay between specific HLA-linked immune responses and the rate and mode of viral evolution. The study highlights the power of a multidisciplinary approach, integrating high-resolution evolutionary and immunological data, to understand mechanisms underlying HIV-1 pathogenesis.
Collapse
|
11
|
Interplay between HIV-1 and Host Genetic Variation: A Snapshot into Its Impact on AIDS and Therapy Response. Adv Virol 2012; 2012:508967. [PMID: 22666249 PMCID: PMC3361994 DOI: 10.1155/2012/508967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/26/2012] [Accepted: 03/11/2012] [Indexed: 11/18/2022] Open
Abstract
As of February 2012, 50 circulating recombinant forms (CRFs) have been reported for HIV-1 while one CRF for HIV-2. Also according to HIV sequence compendium 2011, the HIV sequence database is replete with 414,398 sequences. The fact that there are CRFs, which are an amalgamation of sequences derived from six or more subtypes (CRF27_cpx (cpx refers to complex) is a mosaic with sequences from 6 different subtypes besides an unclassified fragment), serves as a testimony to the continual divergent evolution of the virus with its approximate 1% per year rate of evolution, and this phenomena per se poses tremendous challenge for vaccine development against HIV/AIDS, a devastating disease that has killed 1.8 million patients in 2010. Here, we explore the interaction between HIV-1 and host genetic variation in the context of HIV/AIDS and antiretroviral therapy response.
Collapse
|
12
|
For protection from HIV-1 infection, more might not be better: a systematic analysis of HIV Gag epitopes of two alleles associated with different outcomes of HIV-1 infection. J Virol 2011; 86:1166-80. [PMID: 22072744 DOI: 10.1128/jvi.05721-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A subset of women in the Pumwani Sex Worker Cohort, established in 1985 in Nairobi, Kenya, remains uninfected despite repeated high-risk exposure (HIV-exposed, seronegative [HESN]) through active sex work. This HESN phenotype is associated with several alleles of human leukocyte antigens (HLAs) and specific CD8(+) and CD4(+) T cell responses to HIV-1. The associations of HLA alleles with differential HIV-1 infection are most likely due to their different abilities to present antigen and the different immune responses they induce. The characteristics of epitopes of HLA alleles associated with different outcomes of HIV-1 infection might therefore point to a vital clue for developing an effective vaccine. In this study, we systematically analyzed HIV-1 clade A and D Gag CD8(+) T cell epitopes of two HLA class I alleles associated with different outcomes of HIV-1 infection. Binding affinity and off-rates of the identified epitopes were determined. Gamma interferon (IFN-γ) enzyme-linked immunospot (ELISpot) assays with patient peripheral blood mononuclear cells (PBMCs) validated the epitopes. Epitope-specific CD8(+) T cells were further phenotyped for memory markers with tetramer staining. Our study showed that the protective allele A*01:01 recognizes only three Gag epitopes. By contrast, B*07:02, the allele associated with susceptibility, binds 30 epitope variants. These two alleles differ most importantly in the spectrum of Gag epitopes they can present and not in affinity, off-rates, the location of the epitopes, or epitope-specific Tem/Tcm frequencies. The binding of more epitopes and strong IFN-gamma ELISpot responses are associated with susceptibility to HIV-1 infection, while more focused antigen recognition of multiple subtypes is protective. Rational vaccine design should take these observations into account.
