1
|
Li Y, Shi F, Cao L, Zheng Q, Feng Y, Wang B, Huang Y. Identification of novel serological agents for porcine deltacoronavirus infection based on the immunogenic accessory protein NS6. ANIMAL DISEASES 2024; 4:3. [DOI: 10.1186/s44149-023-00109-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2025] Open
Abstract
AbstractPorcine deltacoronavirus (PDCoV) is a swine enteropathogenic CoV that causes severe vomiting, diarrhea and dehydration in suckling piglets, leading to economic losses in the swine industry. There is a great need for a convenient method to detect circulating antibodies and help in accurate diagnosis and disease control. Previously, we demonstrated that a unique PDCoV accessory protein, NS6, is expressed during PDCoV infection in pigs and is incorporated into PDCoV virions; thus, we deduced that NS6 is likely an immunogenic target that can be used for the diagnosis of PDCoV infection. In this study, we first confirmed that NS6 is immunogenic in PDCoV-infected pigs by performing a serum western blot. Furthermore, we developed a novel NS6-based indirect enzyme-linked immunosorbent assay (iELISA) method and compared it to an established S1-based iELISA for the survey of anti-PDCoV IgG or IgA in pigs of different ages in China. The NS6-iELISA has high specificity for the detection of IgG antibodies and no cross-reactivity with other porcine enteric CoVs (transmissible gastroenteritis coronavirus, porcine epidemic diarrhea virus, or swine acute diarrhea syndrome coronavirus). This NS6 serology-based method has great sensitivity and good repeatability, making it a new and cost-saving option for the rapid diagnosis and immunosurveillance of PDCoV, which may also be important for the prevention and control of deltacoronavirus-related infection in pigs and other animals.
Collapse
|
2
|
Pang J, Tian X, Han X, Yuan J, Li L, You Y, Zhou Y, Xing G, Li R, Wang Z. Computationally-driven epitope identification of PEDV N-protein and its application in development of immunoassay for PEDV detection. J Pharm Biomed Anal 2023; 235:115660. [PMID: 37598469 DOI: 10.1016/j.jpba.2023.115660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
The nucleocapsid (N) protein is a suitable candidate for early diagnosis of porcine epidemic diarrhea virus (PEDV). Here, we identified the linear B-cell epitopes of the PEDV N-protein by integrating a computational-experimental framework and constructed three-dimensional (3D) structure model of the N protein using the ColabFold program in Google Colaboratory. Furthermore, we prepared the monoclonal antibodies against the predicted epitopes and recombinant N protein, respectively, and selected pairing mAbs (named 9C4 and 3C5) to develop a double-antibody sandwich immunochromatographic test strip using CdSe/ZnS quantum dots (QDs)-labelled 9C4 and 3C5 as capture and detection antibodies, respectively. This strip can specifically detect PEDV within 10 min with a detection limit of less than 6.25 × 103 TCID50/mL. In comparison with RT-PCR for testing 90 clinical samples, the relative sensitivity and specificity of the strip were found to be 98.0% and 100%, respectively, with a concordance rate of 98.9% and a kappa value of 0.978, indicating that QDs-ICTS is a reliable method for the application of PEDV detection in clinical samples.
Collapse
Affiliation(s)
- Junzeng Pang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiangqin Tian
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiao Han
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jiakang Yuan
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Linyue Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yonghe You
- Sanquan College of Xinxiang Medical University, Xinxiang 453000, China
| | - Yanlin Zhou
- Sanquan College of Xinxiang Medical University, Xinxiang 453000, China
| | - Guangxu Xing
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Renfeng Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Ziliang Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
3
|
Du P, Yan Q, Zhang XA, Zeng W, Xie K, Yuan Z, Liu X, Liu X, Zhang L, Wu K, Li X, Fan S, Zhao M, Chen J. Virus-like particle vaccines with epitopes from porcine epidemic virus and transmissible gastroenteritis virus incorporated into self-assembling ADDomer platform provide clinical immune responses in piglets. Front Immunol 2023; 14:1251001. [PMID: 37942329 PMCID: PMC10628522 DOI: 10.3389/fimmu.2023.1251001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction Porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) are major intestinal coronaviruses that cause vomiting, diarrhea, dehydration, and mortality in piglets. These viruses coexist and lead to significant economic losses in the swine industry. Virus-like particles (VLPs) have emerged as promising alternatives to conventional inactivated vaccines due to their exceptional safety, efficacy, and ability to provide multi-disease protection with a single dose. Methods Our study focused on specific antigenic epitopes from the PEDV S protein (SS2 and 2C10 regions) and the TGEV S protein (A and D sites) as target candidates. These epitopes were integrated into the ADDomer framework, and we successfully generated recombinant proteins AD, AD-P, AD-T, and AD-PT using the baculovirus expression vector system (BEVS). By meticulously optimizing conditions in High Five cells, we successfully expressed and purified the recombinant proteins. Subsequently, we developed the recombinant ADDomer-VLP vaccine and conducted a comprehensive evaluation of its efficacy in piglets. Results Following ultrafiltration concentration and sucrose gradient centrifugation purification, the recombinant proteins self-assembled into VLPs as observed by transmission electron microscopy (TEM). Administration of the vaccine did not result in any adverse reactions in the immunized piglets. Additionally, no significant instances of fever were detected in any of the experimental groups, and there were no notable changes in average daily weight gain compared to the control group that received PBS. The recombinant ADDomer-VLP vaccines demonstrated strong immunogenicity, effectively stimulating the production of neutralizing antibodies against both PEDV and TGEV. Moreover, the recombinant ADDomer-VLP vaccine induced elevated levels of IFN-γ, IL-2, and IL-4, and enhanced cytotoxic T lymphocyte (CTL) activity in the peripheral blood of piglets. Discussion These recombinant VLPs have demonstrated the ability to induce strong cellular and humoral immune responses in piglets, making them an incredibly promising platform for the rapid and simplified development of epitope vaccines.
Collapse
Affiliation(s)
- Pengfei Du
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Quanhui Yan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiao-Ai Zhang
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
| | - Weijun Zeng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Kaiyuan Xie
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhongmao Yuan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiaodi Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xueyi Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lihong Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Keke Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiaowen Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shuangqi Fan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Mingqiu Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jinding Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Chen S, Zhang H, Chu M, Cheng W, Zhai J, Wang H, Chen X, Qi Y. Prevalence of transmissible gastroenteritis among swine populations in China during 1983-2022: A systematic review and meta-analysis. Microb Pathog 2023; 183:106320. [PMID: 37625663 DOI: 10.1016/j.micpath.2023.106320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Transmissible gastroenteritis virus (TGEV), which belongs to the coronaviruses (CoVs), causes diarrhea and high mortality rates in piglets and poses a huge threat and loss to the pig industry in China. METHOD We estimated the prevalence of TGEV in Chinese pig animals from 1983 to 2022 by screening 36 papers on TGEV investigations in China from databases such as China Knowledge Network (CNKI), Wanfang Database, Science and Technology Journal Repository (VIP), PubMed, and ScienceDirect, excluding duplicate literature and other host studies according to the exclusion criteria we developed, and excluding literature with incomplete data to extract information from studies that could estimate the prevalence of TGEV infection in pigs in mainland China. RESULTS A total of 36 studies (including data from 50,403 pigs) met our evaluation criteria. The overall estimated prevalence of TGEV infection in pigs in China is 10% (3887/50403), and the prevalence of TGEV in northeast China is 38% (2582/3078700) is significantly higher than the rest of China. The prevalence of TGEV infection was related to the sampling season and region. CONCLUSION The results of the study show that the prevalence of TGEV is clearly seasonal and regional. Therefore, further research and monitoring of the prevalence of TGEV infection and the development of control programs based on different conditions are essential. In addition, effective and robust regulatory measures should be taken in colder regions to prevent the spread and transmission of TGEV in pigs.
Collapse
Affiliation(s)
- Shuiyun Chen
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Grass-fed Livestock Resource Utilization and Health Science and Technology Innovation Team, Anhui Science and Technology University, Fengyang, 23310, China
| | - Huiying Zhang
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Grass-fed Livestock Resource Utilization and Health Science and Technology Innovation Team, Anhui Science and Technology University, Fengyang, 23310, China
| | - Mingfeng Chu
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Grass-fed Livestock Resource Utilization and Health Science and Technology Innovation Team, Anhui Science and Technology University, Fengyang, 23310, China
| | - Wei Cheng
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Grass-fed Livestock Resource Utilization and Health Science and Technology Innovation Team, Anhui Science and Technology University, Fengyang, 23310, China
| | - Junjun Zhai
- Shanxi Province Engineering & Technology Research Center of Shanbei Cashmere Goats, Yulin University, Shanxi Province, Yulin, 719000, China
| | - Honghai Wang
- Daqing Agricultural and Rural Bureau, Daqing, Heilongjiang, 163711, China
| | - Xuelong Chen
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Grass-fed Livestock Resource Utilization and Health Science and Technology Innovation Team, Anhui Science and Technology University, Fengyang, 23310, China.
| | - Yanping Qi
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Grass-fed Livestock Resource Utilization and Health Science and Technology Innovation Team, Anhui Science and Technology University, Fengyang, 23310, China.
| |
Collapse
|
5
|
Characterization and Evaluation of the Pathogenicity of a Natural Gene-Deleted Transmissible Gastroenteritis Virus in China. Transbound Emerg Dis 2023. [DOI: 10.1155/2023/2652850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Porcine transmissible gastroenteritis virus is the major pathogen that causes fatal diarrhea in newborn piglets. In this study, a TGEV strain was isolated from the small intestine of diarrhea piglets in Sichuan Province, China, and designated SC2021. The complete genomic sequence of TGEV SC2021 was 28561 bp, revealing a new natural deletion TGEV strain. Based on phylogenetic analyses, TGEV SC2021 belonged to the Miller cluster and was closely related to CN strains. The newborn piglets orally challenged with TGEV SC2021 showed typical watery diarrhea. In addition, macro and micropathological changes in the lungs and intestines were observed. In conclusion, we isolated a new natural deletion virus strain and confirmed that the virus strain has high pathogenicity in newborn piglets. Moreover, macroscopic and microscopic lesions were observed in the lungs and intestines of all TGEV SC2021-infected piglets. In summary, we isolated a new natural deletion TGEV strain and demonstrated that the natural deletion strain showed high pathogenicity in newborn piglets. These data enrich the diversity of TGEV strains and help us to understand the genetic evolution and molecular pathogenesis of TGEV.
Collapse
|
6
|
Characterization and epitope mapping of monoclonal antibodies against PEDV N protein. Virology 2023; 579:29-37. [PMID: 36592554 DOI: 10.1016/j.virol.2022.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, vomiting, dehydration and high mortality in neonatal piglets. The nucleocapsid (N) protein of PEDV is a highly conserved protein with strong immunogenicity and palys an important role in PEDV diagnosis. However, epitopes on the PEDV N protein have not yet been well characterized. Here, 32 monoclonal antibodies (mAbs) against the PEDV N protein were produced and identified. Six new epitopes were first identified by using a high-throughput epitope mapping method named AbMap. Sequence analysis revealed that among the six epitopes five epitopes were highly conserved among different PEDV strains. We also confirmed that the mAbs derived from the six epitopes of PEDV N protein, have no cross-reactivity with transmissible gastro enteritis virus or porcine delta coronavirus. These mAbs and their defined epitopes will help to understand the N protein structure and immunological characteristics, and to develop a rapid, accurate PEDV diagnosis method.
Collapse
|
7
|
He W, Shi X, Guan H, Zou Y, Zhang S, Jiang Z, Su S. Identification of a novel linear B-cell epitope in porcine deltacoronavirus nucleocapsid protein. Appl Microbiol Biotechnol 2023; 107:651-661. [PMID: 36602561 PMCID: PMC9813470 DOI: 10.1007/s00253-022-12348-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/29/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that caused diarrhea and/or vomiting in neonatal piglets worldwide. Coronaviruses nucleocapsid (N) protein is the most conserved structural protein for viral replication and possesses good antigenicity. In this study, three monoclonal antibodies (mAbs), 3B4, 4D3, and 4E3 identified as subclass IgG2aκ were prepared using the lymphocytic hybridoma technology against PDCoV N protein. Furthermore, the B-cell epitope recognized by mAb 4D3 was mapped by dozens of overlapping truncated recombinant proteins based on the western blotting. The polypeptide 28QFRGNGVPLNSAIKPVE44 (EP-4D3) in the N-terminal of PDCoV N protein was identified as the minimal linear epitope for binding mAb 4D3. And the EP-4D3 epitope's amino acid sequence homology study revealed that PDCoV strains are substantially conserved, with the exception of the Alanine43 substitution Valine43 in the China lineage, the Early China lineage, and the Thailand, Vietnam, and Laos lineage. The epitope sequences shared high similarity (94.1%) with porcine coronavirus HKU15-155 (PorCoV HKU15), Asian leopard cats coronavirus (ALCCoV), sparrow coronavirus HKU17 (SpCoV HKU17), and sparrow deltacoronavirus. In contrast, the epitope sequences shared a very low homology (11.8 to 29.4%) with other porcine CoVs (PEDV, TGEV, PRCV, SADS-CoV, PHEV). Overall, the study will enrich the biological function of PDCoV N protein and provide foundational data for further development of diagnostic applications. KEY POINTS: • Three monoclonal antibodies against PDCoV N protein were prepared. • Discovery of a novel B-cell liner epitope (28QFRGNGVPLNSAIKPVE44) of PDCoV N protein. • The epitope EP-4D3 was conserved among PDCoV strains.
Collapse
Affiliation(s)
- Wei He
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Sanya Institute of Nanjing Agricultural University, Sanya, China
| | - Xinze Shi
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haifei Guan
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuntong Zou
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shengkun Zhang
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiwen Jiang
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuo Su
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Sanya Institute of Nanjing Agricultural University, Sanya, China.
| |
Collapse
|
8
|
Olech M. Current State of Molecular and Serological Methods for Detection of Porcine Epidemic Diarrhea Virus. Pathogens 2022; 11:pathogens11101074. [PMID: 36297131 PMCID: PMC9612268 DOI: 10.3390/pathogens11101074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a member of the Coronaviridae family, is the etiological agent of an acute and devastating enteric disease that causes moderate-to-high mortality in suckling piglets. The accurate and early detection of PEDV infection is essential for the prevention and control of the spread of the disease. Many molecular assays have been developed for the detection of PEDV, including reverse-transcription polymerase chain reaction (RT-PCR), real-time RT-PCR (qRT-PCR) and loop-mediated isothermal amplification assays. Additionally, several serological methods have been developed and are widely used for the detection of antibodies against PEDV. Some of them, such as the immunochromatography assay, can generate results very quickly and in field conditions. Molecular assays detect viral RNA in clinical samples rapidly, and with high sensitivity and specificity. Serological assays can determine prior immune exposure to PEDV, can be used to monitor the efficacy of vaccination strategies and may help to predict the duration of immunity in piglets. However, they are less sensitive than nucleic acid-based detection methods. Sanger and next-generation sequencing (NGS) allow the analysis of PEDV cDNA or RNA sequences, and thus, provide highly specific results. Furthermore, NGS based on nonspecific DNA cleavage in clustered regularly interspaced short palindromic repeats (CRISPR)–Cas systems promise major advances in the diagnosis of PEDV infection. The objective of this paper was to summarize the current serological and molecular PEDV assays, highlight their diagnostic performance and emphasize the advantages and drawbacks of the application of individual tests.
Collapse
Affiliation(s)
- Monika Olech
- Department of Pathology, National Veterinary Research Institute, 24-100 Puławy, Poland
| |
Collapse
|
9
|
Schumacher L, Chen Q, Fredericks L, Gauger P, Bandrick M, Keith M, Giménez-Lirola L, Magstadt D, Yim-im W, Welch M, Zhang J. Evaluation of the Efficacy of an S-INDEL PEDV Strain Administered to Pregnant Gilts against a Virulent Non-S-INDEL PEDV Challenge in Newborn Piglets. Viruses 2022; 14:v14081801. [PMID: 36016423 PMCID: PMC9416680 DOI: 10.3390/v14081801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
A safe and efficacious live-attenuated vaccine for porcine epidemic diarrhea virus (PEDV) is not commercially available in the United States yet. Two major PEDV strains are currently circulating in US swine: highly virulent non-S-INDEL strain and milder virulent S-INDEL strain. In this study, the safety and protective efficacy of a plaque-purified S-INDEL PEDV isolate formulated as a vaccine candidate was evaluated. Ten pregnant gilts were divided into three groups and orally inoculated at 79 days of gestation and then boosted at 100 days gestation (T01: n = 4, vaccination/challenge; T02: n = 4, non-vaccination/challenge; T03: n = 2, non-vaccination/non-challenge). None of the gilts had adverse clinical signs after vaccination. Only one T01 gilt (#5026) had viral replication and detectible viral RNA in feces. The same gilt had consistent levels of PEDV-specific IgG and IgA antibodies in serum and colostrum/milk. Farrowed piglets at 3 to 5 days of age from T01 and T02 gilts were orally challenged with 103 TCID50/pig of the virulent non-S-INDEL PEDV while T03 piglets were orally inoculated with virus-negative medium. T01 litters had overall lower mortality than T02 (T01 36.4% vs. T02 74.4%). Specifically, there was 0% litter mortality from T01 gilt 5026. Overall, it appears that vaccination of pregnant gilts with S-INDEL PEDV can passively protect piglets if there is virus replication and immune response induction in the pregnant gilts.
Collapse
Affiliation(s)
- Loni Schumacher
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA
| | - Qi Chen
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA
| | - Lindsay Fredericks
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA
| | - Phillip Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA
| | | | | | - Luis Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA
| | - Drew Magstadt
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA
| | - Wannarat Yim-im
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA
| | - Michael Welch
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA
- Correspondence: ; Tel.: +1-515-294-8024
| |
Collapse
|
10
|
Wen S, Zhang J, Zhao R, Gao J, Wang N, Lu T, Xie R, Sun X, Xiao B, Duan Z, Chen A. Development of a Handheld Microfluidic Chip for On-Site Multiplex Detection of Four Porcine Diarrhea-Related Virus. ACS AGRICULTURAL SCIENCE & TECHNOLOGY 2022; 2:805-812. [DOI: 10.1021/acsagscitech.2c00105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- Shuang Wen
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
- College of Animal Medicine, Shanxi Agricultural University, Jinzhong 030801, P. R. China
| | - Juan Zhang
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, P. R. China
| | - Ruiming Zhao
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, P. R. China
| | - Jie Gao
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, P. R. China
| | - Nan Wang
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, P. R. China
| | - Taofeng Lu
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P. R. China
| | - Ruibin Xie
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, P. R. China
| | - Xiaoyun Sun
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, P. R. China
| | - Bin Xiao
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, P. R. China
| | - Zhibian Duan
- College of Animal Medicine, Shanxi Agricultural University, Jinzhong 030801, P. R. China
| | - Ailiang Chen
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
- Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, P. R. China
| |
Collapse
|
11
|
Yu R, