1
|
Veth TS, Nouwen LV, Zwaagstra M, Lyoo H, Wierenga KA, Westendorp B, Altelaar MAFM, Berkers C, van Kuppeveld FJM, Heck AJR. Assessment of Kinome-Wide Activity Remodeling upon Picornavirus Infection. Mol Cell Proteomics 2024; 23:100757. [PMID: 38556169 PMCID: PMC11067349 DOI: 10.1016/j.mcpro.2024.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/16/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Picornaviridae represent a large family of single-stranded positive RNA viruses of which different members can infect both humans and animals. These include the enteroviruses (e.g., poliovirus, coxsackievirus, and rhinoviruses) as well as the cardioviruses (e.g., encephalomyocarditis virus). Picornaviruses have evolved to interact with, use, and/or evade cellular host systems to create the optimal environment for replication and spreading. It is known that viruses modify kinase activity during infection, but a proteome-wide overview of the (de)regulation of cellular kinases during picornavirus infection is lacking. To study the kinase activity landscape during picornavirus infection, we here applied dedicated targeted mass spectrometry-based assays covering ∼40% of the human kinome. Our data show that upon infection, kinases of the MAPK pathways become activated (e.g., ERK1/2, RSK1/2, JNK1/2/3, and p38), while kinases involved in regulating the cell cycle (e.g., CDK1/2, GWL, and DYRK3) become inactivated. Additionally, we observed the activation of CHK2, an important kinase involved in the DNA damage response. Using pharmacological kinase inhibitors, we demonstrate that several of these activated kinases are essential for the replication of encephalomyocarditis virus. Altogether, the data provide a quantitative understanding of the regulation of kinome activity induced by picornavirus infection, providing a resource important for developing novel antiviral therapeutic interventions.
Collapse
Affiliation(s)
- Tim S Veth
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Lonneke V Nouwen
- Faculty of Veterinary Medicine, Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Marleen Zwaagstra
- Faculty of Veterinary Medicine, Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Heyrhyoung Lyoo
- Faculty of Veterinary Medicine, Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Kathryn A Wierenga
- Faculty of Veterinary Medicine, Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Bart Westendorp
- Faculty of Veterinary Medicine, Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Maarten A F M Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Celia Berkers
- Faculty of Veterinary Medicine, Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Faculty of Veterinary Medicine, Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Insights from structural studies of the Cardiovirus 2A protein. Biosci Rep 2022; 42:230648. [PMID: 35022657 PMCID: PMC8777194 DOI: 10.1042/bsr20210406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 11/24/2022] Open
Abstract
Cardioviruses are single-stranded RNA viruses of the family Picornaviridae. In addition to being the first example of internal ribosome entry site (IRES) utilization, cardioviruses also employ a series of alternative translation strategies, such as Stop-Go translation and programmed ribosome frameshifting. Here, we focus on cardiovirus 2A protein, which is not only a primary virulence factor, but also exerts crucial regulatory functions during translation, including activation of viral ribosome frameshifting and inhibition of host cap-dependent translation. Only recently, biochemical and structural studies have allowed us to close the gaps in our knowledge of how cardiovirus 2A is able to act in diverse translation-related processes as a novel RNA-binding protein. This review will summarize these findings, which ultimately may lead to the discovery of other RNA-mediated gene expression strategies across a broad range of RNA viruses.
