1
|
Bhoobalan-Chitty Y, Xu S, Martinez-Alvarez L, Karamycheva S, Makarova KS, Koonin EV, Peng X. Regulatory sequence-based discovery of anti-defense genes in archaeal viruses. Nat Commun 2024; 15:3699. [PMID: 38698035 PMCID: PMC11065993 DOI: 10.1038/s41467-024-48074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
In silico identification of viral anti-CRISPR proteins (Acrs) has relied largely on the guilt-by-association method using known Acrs or anti-CRISPR associated proteins (Acas) as the bait. However, the low number and limited spread of the characterized archaeal Acrs and Aca hinders our ability to identify Acrs using guilt-by-association. Here, based on the observation that the few characterized archaeal Acrs and Aca are transcribed immediately post viral infection, we hypothesize that these genes, and many other unidentified anti-defense genes (ADG), are under the control of conserved regulatory sequences including a strong promoter, which can be used to predict anti-defense genes in archaeal viruses. Using this consensus sequence based method, we identify 354 potential ADGs in 57 archaeal viruses and 6 metagenome-assembled genomes. Experimental validation identified a CRISPR subtype I-A inhibitor and the first virally encoded inhibitor of an archaeal toxin-antitoxin based immune system. We also identify regulatory proteins potentially akin to Acas that can facilitate further identification of ADGs combined with the guilt-by-association approach. These results demonstrate the potential of regulatory sequence analysis for extensive identification of ADGs in viruses of archaea and bacteria.
Collapse
Affiliation(s)
| | - Shuanshuan Xu
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | | | - Svetlana Karamycheva
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD, USA
| | - Xu Peng
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
2
|
Overton MS, Manuel RD, Lawrence CM, Snyder JC. Viruses of the Turriviridae: an emerging model system for studying archaeal virus-host interactions. Front Microbiol 2023; 14:1258997. [PMID: 37808280 PMCID: PMC10551542 DOI: 10.3389/fmicb.2023.1258997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Viruses have played a central role in the evolution and ecology of cellular life since it first arose. Investigations into viral molecular biology and ecological dynamics have propelled abundant progress in our understanding of living systems, including genetic inheritance, cellular signaling and trafficking, and organismal development. As well, the discovery of viral lineages that infect members of all three domains suggest that these lineages originated at the earliest stages of biological evolution. Research into these viruses is helping to elucidate the conditions under which life arose, and the dynamics that directed its early development. Archaeal viruses have only recently become a subject of intense study, but investigations have already produced intriguing and exciting results. STIV was originally discovered in Yellowstone National Park and has been the focus of concentrated research. Through this research, a viral genetic system was created, a novel lysis mechanism was discovered, and the interaction of the virus with cellular ESCRT machinery was revealed. This review will summarize the discoveries within this group of viruses and will also discuss future work.
Collapse
Affiliation(s)
- Michael S. Overton
- Department of Biological Sciences, Cal Poly Pomona, Pomona, CA, United States
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert D. Manuel
- Department of Biological Sciences, Cal Poly Pomona, Pomona, CA, United States
| | - C. Martin Lawrence
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Jamie C. Snyder
- Department of Biological Sciences, Cal Poly Pomona, Pomona, CA, United States
| |
Collapse
|
3
|
Zhou Y, Zhou L, Yan S, Chen L, Krupovic M, Wang Y. Diverse viruses of marine archaea discovered using metagenomics. Environ Microbiol 2023; 25:367-382. [PMID: 36385454 DOI: 10.1111/1462-2920.16287] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
During the past decade, metagenomics became a method of choice for the discovery of novel viruses. However, host assignment for uncultured viruses remains challenging, especially for archaeal viruses, which are grossly undersampled compared to viruses of bacteria and eukaryotes. Here, we assessed the utility of CRISPR spacer targeting, tRNA gene matching and homology searches for viral signature proteins, such as major capsid proteins, for the assignment of archaeal hosts and validated these approaches on metaviromes from Yangshan Harbor (YSH). We report 35 new genomes of viruses which could be confidently assigned to hosts representing diverse lineages of marine archaea. We show that the archaeal YSH virome is highly diverse, with some viruses enriching the previously described virus groups, such as magroviruses of Marine Group II Archaea (Poseidoniales), and others representing novel groups of marine archaeal viruses. Metagenomic recruitment of Tara Oceans datasets on the YSH viral genomes demonstrated the presence of YSH Poseidoniales and Nitrososphaeria viruses in the global oceans, but also revealed the endemic YSH-specific viral lineages. Furthermore, our results highlight the relationship between the soil and marine thaumarchaeal viruses. We propose three new families within the class Caudoviricetes for the classification of the five complete viral genomes predicted to replicate in marine Poseidoniales and Nitrososphaeria, two ecologically important and widespread archaeal groups. This study illustrates the utility of viral metagenomics in exploring the archaeal virome and provides new insights into the diversity, distribution and evolution of marine archaeal viruses.