Collapse
|
13
|
Liang B, Luo M, Scott-Herridge J, Semeniuk C, Mendoza M, Capina R, Sheardown B, Ji H, Kimani J, Ball BT, Van Domselaar G, Graham M, Tyler S, Jones SJM, Plummer FA. A comparison of parallel pyrosequencing and sanger clone-based sequencing and its impact on the characterization of the genetic diversity of HIV-1. PLoS One 2011; 6:e26745. [PMID: 22039546 PMCID: PMC3198814 DOI: 10.1371/journal.pone.0026745] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 10/03/2011] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Pyrosequencing technology has the potential to rapidly sequence HIV-1 viral quasispecies without requiring the traditional approach of cloning. In this study, we investigated the utility of ultra-deep pyrosequencing to characterize genetic diversity of the HIV-1 gag quasispecies and assessed the possible contribution of pyrosequencing technology in studying HIV-1 biology and evolution. METHODOLOGY/PRINCIPAL FINDINGS HIV-1 gag gene was amplified from 96 patients using nested PCR. The PCR products were cloned and sequenced using capillary based Sanger fluorescent dideoxy termination sequencing. The same PCR products were also directly sequenced using the 454 pyrosequencing technology. The two sequencing methods were evaluated for their ability to characterize quasispecies variation, and to reveal sites under host immune pressure for their putative functional significance. A total of 14,034 variations were identified by 454 pyrosequencing versus 3,632 variations by Sanger clone-based (SCB) sequencing. 11,050 of these variations were detected only by pyrosequencing. These undetected variations were located in the HIV-1 Gag region which is known to contain putative cytotoxic T lymphocyte (CTL) and neutralizing antibody epitopes, and sites related to virus assembly and packaging. Analysis of the positively selected sites derived by the two sequencing methods identified several differences. All of them were located within the CTL epitope regions. CONCLUSIONS/SIGNIFICANCE Ultra-deep pyrosequencing has proven to be a powerful tool for characterization of HIV-1 genetic diversity with enhanced sensitivity, efficiency, and accuracy. It also improved reliability of downstream evolutionary and functional analysis of HIV-1 quasispecies.
Collapse
Affiliation(s)
- Binhua Liang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gag cytotoxic T lymphocyte escape mutations can increase sensitivity of HIV-1 to human TRIM5alpha, linking intrinsic and acquired immunity. J Virol 2011; 85:11846-54. [PMID: 21917976 DOI: 10.1128/jvi.05201-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although laboratory-adapted HIV-1 strains are largely resistant to the human restriction factor TRIM5α (hTRIM5α), we have recently shown that some viruses carrying capsid (CA) sequences from clinical isolates can be more sensitive to this restriction factor. In this study we evaluated the contribution to this phenotype of CA mutations known to be associated with escape from cytotoxic T lymphocyte (CTL) responses. Recombinant viruses carrying HIV-1 CA sequences from NL4-3 and three different clinical isolates were prepared, along with variants in which mutations associated with CTL resistance were modified by site-directed mutagenesis, and the infectivities of these viruses in target cells expressing hTRIM5α and cells in which TRIM5α activity had been inhibited by overexpression of TRIM5γ were compared. For both hTRIM5α-sensitive viruses studied, CTL-associated mutations were found to be responsible for this phenotype. Both CTL resistance mutations occurring within HLA-restricted CA epitopes and compensatory mutations occurring outside CTL epitopes influenced hTRIM5α sensitivity, and mutations associated with CTL resistance selected in prior hosts can contribute to this effect. The impact of CTL resistance mutations on hTRIM5α sensitivity was context dependent, because mutations shown to be responsible for the TRIM5α-sensitive phenotype in viruses from one patient could have little or no impact on this parameter when introduced into another virus. No fixed relationship between changes in hTRIM5α sensitivity and infectivity was discernible in our studies. Taken together, these findings suggest that CTL mutations may influence HIV-1 replication by modifying both viral infectivity and sensitivity to TRIM5α.
Collapse
|
15
|
Liang B, Luo M, Ball TB, Jones SJM, Plummer FA. QUASI analysis of host immune responses to Gag polyproteins of human immunodeficiency virus type 1 by a systematic bioinformatics approach. Biochem Cell Biol 2010; 88:671-81. [PMID: 20651839 DOI: 10.1139/o10-002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
There is a consensus that Gag-specific cytotoxic T lymphocyte (CTL) response plays a key role in the immune control of human immunodeficiency virus type 1 (HIV-1) infection. In this study, we analyzed all currently available gag sequences in the Los Alamos HIV sequence database and identified positive selection (PS) sites likely restricted by the host immune responses. We found that between 23.4% and 47.4% of PS sites were shared by clades A, B, and C of Gag, indicating similar positive selection pressure on Gag in different subtypes of HIV-1. Furthermore, a significant correlation was observed between the combined CTL and antibody responses and PS sites. The Gag regions of free from PS contained 9 CTL epitopes restricted by 11 HLA class I alleles associated with disease progression to acquired immune deficiency syndrome (AIDS). These analyses provide information important for the identification of cross-clade epitopes and development of a global HIV-1 vaccine.
