1
|
Hsu CY, Pallathadka H, Jasim SA, Rizaev J, Olegovich Bokov D, Hjazi A, Mahajan S, Mustafa YF, Husseen B, Jawad MA. Innovations in cancer immunotherapy: A comprehensive overview of recent breakthroughs and future directions. Crit Rev Oncol Hematol 2024; 206:104588. [PMID: 39667718 DOI: 10.1016/j.critrevonc.2024.104588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024] Open
Abstract
A major advance in cancer treatment has been the development and refinement of cancer immunotherapy. The discovery of immunotherapies for a wide range of cancers has revolutionized cancer treatment paradigms. Despite relapse or refractory disease, immunotherapy approaches can prolong the life expectancy of metastatic cancer patients. Multiple therapeutic approaches and agents are currently being developed to manipulate various aspects of the immune system. Oncolytic viruses, cancer vaccines, adoptive cell therapies, monoclonal antibodies, cytokine therapies, and inhibitors of immune checkpoints have all proven successful in clinical trials. There are several types of immunotherapeutic approaches available for treating cancer, and others are being tested in preclinical and clinical settings. Immunotherapy has proven successful, and many agents and strategies have been developed to improve its effectiveness. The purpose of this article is to present a comprehensive overview of current immunotherapy approaches used to treat cancer. Cancer immunotherapy advancements, emerging patterns, constraints, and potential future breakthroughs are also discussed.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ 85004, USA
| | | | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques department, College of Health and medical technology, University of Al-maarif, Anbar, Iraq.
| | - Jasur Rizaev
- Department of Public health and Healthcare management, Rector, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy named after A.P. Nelyubin, Sechenov First Moscow State Medical University, Russia; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shriya Mahajan
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab 140417, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Beneen Husseen
- Medical laboratory technique college, the Islamic University, Najaf, Iraq; Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| | | |
Collapse
|
2
|
Kciuk M, Yahya EB, Mohamed Ibrahim Mohamed M, Rashid S, Iqbal MO, Kontek R, Abdulsamad MA, Allaq AA. Recent Advances in Molecular Mechanisms of Cancer Immunotherapy. Cancers (Basel) 2023; 15:2721. [PMID: 37345057 DOI: 10.3390/cancers15102721] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Cancer is among the current leading causes of death worldwide, despite the novel advances that have been made toward its treatment, it is still considered a major public health concern. Considering both the serious impact of cancer on public health and the significant side effects and complications of conventional therapeutic options, the current strategies towards targeted cancer therapy must be enhanced to avoid undesired toxicity. Cancer immunotherapy has become preferable among researchers in recent years compared to conventional therapeutic options, such as chemotherapy, surgery, and radiotherapy. The understanding of how to control immune checkpoints, develop therapeutic cancer vaccines, genetically modify immune cells as well as enhance the activation of antitumor immune response led to the development of novel cancer treatments. In this review, we address recent advances in cancer immunotherapy molecular mechanisms. Different immunotherapeutic approaches are critically discussed, focusing on the challenges, potential risks, and prospects involving their use.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | | | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Muhammad Omer Iqbal
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Muhanad A Abdulsamad
- Department of Molecular Biology, Faculty of Science, Sabratha University, Sabratha 00218, Libya
| | - Abdulmutalib A Allaq
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| |
Collapse
|
3
|
Wang T, Wei F, Liu L, Sun Y, Song J, Wang M, Yang J, Li C, Liu J. Recombinant HA1-ΔfliC enhances adherence to respiratory epithelial cells and promotes the superiorly protective immune responses against H9N2 influenza virus in chickens. Vet Microbiol 2021; 262:109238. [PMID: 34560407 DOI: 10.1016/j.vetmic.2021.109238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/11/2021] [Indexed: 01/17/2023]
Abstract
H9N2 subtype avian influenza virus (AIV) is an ongoing threat causing substantial loss to the poultry industry and thus necessitating the development of safe and effective vaccines against AIV. Given that inactivated vaccines are less effective in activating the mucosal immune system, we aimed to generate a vaccine that can actively engage the mucosal immunity which is the front line of the immune system. We generated a group of flagellin-based hemagglutinin globular head (HA1) fusion proteins and characterized their immunogenicity and efficacy. We found that Salmonella typhimurium flagellin (fliC) lacking the hypervariable domain (called herein as HA1-ΔfliC) was recognized by TLR5 and induced a moderate innate immune response compared to N-terminus of fliC (HA1-fliC) and C-terminus of fliC (fliC-HA1). The HA1-ΔfliC protein had increased adherence to the nasal cavity and trachea than HA1-fliC and fliC-HA1 and significantly increased the HA-specific sIgA titers. Our in vivo results revealed that chickens treated with HA1-ΔfliC had a significantly reduced level of viral loads in the cloaca and throat compared with chickens treated with inactivated vaccine. Overall, these results revealed that HA1-ΔfliC can protect chickens against H9N2 AIV by eliciting the efficient mucosal immune responses.