Collapse
Affiliation(s)
- Yifan Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Liang Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shuling Yan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Entwicklungsgenetik und Zellbiologie der Tiere, Philipps-Universität Marburg, Marburg, Germany
| | - Lanming Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Yongjie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
4
|
Spindle-shaped archaeal viruses evolved from rod-shaped ancestors to package a larger genome. Cell 2022; 185:1297-1307.e11. [PMID: 35325592 PMCID: PMC9018610 DOI: 10.1016/j.cell.2022.02.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/23/2022] [Accepted: 02/15/2022] [Indexed: 11/22/2022]
Abstract
Spindle- or lemon-shaped viruses infect archaea in diverse environments. Due to the highly pleomorphic nature of these virions, which can be found with cylindrical tails emanating from the spindle-shaped body, structural studies of these capsids have been challenging. We have determined the atomic structure of the capsid of Sulfolobus monocaudavirus 1, a virus that infects hosts living in nearly boiling acid. A highly hydrophobic protein, likely integrated into the host membrane before the virions assemble, forms 7 strands that slide past each other in both the tails and the spindle body. We observe the discrete steps that occur as the tail tubes expand, and these are due to highly conserved quasiequivalent interactions with neighboring subunits maintained despite significant diameter changes. Our results show how helical assemblies can vary their diameters, becoming nearly spherical to package a larger genome and suggest how all spindle-shaped viruses have evolved from archaeal rod-like viruses.
Collapse
|
5
|
Turzynski V, Monsees I, Moraru C, Probst AJ. Imaging Techniques for Detecting Prokaryotic Viruses in Environmental Samples. Viruses 2021; 13:2126. [PMID: 34834933 PMCID: PMC8622608 DOI: 10.3390/v13112126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/28/2022] Open
Abstract
Viruses are the most abundant biological entities on Earth with an estimate of 1031 viral particles across all ecosystems. Prokaryotic viruses-bacteriophages and archaeal viruses-influence global biogeochemical cycles by shaping microbial communities through predation, through the effect of horizontal gene transfer on the host genome evolution, and through manipulating the host cellular metabolism. Imaging techniques have played an important role in understanding the biology and lifestyle of prokaryotic viruses. Specifically, structure-resolving microscopy methods, for example, transmission electron microscopy, are commonly used for understanding viral morphology, ultrastructure, and host interaction. These methods have been applied mostly to cultivated phage-host pairs. However, recent advances in environmental genomics have demonstrated that the majority of viruses remain uncultivated, and thus microscopically uncharacterized. Although light- and structure-resolving microscopy of viruses from environmental samples is possible, quite often the link between the visualization and the genomic information of uncultivated prokaryotic viruses is missing. In this minireview, we summarize the current state of the art of imaging techniques available for characterizing viruses in environmental samples and discuss potential links between viral imaging and environmental genomics for shedding light on the morphology of uncultivated viruses and their lifestyles in Earth's ecosystems.
Collapse
Affiliation(s)
- Victoria Turzynski
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany;
| | - Indra Monsees
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany;
| | - Cristina Moraru
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany;
| | - Alexander J. Probst
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany;
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| |
Collapse
|
6
|
Rahlff J, Turzynski V, Esser SP, Monsees I, Bornemann TLV, Figueroa-Gonzalez PA, Schulz F, Woyke T, Klingl A, Moraru C, Probst AJ. Lytic archaeal viruses infect abundant primary producers in Earth's crust. Nat Commun 2021; 12:4642. [PMID: 34330907 PMCID: PMC8324899 DOI: 10.1038/s41467-021-24803-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
The continental subsurface houses a major portion of life's abundance and diversity, yet little is known about viruses infecting microbes that reside there. Here, we use a combination of metagenomics and virus-targeted direct-geneFISH (virusFISH) to show that highly abundant carbon-fixing organisms of the uncultivated genus Candidatus Altiarchaeum are frequent targets of previously unrecognized viruses in the deep subsurface. Analysis of CRISPR spacer matches display resistances of Ca. Altiarchaea against eight predicted viral clades, which show genomic relatedness across continents but little similarity to previously identified viruses. Based on metagenomic information, we tag and image a putatively viral genome rich in protospacers using fluorescence microscopy. VirusFISH reveals a lytic lifestyle of the respective virus and challenges previous predictions that lysogeny prevails as the dominant viral lifestyle in the subsurface. CRISPR development over time and imaging of 18 samples from one subsurface ecosystem suggest a sophisticated interplay of viral diversification and adapting CRISPR-mediated resistances of Ca. Altiarchaeum. We conclude that infections of primary producers with lytic viruses followed by cell lysis potentially jump-start heterotrophic carbon cycling in these subsurface ecosystems.