Collapse
Affiliation(s)
- Binhua Liang
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | |
Collapse
|
16
|
Epitope mapping of HIV-specific CD8+ T cell responses by multiple immunological readouts reveals distinct specificities defined by function. J Virol 2010; 85:1275-86. [PMID: 21084478 DOI: 10.1128/jvi.01707-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The limited success of HIV vaccine candidates to date highlights our need to better characterize protective cell-mediated immunity (CMI). While HIV-specific CD8(+) T cell responses have been defined largely by measuring gamma interferon (IFN-γ), these responses are not always protective, and it is unclear whether the same epitopes would predominate if other functional parameters were examined. Here, we assessed the epitope specificity of HIV-specific CD8(+) T cell responses by multiparametric flow cytometry, measuring five CD8(+) T cell functions (IFN-γ, macrophage inflammatory protein 1β [MIP-1β], tumor necrosis factor alpha [TNF-α], interleukin-2 [IL-2], and proliferative capacity) in 24 chronically HIV-infected individuals. Sixty-nine epitope-specific responses to 50 epitopes within p24 were measured. Surprisingly, most epitope-specific responses were IFN-γ negative (50/69 responses). Many responses had polyfunctional (33%) and proliferative (19%) components. An inverse association between IL-2 and proliferation responses was also observed, contrary to what was described previously. We confirm that long-term nonprogressors (LTNP) have more polyfunctional responses and also have higher-magnitude and broader p24-specific proliferation and higher levels of IL-2 and TNF-α production than do progressing controls. Together, these data suggest that the specificity of CD8(+) T cell responses differs depending on the immunological readout, with a 3.5-fold increase in breadth detected by including multiple parameters. Furthermore, the identification of epitopes that elicit polyfunctional responses reinforces the need for the comprehensive evaluation of HIV vaccine candidates, and these epitopes may represent novel targets for CMI-based vaccines.
Collapse
|
17
|
Innovative bioinformatic approaches for developing peptide-based vaccines against hypervariable viruses. Immunol Cell Biol 2010; 89:81-9. [PMID: 20458336 DOI: 10.1038/icb.2010.65] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The application of the fields of pharmacogenomics and pharmacogenetics to vaccine design has been recently labeled 'vaccinomics'. This newly named area of vaccine research, heavily intertwined with bioinformatics, seems to be leading the charge in developing novel vaccines for currently unmet medical needs against hypervariable viruses such as human immunodeficiency virus (HIV), hepatitis C and emerging avian and swine influenza. Some of the more recent bioinformatic approaches in the area of vaccine research include the use of epitope determination and prediction algorithms for exploring the use of peptide epitopes as vaccine immunogens. This paper briefly discusses and explores some current uses of bioinformatics in vaccine design toward the pursuit of peptide vaccines for hypervariable viruses. The various informatics and vaccine design strategies attempted by other groups toward hypervariable viruses will also be briefly examined, along with the strategy used by our group in the design and synthesis of peptide immunogens for candidate HIV and influenza vaccines.
Collapse
|
18
|
Lacerda M, Scheffler K, Seoighe C. Epitope discovery with phylogenetic hidden Markov models. Mol Biol Evol 2010; 27:1212-20. [PMID: 20089717 PMCID: PMC2857806 DOI: 10.1093/molbev/msq008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Existing methods for the prediction of immunologically active T-cell epitopes are based on the amino acid sequence or structure of pathogen proteins. Additional information regarding the locations of epitopes may be acquired by considering the evolution of viruses in hosts with different immune backgrounds. In particular, immune-dependent evolutionary patterns at sites within or near T-cell epitopes can be used to enhance epitope identification. We have developed a mutation-selection model of T-cell epitope evolution that allows the human leukocyte antigen (HLA) genotype of the host to influence the evolutionary process. This is one of the first examples of the incorporation of environmental parameters into a phylogenetic model and has many other potential applications where the selection pressures exerted on an organism can be related directly to environmental factors. We combine this novel evolutionary model with a hidden Markov model to identify contiguous amino acid positions that appear to evolve under immune pressure in the presence of specific host immune alleles and that therefore represent potential epitopes. This phylogenetic hidden Markov model provides a rigorous probabilistic framework that can be combined with sequence or structural information to improve epitope prediction. As a demonstration, we apply the model to a data set of HIV-1 protein-coding sequences and host HLA genotypes.