Collapse
|
3
|
Nucleocytoplasmic Trafficking Perturbation Induced by Picornaviruses. Viruses 2021; 13:v13071210. [PMID: 34201715 PMCID: PMC8310216 DOI: 10.3390/v13071210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 12/15/2022] Open
Abstract
Picornaviruses are positive-stranded RNA viruses. Even though replication and translation of their genome take place in the cytoplasm, these viruses evolved different strategies to disturb nucleocytoplasmic trafficking of host proteins and RNA. The major targets of picornavirus are the phenylalanine-glycine (FG)-nucleoporins, which form a mesh in the central channel of the nuclear pore complex through which protein cargos and karyopherins are actively transported in both directions. Interestingly, while enteroviruses use the proteolytic activity of their 2A protein to degrade FG-nucleoporins, cardioviruses act by triggering phosphorylation of these proteins by cellular kinases. By targeting the nuclear pore complex, picornaviruses recruit nuclear proteins to the cytoplasm, where they increase viral genome translation and replication; they affect nuclear translocation of cytoplasmic proteins such as transcription factors that induce innate immune responses and retain host mRNA in the nucleus thereby preventing cell emergency responses and likely making the ribosomal machinery available for translation of viral RNAs.
Collapse
|
4
|
Protein kinase CK2: a potential therapeutic target for diverse human diseases. Signal Transduct Target Ther 2021; 6:183. [PMID: 33994545 PMCID: PMC8126563 DOI: 10.1038/s41392-021-00567-7] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023] Open
Abstract
CK2 is a constitutively active Ser/Thr protein kinase, which phosphorylates hundreds of substrates, controls several signaling pathways, and is implicated in a plethora of human diseases. Its best documented role is in cancer, where it regulates practically all malignant hallmarks. Other well-known functions of CK2 are in human infections; in particular, several viruses exploit host cell CK2 for their life cycle. Very recently, also SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has been found to enhance CK2 activity and to induce the phosphorylation of several CK2 substrates (either viral and host proteins). CK2 is also considered an emerging target for neurological diseases, inflammation and autoimmune disorders, diverse ophthalmic pathologies, diabetes, and obesity. In addition, CK2 activity has been associated with cardiovascular diseases, as cardiac ischemia-reperfusion injury, atherosclerosis, and cardiac hypertrophy. The hypothesis of considering CK2 inhibition for cystic fibrosis therapies has been also entertained for many years. Moreover, psychiatric disorders and syndromes due to CK2 mutations have been recently identified. On these bases, CK2 is emerging as an increasingly attractive target in various fields of human medicine, with the advantage that several very specific and effective inhibitors are already available. Here, we review the literature on CK2 implication in different human pathologies and evaluate its potential as a pharmacological target in the light of the most recent findings.
Collapse
|
5
|
Freundt EC, Drappier M, Michiels T. Innate Immune Detection of Cardioviruses and Viral Disruption of Interferon Signaling. Front Microbiol 2018; 9:2448. [PMID: 30369921 PMCID: PMC6194174 DOI: 10.3389/fmicb.2018.02448] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/25/2018] [Indexed: 12/24/2022] Open
Abstract
Cardioviruses are members of the Picornaviridae family and infect a variety of mammals, from mice to humans. Replication of cardioviruses produces double stranded RNA that is detected by helicases in the RIG-I-like receptor family and leads to a signaling cascade to produce type I interferon. Like other viruses within Picornaviridae, however, cardioviruses have evolved several mechanisms to inhibit interferon production. In this review, we summarize recent findings that have uncovered several proteins enabling efficient detection of cardiovirus dsRNA and discuss which cell types may be most important for interferon production in vivo. Additionally, we describe how cardiovirus proteins L, 3C and L∗ disrupt interferon production and antagonize the antiviral activity of interferon effector molecules.