Collapse
Affiliation(s)
- Janina Rahlff
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Victoria Turzynski
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany
| | - Sarah P Esser
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany
| | - Indra Monsees
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany
| | - Till L V Bornemann
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany
| | - Perla Abigail Figueroa-Gonzalez
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany
| | | | - Tanja Woyke
- DOE Joint Genome Institute, Berkeley, CA, USA
| | - Andreas Klingl
- Plant Development & Electron Microscopy, Biocenter LMU Munich, Planegg-Martinsried, Germany
| | - Cristina Moraru
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky-University Oldenburg, Oldenburg, Germany
| | - Alexander J Probst
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
7
|
Castillo YM, Forn I, Yau S, Morán XAG, Alonso-Sáez L, Arandia-Gorostidi N, Vaqué D, Sebastián M. Seasonal dynamics of natural Ostreococcus viral infection at the single cell level using VirusFISH. Environ Microbiol 2021; 23:3009-3019. [PMID: 33817943 DOI: 10.1111/1462-2920.15504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/03/2021] [Indexed: 11/28/2022]
Abstract
Ostreococcus is a cosmopolitan marine genus of phytoplankton found in mesotrophic and oligotrophic waters, and the smallest free-living eukaryotes known to date, with a cell diameter close to 1 μm. Ostreococcus has been extensively studied as a model system to investigate viral-host dynamics in culture, yet the impact of viruses in naturally occurring populations is largely unknown. Here, we used Virus Fluorescence in situ Hybridization (VirusFISH) to visualize and quantify viral-host dynamics in natural populations of Ostreococcus during a seasonal cycle in the central Cantabrian Sea (Southern Bay of Biscay). Ostreococcus were predominantly found during summer and autumn at surface and 50 m depth, in coastal, mid-shelf and shelf waters, representing up to 21% of the picoeukaryotic communities. Viral infection was only detected in surface waters, and its impact was variable but highest from May to July and November to December, when up to half of the population was infected. Metatranscriptomic data available from the mid-shelf station unveiled that the Ostreococcus population was dominated by the species O. lucimarinus. This work represents a proof of concept that the VirusFISH technique can be used to quantify the impact of viruses on targeted populations of key microbes from complex natural communities.
Collapse
Affiliation(s)
- Yaiza M Castillo
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain
| | - Irene Forn
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain
| | - Sheree Yau
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain
| | - Xosé Anxelu G Morán
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Laura Alonso-Sáez
- Centro Oceanográfico de Gijón/Xixón, IEO, Gijón/Xixón, Spain.,AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, Sukarrieta, Spain
| | - Néstor Arandia-Gorostidi
- Centro Oceanográfico de Gijón/Xixón, IEO, Gijón/Xixón, Spain.,Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Dolors Vaqué
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain
| | - Marta Sebastián
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Barcelona, Spain.,Institute of Oceanography and Global Change (IOCAG), University of Las Palmas de Gran Canaria (ULPGC), Telde, Spain
| |
Collapse
|
8
|
Baquero DP, Liu Y, Wang F, Egelman EH, Prangishvili D, Krupovic M. Structure and assembly of archaeal viruses. Adv Virus Res 2020; 108:127-164. [PMID: 33837715 DOI: 10.1016/bs.aivir.2020.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Viruses of archaea represent one of the most enigmatic parts of the virosphere. Most of the characterized archaeal viruses infect extremophilic hosts and display remarkable diversity of virion morphotypes, many of which have never been observed among bacteriophages or viruses of eukaryotes. However, recent environmental studies have shown that archaeal viruses are widespread also in moderate ecosystems, where they play an important ecological role by influencing the turnover of microbial communities, with a global impact on the carbon and nitrogen cycles. In this review, we summarize recent advances in understanding the molecular details of virion organization and assembly of archaeal viruses. We start by briefly introducing the 20 officially recognized families of archaeal viruses and then outline the similarities and differences of archaeal virus assembly with the morphogenesis pathways used by bacterial and eukaryotic viruses, and discuss the evolutionary implications of these observations. Generally, the assembly of the icosahedral archaeal viruses closely follows the mechanisms employed by evolutionarily related bacterial and eukaryotic viruses with the HK97 fold and double jelly-roll major capsid proteins, emphasizing the overall conservation of these pathways over billions of years of evolution. By contrast, archaea-specific viruses employ unique virion assembly mechanisms. We also highlight some of the molecular adaptations underlying the stability of archaeal viruses in extreme environments. Despite considerable progress during the past few years, the archaeal virosphere continues to represent one of the least studied parts of the global virome, with many molecular features awaiting to be discovered and characterized.
Collapse
Affiliation(s)
- Diana P Baquero
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, Paris, France; Sorbonne Université, Collège Doctoral, Paris, France
| | - Ying Liu
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, Paris, France
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - David Prangishvili
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, Paris, France; Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Mart Krupovic
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, Paris, France.