Collapse
Affiliation(s)
- Miguel Lacerda
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
| | | | | |
Collapse
|
19
|
Semeniuk CA, Capina RE, Mendoza MGR, Kimani J, Ball TB, Luo M, Plummer FA. Identification and characterization of HLA-A*0301 epitopes in HIV-1 gag proteins using a novel approach. J Immunol Methods 2009; 352:118-25. [PMID: 19903485 DOI: 10.1016/j.jim.2009.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 10/29/2009] [Accepted: 11/03/2009] [Indexed: 11/30/2022]
Abstract
Identification of CTL epitopes correlated to immune protection is important for the development of vaccines that enhance T-cell mediated immune responses. The correlation of positively selected amino acids (PS) of HIV-1 with host HLA alleles can identify regions containing potential T-cell epitopes. However, the specific epitopes have to be identified and characterized using overlapping peptides through T-cell functional assays. In this study we used a new approach to identify and characterize potential epitopes in the gag region containing PS mutations that significantly correlated with HLA-A*0301. The iTopia Epitope Discovery System was used to rapidly screen a panel of peptides overlapping the regions containing PS mutations and the peptides identified were assessed for relative affinity and complex stability. The potential epitopes were then validated by interferon gamma (IFN-gamma) ELISpot assays with patient PBMCs. Using this approach we identified/confirmed the predicted HLA-A*0301 epitopes in two regions of gag containing PS mutations V7I and K403R, one previously reported and the other novel. Five of the seven peptides that bound to A*0301 contained the K403R mutation and corresponded to the documented LARNCRAPRK-A3 supertype epitope. Two epitope variants, RASVLSGGK and RASILSGGK containing the V7I mutation, were identified using the iTopia Epitope Discovery System, however only the consensus variant (RAK9C) was confirmed using the ELISpot assay and it represents a novel A*0301 epitope.
Collapse
Affiliation(s)
- Christina A Semeniuk
- National Microbiology Laboratory, 1015 Arlington Street, Winnipeg, Manitoba R3E 3R2, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Clade-specific evolution mediated by HLA-B*57/5801 in human immunodeficiency virus type 1 clade A1 p24. J Virol 2009; 83:12636-42. [PMID: 19759140 DOI: 10.1128/jvi.01236-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
HLA-B*57-mediated selection pressure leads to a typical escape pathway in human immunodeficiency virus type 1 (HIV-1) CD8 epitopes such as TW10. Whether this T242N pathway is shared by all clades remains unknown. We therefore assessed the nature of HLA-B*57 selection in a large, observational Kenyan cohort where clades A1 and D predominate. While T242N was ubiquitous in clade D HLA-B*57(+) subjects, this mutation was rare (15%) in clade A1. Instead, P243T and I247L were selected by clade A1-infected HLA-B*57 subjects but not by HLA-B*5801(+) subjects. Our data suggest that clade A1 consensus proline at Gag residue 243 might represent an inherent block to T242N escape in clade A1. We confirmed immunologically that P243T and I247L likely represent escape mutations. HLA-B*57 evolution also differed between clades in the KF11 and IW9 epitopes. A better understanding of clade-specific evolution is important for the development of HIV vaccines in regions with multiple clades.
Collapse
|
21
|
McKinnon LR, Mao X, Kimani J, Wachihi C, Semeniuk C, Mendoza M, Liang B, Luo M, Fowke KR, Plummer FA, Ball TB. Epitope mapping of HIV-specific CD8+ T cells in a cohort dominated by clade A1 infection. PLoS One 2009; 4:e6965. [PMID: 19750221 PMCID: PMC2735720 DOI: 10.1371/journal.pone.0006965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 07/28/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND CD8+ T cell responses are often detected at large magnitudes in HIV-infected subjects, and eliciting these responses is the central aim of many HIV-1 vaccine strategies. Population differences in CD8+ T cell epitope specificity will need to be understood if vaccines are to be effective in multiple geographic regions. METHODOLOGY/PRINCIPAL FINDINGS In a large Kenyan cohort, we compared responsive CD8+ T cell HIV-1 Env overlapping peptides (OLPs) to Best Defined Epitopes (BDEs), many of which have been defined in clade B infection. While the majority of BDEs (69%) were recognized in this population, nearly half of responsive OLPs (47%) did not contain described epitopes. Recognition frequencies of BDEs were inversely correlated to epitopic sequence differences between clade A1 and BDE (P = 0.019), and positively selected residues were more frequent in "new" OLPs (without BDEs). We assessed the impact of HLA and TAP binding on epitope recognition frequencies, focusing on predicted and actual epitopes in the HLA B7 supertype. CONCLUSIONS/SIGNIFICANCE Although many previously described CD8 epitopes were recognized, several novel CD8 epitopes were defined in this population, implying that epitope mapping efforts have not been completely exhausted. Expansion of these studies will be critical to understand population differences in CD8 epitope recognition.