Collapse
Affiliation(s)
- Tong Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100094, China
| | - Fanhua Wei
- College of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Litao Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100094, China
| | - Yan Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100094, China
| | - Jingwei Song
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100094, China
| | - Mingyang Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100094, China
| | - Jizhe Yang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100094, China
| | - Chengye Li
- College of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100094, China.
| |
Collapse
|
4
|
Hatscher L, Amon L, Heger L, Dudziak D. Inflammasomes in dendritic cells: Friend or foe? Immunol Lett 2021; 234:16-32. [PMID: 33848562 DOI: 10.1016/j.imlet.2021.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/14/2022]
Abstract
Inflammasomes are cytosolic multiprotein complexes that crucially contribute to host defense against pathogens but are also involved in the pathogenesis of autoinflammatory diseases. Inflammasome formation leads to activation of effector caspases (caspase-1, 4, 5, or 11), the proteolytic maturation of IL-1β and IL-18 as well as cleavage of the pore-forming protein Gasdermin D. Dendritic cells are major regulators of immune responses as they bridge innate and adaptive immunity. We here summarize the current knowledge on inflammasome expression and formation in murine bone marrow-, human monocyte-derived as well as murine and human primary dendritic cells. Further, we discuss both, the beneficial and detrimental, involvement of inflammasome activation in dendritic cells in cancer, infections, and autoimmune diseases. As inflammasome activation is typically accompanied by Gasdermin d-mediated pyroptosis, which is an inflammatory form of programmed cell death, inflammasome formation in dendritic cells seems ill-advised. Therefore, we propose that hyperactivation, which is inflammasome activation without the induction of pyroptosis, may be a general model of inflammasome activation in dendritic cells to enhance Th1, Th17 as well as cytotoxic T cell responses.
Collapse
Affiliation(s)
- Lukas Hatscher
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany.
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany; Medical Immunology Campus Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Germany; Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Germany.
| |
Collapse
|
5
|
Abstract
A fundamental concept in immunology is that the innate immune system initiates or instructs downstream adaptive immune responses. Inflammasomes are central players in innate immunity to pathogens, but how inflammasomes shape adaptive immunity is complex and relatively poorly understood. Here we highlight recent work on the interplay between inflammasomes and adaptive immunity. We address how inflammasome-dependent release of cytokines and antigen activates, shapes or even inhibits adaptive immune responses. We consider how distinct tissue or cellular contexts may alter the effects of inflammasome activation on adaptive immunity and how this contributes to beneficial or detrimental outcomes in infectious diseases, cancer and autoimmunity. We aspire to provide a framework for thinking about inflammasomes and their connection to the adaptive immune response.