| |
Collapse
|
9
|
Affiliation(s)
- Jennifer Wirth
- Plant Science and Plant Pathology, Montana State University, Bozeman, Montana, United States of America
| | - Mark Young
- Plant Science and Plant Pathology, Montana State University, Bozeman, Montana, United States of America
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, United States of America
- * E-mail:
| |
Collapse
|
10
|
An Uncultivated Virus Infecting a Nanoarchaeal Parasite in the Hot Springs of Yellowstone National Park. J Virol 2020; 94:JVI.01213-19. [PMID: 31666377 DOI: 10.1128/jvi.01213-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
The Nanoarchaeota are small cells with reduced genomes that are found attached to and dependent on a second archaeal cell for their growth and replication. Initially found in marine hydrothermal environments and subsequently in terrestrial geothermal hot springs, the Nanoarchaeota species that have been described are obligate ectobionts, each with a different host species. However, no viruses had been described that infect the Nanoarchaeota. Here, we identify a virus infecting Nanoarchaeota by the use of a combination of viral metagenomic and bioinformatic approaches. This virus, tentatively named Nanoarchaeota Virus 1 (NAV1), consists of a 35.6-kb circular DNA genome coding for 52 proteins. We further demonstrate that this virus is broadly distributed among Yellowstone National Park hot springs. NAV1 is one of the first examples of a virus infecting a single-celled organism that is itself an ectobiont of another single-celled organism.IMPORTANCE Here, we present evidence of the first virus found to infect Nanoarchaeota, a symbiotic archaean found in acidic hot springs of Yellowstone National Park, USA. Using culture-independent techniques, we provide the genome sequence and identify the archaeal host species of a novel virus, NAV1. NAV1 is the first example of a virus infecting an archaeal species that is itself an obligate symbiont and dependent on a second host organism for growth and cellular replication. On the basis of annotation of the NAV1 genome, we propose that this virus is the founding member of a new viral family, further demonstrating the remarkable genetic diversity of archaeal viruses.
Collapse
|
11
|
Bastian FO, Lynch J, Wang WH. Novel Spiroplasma sp. Isolated From CWD Is an Extreme Bacterial Thermoacidophile That Survives Autoclaving, Boiling, Formalin Treatment, and Significant Gamma Irradiation. J Neuropathol Exp Neurol 2019; 78:993-1001. [PMID: 31512718 DOI: 10.1093/jnen/nlz081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/12/2019] [Accepted: 08/05/2019] [Indexed: 11/14/2022] Open
Abstract
Rapid spreading of chronic wasting disease (CWD) in wildlife and captive cervid populations has exposed lack of progress in dealing with the transmissible spongiform encephalopathies (TSE) of man and animals. Since the TSE transmissible agent was resistant to extremes in environmental and chemical treatments, focus was on an unconventional agent including the prion theory. Recent breakthrough research has revealed consistent isolation of a novel Spiroplasma sp. from TSE-affected tissues that propagates in cell-free media and on agar. Here, we developed a live culture assay to test whether the CWD spiroplasma isolate possessed unconventional biologic properties akin to those of the transmissible agent of TSE. The CWD spiroplasma isolate survived boiling for 1 hour, standard liquid autoclaving, 10% formalin treatment overnight, and gamma irradiation of 20 kGy. The CWD spiroplasma isolate is an acidophile, growing best at pH 2. The biologic resistance of the CWD spiroplasma isolate may be due to unusual phage-like viruses found in the bacterial pellet or to DNA-protein binding. Because the CWD spiroplasma isolate has biologic properties consistent with the causal agent of the TSEs, TSE research focus should be redirected to development of diagnostic tests and preventive vaccines for control of CWD based upon the bacterium.
Collapse
Affiliation(s)
- Frank O Bastian
- Bastian Laboratory for Neurological Disease Research, New Orleans, Louisiana.,Texas Tech University, Department of Environmental Toxicology, Lubbock, Texas.,Tulane Medical School Department of Pathology, New Orleans, Louisiana
| | - James Lynch
- Bastian Laboratory for Neurological Disease Research, New Orleans, Louisiana
| | - Wei-Hsung Wang
- Radiation Safety Office/Center for Energy Studies, Louisiana State University, Louisiana
| |
Collapse
|
12
|
Survey of high-resolution archaeal virus structures. Curr Opin Virol 2019; 36:74-83. [PMID: 31238245 DOI: 10.1016/j.coviro.2019.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/30/2019] [Accepted: 05/09/2019] [Indexed: 01/21/2023]
Abstract
Archaeal viruses exhibit diverse morphologies whose structures are just beginning to be explored at high-resolution. In this review, we update recent findings on archaeal structural proteins and virion architectures and place them in the biological context in which these viruses replicate. We conclude that many of the unusual structural features and dynamics of archaeal viruses aid their replication and survival in the chemically harsh environments, in which they replicate. Furthermore, we should expect to find more novel features from examining the high-resolution structures of additional archaeal viruses.