Collapse
Affiliation(s)
- Lyle R McKinnon
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tong JC, Ren EC. Immunoinformatics: current trends and future directions. Drug Discov Today 2009; 14:684-9. [PMID: 19379830 PMCID: PMC7108239 DOI: 10.1016/j.drudis.2009.04.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 03/30/2009] [Accepted: 04/06/2009] [Indexed: 01/28/2023]
Abstract
Immunoinformatics has recently emerged as a critical field for accelerating immunology research. Although still an evolving process, computational models now play instrumental roles, not only in directing the selection of key experiments, but also in the formulation of new testable hypotheses through detailed analysis of complex immunologic data that could not be achieved using traditional approaches alone. Immunomics, which combines traditional immunology with computer science, mathematics, chemistry, biochemistry, genomics and proteomics for the large-scale analysis of immune system function, offers new opportunities for future bench-to-bedside research. In this article, we review the latest trends and future directions of the field.
Collapse
Affiliation(s)
- Joo Chuan Tong
- Institute for Infocomm Research, 1 Fusionopolis Way, #21-01 Connexis, South Tower, Singapore 138632, Singapore.
| | | |
Collapse
|
23
|
Multiple T-cell epitopes overlap positively-selected residues in the p1 spacer protein of HIV-1 gag. AIDS 2009; 23:771-7. [PMID: 19287301 DOI: 10.1097/qad.0b013e32832995e0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVES The p1 region of HIV-1 gag contains the frameshift stem-loop, gag-pol transframe and a protease cleavage site that are crucial for viral assembly, replication and infectivity. Identifying and characterizing CD8+ epitopes that are under host immune selection in this region will help in designing effective vaccines for HIV-1. DESIGN An approach combining bioinformatical analysis and interferon gamma enzyme-linked immunosorbent spot (ELISPOT) assays is used to identify and characterize the epitopes. Potential human leukocyte antigen (HLA)-restricted epitopes were identified by correlating the positively-selected mutations with host HLA alleles. METHODS ELISPOT analysis with overlapping peptides was used to confirm and characterize the epitopes. RESULTS Four positively-selected residues were significantly associated with HLA class I alleles, including HLA B*1302 (K4R, P = 0.0008 and I5L, P = 0.0108), A*7401 (S9N, P = 0.0002) and A*30 genotypes (P7S, P = 0.009), suggesting epitopes restricted by these alleles are present in this region. ELISPOT analysis with patient peripheral blood mononuclear cells (PBMCs) identified seven novel epitopes restricted by the 3 alleles. Two types of epitopes were observed in this region based on the ELISPOT responses, Type I: the positively-selected variation does not affect CD8+ T-cell responses; and Type II: the CD8+ T-cell responses are determined by the epitope variants. CONCLUSION We identified and characterized seven novel CD8+ epitopes in the p1 spacer protein region. Classifying the effects of positively-selected variants on CD8+ T-cell responses will help in designing effective vaccines for HIV-1.
Collapse
|
24
|
Piantadosi A, Chohan B, Panteleeff D, Baeten JM, Mandaliya K, Ndinya-Achola JO, Overbaugh J. HIV-1 evolution in gag and env is highly correlated but exhibits different relationships with viral load and the immune response. AIDS 2009; 23:579-87. [PMID: 19516110 PMCID: PMC2727980 DOI: 10.1097/qad.0b013e328328f76e] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To evaluate relationships between HIV-1 evolution, including immune evasion, and markers of disease progression during chronic infection. DESIGN HIV-1 evolution and disease progression markers were evaluated over approximately 5 years of infection among 37 Kenyan women from a prospective, seroincident cohort. Evolution was measured in two genes, gag and env, which are primary targets of cellular and humoral immune responses, respectively. METHODS Proviral HIV-1 gag and env sequences were obtained from early and chronic infection when plasma viral load and CD4 cell counts were available. Human leukocyte antigen types were obtained to identify changes in gag cytotoxic T-lymphocyte epitopes. The breadth of the neutralizing antibody response was measured for each woman's plasma against a panel of six viruses. Tests of association were performed between virus evolution (diversity, divergence, and ratio of nonsynonymous to synonymous divergence), markers of disease progression (viral load and CD4 cell count), and immune parameters (gag cytotoxic T lymphocyte epitope mutation and neutralizing antibody breadth). RESULTS HIV-1 gag and env diversity and divergence were highly correlated in early and late infection. Divergence in gag was strongly correlated with viral load, largely because of the accumulation of synonymous changes. Mutation in gag cytotoxic T-lymphocyte epitopes was associated with higher viral load. There was evidence for adaptive evolution in env, but the extent of env evolution was only weakly associated with neutralizing antibody breadth. CONCLUSION Our results indicate that HIV-1 evolution in gag and env is highly correlated but exhibits gene-specific differences. The different immune pressures on these genes may partly explain differences in evolution and consequences for HIV-1 disease progression.
Collapse
Affiliation(s)
- Anne Piantadosi
- Division of Human Biology, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington, USA
- Graduate Program in Pathobiology, University of Washington, Seattle, Washington, USA
| | - Bhavna Chohan
- Division of Human Biology, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington, USA
- Graduate Program in Pathobiology, University of Washington, Seattle, Washington, USA
| | - Dana Panteleeff
- Division of Human Biology, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington, USA
| | - Jared M. Baeten
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | | | | | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington, USA
- Graduate Program in Pathobiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
25
|
Carlson JM, Brumme ZL, Rousseau CM, Brumme CJ, Matthews P, Kadie C, Mullins JI, Walker BD, Harrigan PR, Goulder PJR, Heckerman D. Phylogenetic dependency networks: inferring patterns of CTL escape and codon covariation in HIV-1 Gag. PLoS Comput Biol 2008; 4:e1000225. [PMID: 19023406 PMCID: PMC2579584 DOI: 10.1371/journal.pcbi.1000225] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 10/09/2008] [Indexed: 11/18/2022] Open
Abstract
HIV avoids elimination by cytotoxic T-lymphocytes (CTLs) through the evolution of escape mutations. Although there is mounting evidence that these escape pathways are broadly consistent among individuals with similar human leukocyte antigen (HLA) class I alleles, previous population-based studies have been limited by the inability to simultaneously account for HIV codon covariation, linkage disequilibrium among HLA alleles, and the confounding effects of HIV phylogeny when attempting to identify HLA-associated viral evolution. We have developed a statistical model of evolution, called a phylogenetic dependency network, that accounts for these three sources of confounding and identifies the primary sources of selection pressure acting on each HIV codon. Using synthetic data, we demonstrate the utility of this approach for identifying sites of HLA-mediated selection pressure and codon evolution as well as the deleterious effects of failing to account for all three sources of confounding. We then apply our approach to a large, clinically-derived dataset of Gag p17 and p24 sequences from a multicenter cohort of 1144 HIV-infected individuals from British Columbia, Canada (predominantly HIV-1 clade B) and Durban, South Africa (predominantly HIV-1 clade C). The resulting phylogenetic dependency network is dense, containing 149 associations between HLA alleles and HIV codons and 1386 associations among HIV codons. These associations include the complete reconstruction of several recently defined escape and compensatory mutation pathways and agree with emerging data on patterns of epitope targeting. The phylogenetic dependency network adds to the growing body of literature suggesting that sites of escape, order of escape, and compensatory mutations are largely consistent even across different clades, although we also identify several differences between clades. As recent case studies have demonstrated, understanding both the complexity and the consistency of immune escape has important implications for CTL-based vaccine design. Phylogenetic dependency networks represent a major step toward systematically expanding our understanding of CTL escape to diverse populations and whole viral genes.
Collapse
Affiliation(s)
- Jonathan M. Carlson
- eScience Group, Microsoft Research, Redmond, Washington, United States of America
- Department of Computer Science and Engineering, University of Washington, Seattle, Washington, United States of America
| | - Zabrina L. Brumme
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christine M. Rousseau
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Chanson J. Brumme
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Philippa Matthews
- Department of Paediatrics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Carl Kadie
- eScience Group, Microsoft Research, Redmond, Washington, United States of America
| | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Bruce D. Walker
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - P. Richard Harrigan
- B.C. Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Philip J. R. Goulder
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Paediatrics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - David Heckerman
- eScience Group, Microsoft Research, Redmond, Washington, United States of America
| |
Collapse
|