Collapse
Affiliation(s)
- Eric C Freundt
- Department of Biology, The University of Tampa, Tampa, FL, United States
| | - Melissa Drappier
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Thomas Michiels
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
6
|
Watters K, Inankur B, Gardiner JC, Warrick J, Sherer NM, Yin J, Palmenberg AC. Differential Disruption of Nucleocytoplasmic Trafficking Pathways by Rhinovirus 2A Proteases. J Virol 2017; 91:e02472-16. [PMID: 28179529 PMCID: PMC5375692 DOI: 10.1128/jvi.02472-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/01/2017] [Indexed: 01/11/2023] Open
Abstract
The RNA rhinoviruses (RV) encode 2A proteases (2Apro) that contribute essential polyprotein processing and host cell shutoff functions during infection, including the cleavage of Phe/Gly-containing nucleoporin proteins (Nups) within nuclear pore complexes (NPC). Within the 3 RV species, multiple divergent genotypes encode diverse 2Apro sequences that act differentially on specific Nups. Since only subsets of Phe/Gly motifs, particularly those within Nup62, Nup98, and Nup153, are recognized by transport receptors (karyopherins) when trafficking large molecular cargos through the NPC, the processing preferences of individual 2Apro predict RV genotype-specific targeting of NPC pathways and cargos. To test this idea, transformed HeLa cell lines were created with fluorescent cargos (mCherry) for the importin α/β, transportin 1, and transportin 3 import pathways and the Crm1-mediated export pathway. Live-cell imaging of single cells expressing recombinant RV 2Apro (A16, A45, B04, B14, B52, C02, and C15) showed disruption of each pathway with measurably different efficiencies and reaction rates. The B04 and B52 proteases preferentially targeted Nups in the import pathways, while B04 and C15 proteases were more effective against the export pathway. Virus-type-specific trends were also observed during infection of cells with A16, B04, B14, and B52 viruses or their chimeras, as measured by NF-κB (p65/Rel) translocation into the nucleus and the rates of virus-associated cytopathic effects. This study provides new tools for evaluating the host cell response to RV infections in real time and suggests that differential 2Apro activities explain, in part, strain-dependent host responses and diverse RV disease phenotypes.IMPORTANCE Genetic variation among human rhinovirus types includes unexpected diversity in the genes encoding viral proteases (2Apro) that help these viruses achieve antihost responses. When the enzyme activities of 7 different 2Apro were measured comparatively in transformed cells programed with fluorescent reporter systems and by quantitative cell imaging, the cellular substrates, particularly in the nuclear pore complex, used by these proteases were indeed attacked at different rates and with different affinities. The importance of this finding is that it provides a mechanistic explanation for how different types (strains) of rhinoviruses may elicit different cell responses that directly or indirectly lead to distinct disease phenotypes.
Collapse
Affiliation(s)
- Kelly Watters
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Bahar Inankur
- Wisconsin Institutes for Discovery and Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jaye C Gardiner
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- McArdle Laboratories for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jay Warrick
- Wisconsin Institutes for Medical Research and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nathan M Sherer
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- McArdle Laboratories for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John Yin
- Wisconsin Institutes for Discovery and Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ann C Palmenberg
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Intracellular localization of Saffold virus Leader (L) protein differs in Vero and HEp-2 cells. Emerg Microbes Infect 2016; 5:e109. [PMID: 27729641 PMCID: PMC5117731 DOI: 10.1038/emi.2016.110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/29/2016] [Accepted: 08/25/2016] [Indexed: 01/09/2023]
Abstract
The Saffold virus (SAFV) genome is translated as a single long polyprotein precursor and co-translationally cleaved to yield 12 separate viral proteins. Little is known about the activities of SAFV proteins although their homologs in other picornaviruses have already been described. To further support research on functions and activities of respective viral proteins, we investigated the spatio-temporal distribution of SAFV proteins in Vero and HEp-2 cells that had been either transfected with plasmids that express individual viral proteins or infected with live SAFV. Our results revealed that, with the exception of the Leader (L) protein, all viral proteins were localized in the cytoplasm at all the time points assayed. The L protein was found in the cytoplasm at an early time point but was subsequently translocated to the nucleus of HEp-2, but not Vero, cells. This was observed in both transfected and infected cells. Further mutational analysis of L protein revealed that Threonine 58 of the Ser/Thr-rich domain of L protein is crucial for protein trafficking between the cytoplasm and nucleus in HEp-2 cells. These findings contribute to a deeper understanding and stimulate investigation of the differetial cellular responses of HEp-2 cells in comparison to other mammalian cell lines during SAFV infection.