Collapse
|
13
|
Amenabar MJ, Colman DR, Poudel S, Roden EE, Boyd ES. Electron acceptor availability alters carbon and energy metabolism in a thermoacidophile. Environ Microbiol 2018; 20:2523-2537. [PMID: 29749696 DOI: 10.1111/1462-2920.14270] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 04/27/2018] [Accepted: 05/04/2018] [Indexed: 12/17/2022]
Abstract
The thermoacidophilic Acidianus strain DS80 displays versatility in its energy metabolism and can grow autotrophically and heterotrophically with elemental sulfur (S°), ferric iron (Fe3+ ) or oxygen (O2 ) as electron acceptors. Here, we show that autotrophic and heterotrophic growth with S° as the electron acceptor is obligately dependent on hydrogen (H2 ) as electron donor; organic substrates such as acetate can only serve as a carbon source. In contrast, organic substrates such as acetate can serve as electron donor and carbon source for Fe3+ or O2 grown cells. During growth on S° or Fe3+ with H2 as an electron donor, the amount of CO2 assimilated into biomass decreased when cultures were provided with acetate. The addition of CO2 to cultures decreased the amount of acetate mineralized and assimilated and increased cell production in H2 /Fe3+ grown cells but had no effect on H2 /S° grown cells. In acetate/Fe3+ grown cells, the presence of H2 decreased the amount of acetate mineralized as CO2 in cultures compared to those without H2 . These results indicate that electron acceptor availability constrains the variety of carbon sources used by this strain. Addition of H2 to cultures overcomes this limitation and alters heterotrophic metabolism.
Collapse
Affiliation(s)
| | - Daniel R Colman
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Saroj Poudel
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Eric E Roden
- Department of Geosciences, University of Wisconsin, Madison, WI, USA.,NASA Astrobiology Institute, Mountain View, CA, USA
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.,NASA Astrobiology Institute, Mountain View, CA, USA
| |
Collapse
|
14
|
|
15
|
Amenabar MJ, Boyd ES. Mechanisms of Mineral Substrate Acquisition in a Thermoacidophile. Appl Environ Microbiol 2018; 84:e00334-18. [PMID: 29625980 PMCID: PMC5981063 DOI: 10.1128/aem.00334-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/02/2018] [Indexed: 01/01/2023] Open
Abstract
The thermoacidophile Acidianus is widely distributed in Yellowstone National Park hot springs that span large gradients in pH (1.60 to 4.84), temperature (42 to 90°C), and mineralogical composition. To characterize the potential role of flexibility in mineral-dependent energy metabolism in contributing to the widespread ecological distribution of this organism, we characterized the spectrum of minerals capable of supporting metabolism and the mechanisms that it uses to access these minerals. The energy metabolism of Acidianus strain DS80 was supported by elemental sulfur (S0), a variety of iron (hydr)oxides, and arsenic sulfide. Strain DS80 reduced, oxidized, and disproportionated S0 Cells growing via S0 reduction and disproportionation did not require direct access to the mineral to reduce it, whereas cells growing via S0 oxidation did require direct access, observations that are attributable to the role of H2S produced by S0 reduction/disproportionation in solubilizing and increasing the bioavailability of S0 Cells growing via iron (hydr)oxide reduction did not require access to the mineral, suggesting that the cells reduce Fe(III) that is being leached by the acidic growth medium. Cells growing via oxidation of arsenic sulfide with Fe(III) did not require access to the mineral to grow. The stoichiometry of reactants to products indicates that cells oxidize soluble As(III) released from oxidation of arsenic sulfide by aqueous Fe(III). Taken together, these observations underscore the importance of feedbacks between abiotic and biotic reactions in influencing the bioavailability of mineral substrates and defining ecological niches capable of supporting microbial metabolism.IMPORTANCE Mineral sources of electron donor and acceptor that support microbial metabolism are abundant in the natural environment. However, the spectrum of minerals capable of supporting a given microbial strain and the mechanisms that are used to access these minerals in support of microbial energy metabolism are often unknown, in particular among thermoacidophiles. Here, we show that the thermoacidophile Acidianus strain DS80 is adapted to use a variety of iron (hydro)oxide minerals, elemental sulfur, and arsenic sulfide to support growth. Cells rely on a complex interplay of abiologically and biologically catalyzed reactions that increase the solubility or bioavailability of minerals, thereby enabling their use in microbial metabolism.
Collapse
Affiliation(s)
- Maximiliano J Amenabar
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
- NASA Astrobiology Institute, Mountain View, California, USA
| |
Collapse
|
16
|
Archaeal Viruses from High-Temperature Environments. Genes (Basel) 2018; 9:genes9030128. [PMID: 29495485 PMCID: PMC5867849 DOI: 10.3390/genes9030128] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/19/2018] [Accepted: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
Archaeal viruses are some of the most enigmatic viruses known, due to the small number that have been characterized to date. The number of known archaeal viruses lags behind known bacteriophages by over an order of magnitude. Despite this, the high levels of genetic and morphological diversity that archaeal viruses display has attracted researchers for over 45 years. Extreme natural environments, such as acidic hot springs, are almost exclusively populated by Archaea and their viruses, making these attractive environments for the discovery and characterization of new viruses. The archaeal viruses from these environments have provided insights into archaeal biology, gene function, and viral evolution. This review focuses on advances from over four decades of archaeal virology, with a particular focus on archaeal viruses from high temperature environments, the existing challenges in understanding archaeal virus gene function, and approaches being taken to overcome these limitations.