Collapse
|
6
|
A novel oncolytic virus engineered with PD-L1 scFv effectively inhibits tumor growth in a mouse model. Cell Mol Immunol 2019; 16:780-782. [PMID: 31363172 DOI: 10.1038/s41423-019-0264-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023] Open
|
7
|
Abstract
INTRODUCTION Bacterial flagellin, as a pathogen-associated molecular pattern (PAMP), can activate both innate and adaptive immunity. Its unique structural characteristics endow an effective and flexible adjuvant activity, which allow the design of different types of vaccine strategies to prevent various diseases. This review will discuss recent progress in the mechanism of action of flagellin and its prospects for use as a vaccine adjuvant. AREAS COVERED Herein we summarize various types of information related to flagellin adjuvants from PubMed, including structures, signaling pathways, natural immunity, and extensive applications in vaccines, and it discusses the immunogenicity, safety, and efficacy of flagellin-adjuvanted vaccines in clinical trials. EXPERT COMMENTARY It is widely accepted that as an adjuvant, flagellin can induce an enhanced antigen-specific immune response. Flagellin adjuvants will allow more effective flagellin-based vaccines to enter clinical trials. Furthermore, vaccine formulations containing PAMPs are crucial to exert the maximum potential of vaccine antigens. Therefore, combinations of flagellin-adjuvanted vaccines with other adjuvants that act in a synergistic manner, particularly TLR ligands, represent a promising method for tailoring targeted vaccines to meet specific requirements.
Collapse
Affiliation(s)
- Baofeng Cui
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China.,b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , China
| | - Xinsheng Liu
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China.,b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , China
| | - Yuzhen Fang
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China.,b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , China
| | - Peng Zhou
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China.,b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , China
| | - Yongguang Zhang
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China.,b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , China
| | - Yonglu Wang
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China.,b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , China
| |
Collapse
|
8
|
Immunogenicity in African Green Monkeys of M Protein Mutant Vesicular Stomatitis Virus Vectors and Contribution of Vector-Encoded Flagellin. Vaccines (Basel) 2018; 6:vaccines6010016. [PMID: 29562688 PMCID: PMC5874657 DOI: 10.3390/vaccines6010016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 12/02/2022] Open
Abstract
Recombinant vesicular stomatitis virus (VSV) is a promising platform for vaccine development. M51R VSV, an attenuated, M protein mutant strain, is an effective inducer of Type I interferon and dendritic cell (DC) maturation, which are desirable properties to exploit for vaccine design. We have previously evaluated M51R VSV (M51R) and M51R VSV that produces flagellin (M51R-F) as vaccine vectors using murine models, and found that flagellin enhanced DC activation and VSV-specific antibody production after low-dose vaccination. In this report, the immunogenicity of M51R vectors and the adjuvant effect of virus-produced flagellin were evaluated in nonhuman primates following high-dose (108 pfu) and low-dose (105 pfu) vaccination. A single intramuscular vaccination of African green monkeys with M51R or M51R-F induced VSV-specific, dose-dependent humoral immune responses. Flagellin induced a significant increase in antibody production (IgM, IgG and neutralizing antibody) at the low vaccination dose. A VSV-specific cellular response was detected at 6 weeks post-vaccination, but was neither dose-dependent nor enhanced by flagellin; similar numbers of VSV-specific, IFNγ-producing cells were detected in lymph node and spleen of all animals. These results indicate that virus-directed, intracellular flagellin production may improve VSV-based vaccines encoding heterologous antigens by lowering the dose required to achieve humoral immunity.
Collapse
|
9
|
Melzer MK, Lopez-Martinez A, Altomonte J. Oncolytic Vesicular Stomatitis Virus as a Viro-Immunotherapy: Defeating Cancer with a "Hammer" and "Anvil". Biomedicines 2017; 5:E8. [PMID: 28536351 PMCID: PMC5423493 DOI: 10.3390/biomedicines5010008] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/26/2017] [Accepted: 02/03/2017] [Indexed: 12/17/2022] Open
Abstract
Oncolytic viruses have gained much attention in recent years, due, not only to their ability to selectively replicate in and lyse tumor cells, but to their potential to stimulate antitumor immune responses directed against the tumor. Vesicular stomatitis virus (VSV), a negative-strand RNA virus, is under intense development as an oncolytic virus due to a variety of favorable properties, including its rapid replication kinetics, inherent tumor specificity, and its potential to elicit a broad range of immunomodulatory responses to break immune tolerance in the tumor microenvironment. Based on this powerful platform, a multitude of strategies have been applied to further improve the immune-stimulating potential of VSV and synergize these responses with the direct oncolytic effect. These strategies include: 1. modification of endogenous virus genes to stimulate interferon induction; 2. virus-mediated expression of cytokines or immune-stimulatory molecules to enhance anti-tumor immune responses; 3. vaccination approaches to stimulate adaptive immune responses against a tumor antigen; 4. combination with adoptive immune cell therapy for potentially synergistic therapeutic responses. A summary of these approaches will be presented in this review.