Collapse
|
8
|
Ciomperlik JJ, Basta HA, Palmenberg AC. Cardiovirus Leader proteins bind exportins: Implications for virus replication and nucleocytoplasmic trafficking inhibition. Virology 2016; 487:19-26. [PMID: 26492198 PMCID: PMC4679524 DOI: 10.1016/j.virol.2015.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/28/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
Abstract
Cardiovirus Leader proteins (LX) inhibit cellular nucleocytoplasmic trafficking by directing host kinases to phosphorylate Phe/Gly-containing nuclear pore proteins (Nups). Resolution of the Mengovirus LM structure bound to Ran GTPase, suggested this complex would further recruit specific exportins (karyopherins), which in turn mediate kinase selection. Pull-down experiments and recombinant complex reconstitution now confirm that Crm1 and CAS exportins form stable dimeric complexes with encephalomyocarditis virus LE, and also larger complexes with LE:Ran. shRNA knockdown studies support this idea. Similar activities could be demonstrated for recombinant LS and LT from Theiloviruses. When mutations were introduced to alter the LE zinc finger domain, acidic domain, or dual phosphorylation sites, there was reduced exportin selection. These regions are not involved in Ran interactions, so the Ran and Crm1 binding sites on LE must be non-overlapping. The involvement of exportins in this mechanism is important to viral replication and the observation of trafficking inhibition by LE.
Collapse
Affiliation(s)
- Jessica J Ciomperlik
- Institute for Molecular Virology and Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Holly A Basta
- Department of Biology, Rocky Mountain College, Billings, MT, United States
| | - Ann C Palmenberg
- Institute for Molecular Virology and Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
9
|
Ciomperlik JJ, Basta HA, Palmenberg AC. Three cardiovirus Leader proteins equivalently inhibit four different nucleocytoplasmic trafficking pathways. Virology 2015; 484:194-202. [PMID: 26115166 PMCID: PMC4567469 DOI: 10.1016/j.virol.2015.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/07/2015] [Accepted: 06/04/2015] [Indexed: 11/17/2022]
Abstract
Cardiovirus infections inhibit nucleocytoplasmic trafficking by Leader protein-induced phosphorylation of Phe/Gly-containing nucleoporins (Nups). Recombinant Leader from encephalomyocarditis virus, Theiler׳s murine encephalomyelitis virus and Saffold virus target the same subset of Nups, including Nup62 and Nup98, but not Nup50. Reporter cell lines with fluorescence mCherry markers for M9, RS and classical SV40 import pathways, as well as the Crm1-mediated export pathway, all responded to transfection with the full panel of Leader proteins, showing consequent cessation of path-specific active import/export. For this to happen, the Nups had to be presented in the context of intact nuclear pores and exposed to cytoplasmic extracts. The Leader phosphorylation cascade was not effective against recombinant Nup proteins. The findings support a model of Leader-dependent Nup phosphorylation with the purpose of disrupting Nup-transportin interactions.
Collapse
Affiliation(s)
- Jessica J Ciomperlik
- Institute for Molecular Virology, and Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Holly A Basta
- Department of Biology, Rocky Mountain College, Billings, MT, United States
| | - Ann C Palmenberg
- Institute for Molecular Virology, and Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
10
|
Lloyd RE. Nuclear proteins hijacked by mammalian cytoplasmic plus strand RNA viruses. Virology 2015; 479-480:457-74. [PMID: 25818028 PMCID: PMC4426963 DOI: 10.1016/j.virol.2015.03.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/12/2015] [Accepted: 03/03/2015] [Indexed: 01/18/2023]
Abstract
Plus strand RNA viruses that replicate in the cytoplasm face challenges in supporting the numerous biosynthetic functions required for replication and propagation. Most of these viruses are genetically simple and rely heavily on co-opting cellular proteins, particularly cellular RNA-binding proteins, into new roles for support of virus infection at the level of virus-specific translation, and building RNA replication complexes. In the course of infectious cycles many nuclear-cytoplasmic shuttling proteins of mostly nuclear distribution are detained in the cytoplasm by viruses and re-purposed for their own gain. Many mammalian viruses hijack a common group of the same factors. This review summarizes recent gains in our knowledge of how cytoplasmic RNA viruses use these co-opted host nuclear factors in new functional roles supporting virus translation and virus RNA replication and common themes employed between different virus groups. Nuclear shuttling host proteins are commonly hijacked by RNA viruses to support replication. A limited group of ubiquitous RNA binding proteins are commonly hijacked by a broad range of viruses. Key virus proteins alter roles of RNA binding proteins in different stages of virus replication.