Collapse
|
17
|
Structural studies of Acidianus tailed spindle virus reveal a structural paradigm used in the assembly of spindle-shaped viruses. Proc Natl Acad Sci U S A 2018; 115:2120-2125. [PMID: 29440399 DOI: 10.1073/pnas.1719180115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The spindle-shaped virion morphology is common among archaeal viruses, where it is a defining characteristic of many viral families. However, structural heterogeneity intrinsic to spindle-shaped viruses has seriously hindered efforts to elucidate the molecular architecture of these lemon-shaped capsids. We have utilized a combination of cryo-electron microscopy and X-ray crystallography to study Acidianus tailed spindle virus (ATSV). These studies reveal the architectural principles that underlie assembly of a spindle-shaped virus. Cryo-electron tomography shows a smooth transition from the spindle-shaped capsid into the tubular-shaped tail and allows low-resolution structural modeling of individual virions. Remarkably, higher-dose 2D micrographs reveal a helical surface lattice in the spindle-shaped capsid. Consistent with this, crystallographic studies of the major capsid protein reveal a decorated four-helix bundle that packs within the crystal to form a four-start helical assembly with structural similarity to the tube-shaped tail structure of ATSV and other tailed, spindle-shaped viruses. Combined, this suggests that the spindle-shaped morphology of the ATSV capsid is formed by a multistart helical assembly with a smoothly varying radius and allows construction of a pseudoatomic model for the lemon-shaped capsid that extends into a tubular tail. The potential advantages that this novel architecture conveys to the life cycle of spindle-shaped viruses, including a role in DNA ejection, are discussed.
Collapse
|
18
|
Krupovic M, Cvirkaite-Krupovic V, Iranzo J, Prangishvili D, Koonin EV. Viruses of archaea: Structural, functional, environmental and evolutionary genomics. Virus Res 2017; 244:181-193. [PMID: 29175107 DOI: 10.1016/j.virusres.2017.11.025] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 11/18/2022]
Abstract
Viruses of archaea represent one of the most enigmatic parts of the virosphere. Most of the characterized archaeal viruses infect extremophilic hosts and display remarkable diversity of virion morphotypes, many of which have never been observed among viruses of bacteria or eukaryotes. The uniqueness of the virion morphologies is matched by the distinctiveness of the genomes of these viruses, with ∼75% of genes encoding unique proteins, refractory to functional annotation based on sequence analyses. In this review, we summarize the state-of-the-art knowledge on various aspects of archaeal virus genomics. First, we outline how structural and functional genomics efforts provided valuable insights into the functions of viral proteins and revealed intricate details of the archaeal virus-host interactions. We then highlight recent metagenomics studies, which provided a glimpse at the diversity of uncultivated viruses associated with the ubiquitous archaea in the oceans, including Thaumarchaeota, Marine Group II Euryarchaeota, and others. These findings, combined with the recent discovery that archaeal viruses mediate a rapid turnover of thaumarchaea in the deep sea ecosystems, illuminate the prominent role of these viruses in the biosphere. Finally, we discuss the origins and evolution of archaeal viruses and emphasize the evolutionary relationships between viruses and non-viral mobile genetic elements. Further exploration of the archaeal virus diversity as well as functional studies on diverse virus-host systems are bound to uncover novel, unexpected facets of the archaeal virome.
Collapse
Affiliation(s)
- Mart Krupovic
- Department of Microbiology, Institut Pasteur, 25 rue du Dr. Roux, Paris 75015, Paris, France.
| | | | - Jaime Iranzo
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - David Prangishvili
- Department of Microbiology, Institut Pasteur, 25 rue du Dr. Roux, Paris 75015, Paris, France
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| |
Collapse
|
19
|
Abstract
One of the most prominent features of archaea is the extraordinary diversity of their DNA viruses. Many archaeal viruses differ substantially in morphology from bacterial and eukaryotic viruses and represent unique virus families. The distinct nature of archaeal viruses also extends to the gene composition and architectures of their genomes and the properties of the proteins that they encode. Environmental research has revealed prominent roles of archaeal viruses in influencing microbial communities in ocean ecosystems, and recent metagenomic studies have uncovered new groups of archaeal viruses that infect extremophiles and mesophiles in diverse habitats. In this Review, we summarize recent advances in our understanding of the genomic and morphological diversity of archaeal viruses and the molecular biology of their life cycles and virus-host interactions, including interactions with archaeal CRISPR-Cas systems. We also examine the potential origins and evolution of archaeal viruses and discuss their place in the global virosphere.