Collapse
Affiliation(s)
- Michael Karl Melzer
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Arturo Lopez-Martinez
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Jennifer Altomonte
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| |
Collapse
|
10
|
Novel Immunomodulatory Flagellin-Like Protein FlaC in Campylobacter jejuni and Other Campylobacterales. mSphere 2015; 1:mSphere00028-15. [PMID: 27303676 PMCID: PMC4863622 DOI: 10.1128/msphere.00028-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 10/28/2015] [Indexed: 11/24/2022] Open
Abstract
Flagellins not only are important for bacterial motility but are major bacterial proteins that can modulate host responses via Toll-like receptor 5 (TLR5) or other pattern recognition receptors. Campylobacterales colonizing the intestinal tracts of different host species harbor a gene coding for an unusual flagellin, FlaC, that is not involved in motility but is secreted and possesses a chimeric amino acid sequence composed of TLR5-activating and non-TLR5-activating flagellin sequences. Campylobacter jejuni FlaC activates cells to increase in cytokine expression in chicken and human cells, promotes cross-tolerance to TLR4 ligands, and alters chicken cecal microbiota. We propose that FlaC is a secreted effector flagellin that has specifically evolved to modulate the immune response in the intestinal tract in the presence of the resident microbiota and may contribute to bacterial persistence. The results also strengthen the role of the flagellar type III apparatus as a functional secretion system for bacterial effector proteins. The human diarrheal pathogens Campylobacter jejuni and Campylobacter coli interfere with host innate immune signaling by different means, and their flagellins, FlaA and FlaB, have a low intrinsic property to activate the innate immune receptor Toll-like receptor 5 (TLR5). We have investigated here the hypothesis that the unusual secreted, flagellin-like molecule FlaC present in C. jejuni, C. coli, and other Campylobacterales might activate cells via TLR5 and interact with TLR5. FlaC shows striking sequence identity in its D1 domains to TLR5-activating flagellins of other bacteria, such as Salmonella, but not to nonstimulating Campylobacter flagellins. We overexpressed and purified FlaC and tested its immunostimulatory properties on cells of human and chicken origin. Treatment of cells with highly purified FlaC resulted in p38 activation. FlaC directly interacted with TLR5. Preincubation with FlaC decreased the responsiveness of chicken and human macrophage-like cells toward the bacterial TLR4 agonist lipopolysaccharide (LPS), suggesting that FlaC mediates cross-tolerance. C. jejuni flaC mutants induced an increase of cell responses in comparison to those of the wild type, which was suppressed by genetic complementation. Supplementing excess purified FlaC likewise reduced the cellular response to C. jejuni. In vivo, the administration of ultrapure FlaC led to a decrease in cecal interleukin 1β (IL-1β) expression and a significant change of the cecal microbiota in chickens. We propose that Campylobacter spp. have evolved a novel type of secreted immunostimulatory flagellin-like effector in order to specifically modulate host responses, for example toward other pattern recognition receptor (PRR) ligands, such as LPS. IMPORTANCE Flagellins not only are important for bacterial motility but are major bacterial proteins that can modulate host responses via Toll-like receptor 5 (TLR5) or other pattern recognition receptors. Campylobacterales colonizing the intestinal tracts of different host species harbor a gene coding for an unusual flagellin, FlaC, that is not involved in motility but is secreted and possesses a chimeric amino acid sequence composed of TLR5-activating and non-TLR5-activating flagellin sequences. Campylobacter jejuni FlaC activates cells to increase in cytokine expression in chicken and human cells, promotes cross-tolerance to TLR4 ligands, and alters chicken cecal microbiota. We propose that FlaC is a secreted effector flagellin that has specifically evolved to modulate the immune response in the intestinal tract in the presence of the resident microbiota and may contribute to bacterial persistence. The results also strengthen the role of the flagellar type III apparatus as a functional secretion system for bacterial effector proteins.
Collapse
|