Collapse
Affiliation(s)
- Richard E Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
11
|
Solution structures of Mengovirus Leader protein, its phosphorylated derivatives, and in complex with nuclear transport regulatory protein, RanGTPase. Proc Natl Acad Sci U S A 2014; 111:15792-7. [PMID: 25331866 DOI: 10.1073/pnas.1411098111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cardiovirus Leader (L) proteins induce potent antihost inhibition of active cellular nucleocytoplasmic trafficking by triggering aberrant hyperphosphorylation of nuclear pore proteins (Nup). To achieve this, L binds protein RanGTPase (Ran), a key trafficking regulator, and diverts it into tertiary or quaternary complexes with required kinases. The activity of L is regulated by two phosphorylation events not required for Ran binding. Matched NMR studies on the unphosphorylated, singly, and doubly phosphorylated variants of Mengovirus L (L(M)) show both modifications act together to partially stabilize a short internal α-helix comprising L(M) residues 43-46. This motif implies that ionic and Van der Waals forces contributed by phosphorylation help organize downstream residues 48-67 into a new interface. The full structure of L(M) as bound to Ran (unlabeled) and Ran (216 aa) as bound by L(M) (unlabeled) places L(M) into the BP1 binding site of Ran, wrapped by the conformational flexible COOH tail. The arrangement explains the tight KD for this complex and places the LM zinc finger and phosphorylation interface as surface exposed and available for subsequent reactions. The core structure of Ran, outside the COOH tail, is not altered by L(M) binding and remains accessible for canonical RanGTP partner interactions. Pull-down assays identify at least one putative Ran:L(M) partner as an exportin, Crm1, or CAS. A model of Ran:L(M):Crm1, based on the new structures suggests LM phosphorylation status may mediate Ran's selection of exportin(s) and cargo(s), perverting these native trafficking elements into the lethal antihost Nup phosphorylation pathways.
Collapse
|
12
|
Binding interactions between the encephalomyocarditis virus leader and protein 2A. J Virol 2014; 88:13503-9. [PMID: 25210192 DOI: 10.1128/jvi.02148-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
UNLABELLED The leader (L) and 2A proteins of cardioviruses are the primary antihost agents produced during infection. For encephalomyocarditis virus (EMCV), the prototype of the genus Cardiovirus, these proteins interact independently with key cellular partners to bring about inhibition of active nucleocytoplasmic trafficking and cap-dependent translation, respectively. L and 2A also bind each other and require this cooperation to achieve their effects during infection. Recombinant L and 2A interact with 1:1 stoichiometry at a KD (equilibrium dissociation constant) of 1.5 μM. The mapped contact domains include the amino-proximal third of 2A (first 50 amino acids) and the central hinge region of L. This contact partially overlaps the L segment that makes subsequent contact with Ran GTPase in the nucleus, and Ran can displace 2A from L. The equivalent proteins from Theiler's murine encephalomyelitis virus (TMEV; BeAn) and Saffold virus interact similarly in any subtype combination, with various affinities. The data suggest a mechanism whereby L takes advantage of the nuclear localization signal in the COOH region of 2A to enhance its trafficking to the nucleus. Once there, it exchanges partners in favor of Ran. This required cooperation during infection explains many observed codependent phenotypes of L and 2A mutations. IMPORTANCE Cardiovirus pathogenesis phenotypes vary dramatically, from asymptomatic, to mild gastrointestinal (GI) distress, to persistent demyelination and even encephalitic death. Leader and 2A are the primary viral determinants of pathogenesis, so understanding how these proteins cooperate to induce such a wide variety of outcomes for the host is of great important and interest to the field of virology, especially to those who use TMEV as a murine model for multiple sclerosis.
Collapse
|
13
|
Feng Q, Langereis MA, van Kuppeveld FJM. Induction and suppression of innate antiviral responses by picornaviruses. Cytokine Growth Factor Rev 2014; 25:577-85. [PMID: 25086453 PMCID: PMC7172595 DOI: 10.1016/j.cytogfr.2014.07.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 07/03/2014] [Indexed: 12/24/2022]
Abstract
The family Picornaviridae comprises of small, non-enveloped, positive-strand RNA viruses and contains many human and animal pathogens including enteroviruses (e.g. poliovirus, coxsackievirus, enterovirus 71 and rhinovirus), cardioviruses (e.g. encephalomyocarditis virus), hepatitis A virus and foot-and-mouth disease virus. Picornavirus infections activate a cytosolic RNA sensor, MDA5, which in turn, induces a type I interferon response, a crucial component of antiviral immunity. Moreover, picornaviruses activate the formation of stress granules (SGs), large aggregates of preassembled mRNPs (messenger ribonucleoprotein particles) to temporarily store these molecules upon cellular stress. Meanwhile, picornaviruses actively suppress these antiviral responses to ensure efficient replication. In this review we provide an overview of the induction and suppression of the MDA5-mediated IFN-α/β response and the cellular stress pathway by picornaviruses.
Collapse
Affiliation(s)
- Qian Feng
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University of Utrecht, 3584CL Utrecht, The Netherlands
| | - Martijn A Langereis
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University of Utrecht, 3584CL Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University of Utrecht, 3584CL Utrecht, The Netherlands.
| |
Collapse
|
14
|
Basta HA, Palmenberg AC. AMP-activated protein kinase phosphorylates EMCV, TMEV and SafV leader proteins at different sites. Virology 2014; 462-463:236-40. [PMID: 24999048 DOI: 10.1016/j.virol.2014.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/07/2014] [Accepted: 06/17/2014] [Indexed: 12/29/2022]
Abstract
Cardioviruses of the Encephalomyocarditis virus (EMCV) and Theilovirus species encode small, amino-terminal proteins called Leaders (L). Phosphorylation of the EMCV L (LE) at two distinct sites by CK2 and Syk kinases is important for virus-induced Nup phosphorylation and nucleocytoplasmic trafficking inhibition. Despite similar biological activities, the LE phosphorylation sites are not conserved in the Theiloviruses, Saffold virus (LS, SafV) or Theiler׳s murine encephalitis virus (LT, TMEV) sequences even though these proteins also become phosphorylated in cells and cell-free extracts. Site prediction algorithms, combined with panels of site-specific protein mutations now identify analogous, but not homologous phosphorylation sites in the Ser/Thr and Theilo protein domains of LT and LS, respectively. In both cases, recombinant AMP-activated kinase (AMPK) was reactive with the proteins at these sites, and also with LE, modifying the same residue recognized by CK2.
Collapse
Affiliation(s)
- Holly A Basta
- Institute for Molecular Virology and Department of Biochemistry, Robert M. Bock Laboratories, University of Wisconsin-Madison, 1525 Linden Dr., Madison, WI 53706, USA
| | - Ann C Palmenberg
- Institute for Molecular Virology and Department of Biochemistry, Robert M. Bock Laboratories, University of Wisconsin-Madison, 1525 Linden Dr., Madison, WI 53706, USA.
| |
Collapse
|