Collapse
|
20
|
Geobiological feedbacks and the evolution of thermoacidophiles. ISME JOURNAL 2017; 12:225-236. [PMID: 29028004 PMCID: PMC5739016 DOI: 10.1038/ismej.2017.162] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/27/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022]
Abstract
Oxygen-dependent microbial oxidation of sulfur compounds leads to the acidification of natural waters. How acidophiles and their acidic habitats evolved, however, is largely unknown. Using 16S rRNA gene abundance and composition data from 72 hot springs in Yellowstone National Park, Wyoming, we show that hyperacidic (pH<3.0) hydrothermal ecosystems are dominated by a limited number of archaeal lineages with an inferred ability to respire O2. Phylogenomic analyses of 584 existing archaeal genomes revealed that hyperacidophiles evolved independently multiple times within the Archaea, each coincident with the emergence of the ability to respire O2, and that these events likely occurred in the recent evolutionary past. Comparative genomic analyses indicated that archaeal thermoacidophiles from independent lineages are enriched in similar protein-coding genes, consistent with convergent evolution aided by horizontal gene transfer. Because the generation of acidic environments and their successful habitation characteristically require O2, these results suggest that thermoacidophilic Archaea and the acidity of their habitats co-evolved after the evolution of oxygenic photosynthesis. Moreover, it is likely that dissolved O2 concentrations in thermal waters likely did not reach levels capable of sustaining aerobic thermoacidophiles and their acidifying activity until ~0.8 Ga, when present day atmospheric levels were reached, a time period that is supported by our estimation of divergence times for archaeal thermoacidophilic clades.
Collapse
|
21
|
Isolation and Characterization of Metallosphaera Turreted Icosahedral Virus, a Founding Member of a New Family of Archaeal Viruses. J Virol 2017; 91:JVI.00925-17. [PMID: 28768871 DOI: 10.1128/jvi.00925-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/25/2017] [Indexed: 11/20/2022] Open
Abstract
Our understanding of archaeal virus diversity and structure is just beginning to emerge. Here we describe a new archaeal virus, tentatively named Metallosphaera turreted icosahedral virus (MTIV), that was isolated from an acidic hot spring in Yellowstone National Park, USA. Two strains of the virus were identified and were found to replicate in an archaeal host species closely related to Metallosphaera yellowstonensis Each strain encodes a 9.8- to 9.9-kb linear double-stranded DNA (dsDNA) genome with large inverted terminal repeats. Each genome encodes 21 open reading frames (ORFs). The ORFs display high homology between the strains, but they are quite distinct from other known viral genes. The 70-nm-diameter virion is built on a T=28 icosahedral lattice. Both single particle cryo-electron microscopy and cryotomography reconstructions reveal an unusual structure that has 42 turret-like projections: 12 pentameric turrets positioned on the icosahedral 5-fold axes and 30 turrets with apparent hexameric symmetry positioned on the icosahedral 2-fold axes. Both the virion structural properties and the genome content support MTIV as the founding member of a new family of archaeal viruses.IMPORTANCE Many archaeal viruses are quite different from viruses infecting bacteria and eukaryotes. Initial characterization of MTIV reveals a virus distinct from other known bacterial, eukaryotic, and archaeal viruses; this finding suggests that viruses infecting Archaea are still an understudied group. As the first known virus infecting a Metallosphaera sp., MTIV provides a new system for exploring archaeal virology by examining host-virus interactions and the unique features of MTIV structure-function relationships. These studies will likely expand our understanding of virus ecology and evolution.
Collapse
|
22
|
A Novel Type of Polyhedral Viruses Infecting Hyperthermophilic Archaea. J Virol 2017; 91:JVI.00589-17. [PMID: 28424284 DOI: 10.1128/jvi.00589-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 11/20/2022] Open
Abstract
Encapsidation of genetic material into polyhedral particles is one of the most common structural solutions employed by viruses infecting hosts in all three domains of life. Here, we describe a new virus of hyperthermophilic archaea, Sulfolobus polyhedral virus 1 (SPV1), which condenses its circular double-stranded DNA genome in a manner not previously observed for other known viruses. The genome complexed with virion proteins is wound up sinusoidally into a spherical coil which is surrounded by an envelope and further encased by an outer polyhedral capsid apparently composed of the 20-kDa virion protein. Lipids selectively acquired from the pool of host lipids are integral constituents of the virion. None of the major virion proteins of SPV1 show similarity to structural proteins of known viruses. However, minor structural proteins, which are predicted to mediate host recognition, are shared with other hyperthermophilic archaeal viruses infecting members of the order Sulfolobales The SPV1 genome consists of 20,222 bp and contains 45 open reading frames, only one-fifth of which could be functionally annotated.IMPORTANCE Viruses infecting hyperthermophilic archaea display a remarkable morphological diversity, often presenting architectural solutions not employed by known viruses of bacteria and eukaryotes. Here we present the isolation and characterization of Sulfolobus polyhedral virus 1, which condenses its genome into a unique spherical coil. Due to the original genomic and architectural features of SPV1, the virus should be considered a representative of a new viral family, "Portogloboviridae."
Collapse
|
23
|
Bipartite Network Analysis of the Archaeal Virosphere: Evolutionary Connections between Viruses and Capsidless Mobile Elements. J Virol 2016; 90:11043-11055. [PMID: 27681128 DOI: 10.1128/jvi.01622-16] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/19/2016] [Indexed: 11/20/2022] Open
Abstract
Archaea and particularly hyperthermophilic crenarchaea are hosts to many unusual viruses with diverse virion shapes and distinct gene compositions. As is typical of viruses in general, there are no universal genes in the archaeal virosphere. Therefore, to obtain a comprehensive picture of the evolutionary relationships between viruses, network analysis methods are more productive than traditional phylogenetic approaches. Here we present a comprehensive comparative analysis of genomes and proteomes from all currently known taxonomically classified and unclassified, cultivated and uncultivated archaeal viruses. We constructed a bipartite network of archaeal viruses that includes two classes of nodes, the genomes and gene families that connect them. Dissection of this network using formal community detection methods reveals strong modularity, with 10 distinct modules and 3 putative supermodules. However, compared to similar previously analyzed networks of eukaryotic and bacterial viruses, the archaeal virus network is sparsely connected. With the exception of the tailed viruses related to bacteriophages of the order Caudovirales and the families Turriviridae and Sphaerolipoviridae that are linked to a distinct supermodule of eukaryotic and bacterial viruses, there are few connector genes shared by different archaeal virus modules. In contrast, most of these modules include, in addition to viruses, capsidless mobile elements, emphasizing tight evolutionary connections between the two types of entities in archaea. The relative contributions of distinct evolutionary origins, in particular from nonviral elements, and insufficient sampling to the sparsity of the archaeal virus network remain to be determined by further exploration of the archaeal virosphere. IMPORTANCE Viruses infecting archaea are among the most mysterious denizens of the virosphere. Many of these viruses display no genetic or even morphological relationship to viruses of bacteria and eukaryotes, raising questions regarding their origins and position in the global virosphere. Analysis of 5,740 protein sequences from 116 genomes allowed dissection of the archaeal virus network and showed that most groups of archaeal viruses are evolutionarily connected to capsidless mobile genetic elements, including various plasmids and transposons. This finding could reflect actual independent origins of the distinct groups of archaeal viruses from different nonviral elements, providing important insights into the emergence and evolution of the archaeal virome.
Collapse
|
24
|
Rastrojo A, Alcamí A. Aquatic viral metagenomics: Lights and shadows. Virus Res 2016; 239:87-96. [PMID: 27889617 DOI: 10.1016/j.virusres.2016.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/18/2016] [Indexed: 01/02/2023]
Abstract
Viruses are the most abundant biological entities on Earth, exceeding bacteria in most of the ecosystems. Specially in oceans, viruses are thought to be the major planktonic predators shaping microorganism communities and controlling ocean biological capacity. Plankton lysis by viruses plays an important role in ocean nutrient and energy cycles. Viral metagenomics has emerged as a powerful tool to uncover viral diversity in aquatic ecosystems through the use of Next Generation Sequencing. However, many of the commonly used viral sample preparation steps have several important biases that must be considered to avoid a misinterpretation of the results. In addition to biases caused by the purification of virus particles, viral DNA/RNA amplification and the preparation of genomic libraries could also introduce biases, and a detailed knowledge about such protocols is required. In this review, the main steps in the viral metagenomic workflow are described paying special attention to the potential biases introduced by each one.
Collapse
Affiliation(s)
- Alberto Rastrojo
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid), Madrid, Spain
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|
25
|
Grazziotin AL, Koonin EV, Kristensen DM. Prokaryotic Virus Orthologous Groups (pVOGs): a resource for comparative genomics and protein family annotation. Nucleic Acids Res 2016; 45:D491-D498. [PMID: 27789703 PMCID: PMC5210652 DOI: 10.1093/nar/gkw975] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/08/2016] [Accepted: 10/21/2016] [Indexed: 11/13/2022] Open
Abstract
Viruses are the most abundant and diverse biological entities on earth, and while most of this diversity remains completely unexplored, advances in genome sequencing have provided unprecedented glimpses into the virosphere. The Prokaryotic Virus Orthologous Groups (pVOGs, formerly called Phage Orthologous Groups, POGs) resource has aided in this task over the past decade by using automated methods to keep pace with the rapid increase in genomic data. The uses of pVOGs include functional annotation of viral proteins, identification of genes and viruses in uncharacterized DNA samples, phylogenetic analysis, large-scale comparative genomics projects, and more. The pVOGs database represents a comprehensive set of orthologous gene families shared across multiple complete genomes of viruses that infect bacterial or archaeal hosts (viruses of eukaryotes will be added at a future date). The pVOGs are constructed within the Clusters of Orthologous Groups (COGs) framework that is widely used for orthology identification in prokaryotes. Since the previous release of the POGs, the size has tripled to nearly 3000 genomes and 300 000 proteins, and the number of conserved orthologous groups doubled to 9518. User-friendly webpages are available, including multiple sequence alignments and HMM profiles for each VOG. These changes provide major improvements to the pVOGs database, at a time of rapid advances in virus genomics. The pVOGs database is hosted jointly at the University of Iowa at http://dmk-brain.ecn.uiowa.edu/pVOGs and the NCBI at ftp://ftp.ncbi.nlm.nih.gov/pub/kristensen/pVOGs/home.html.
Collapse
Affiliation(s)
- Ana Laura Grazziotin
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - David M Kristensen
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA .,National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|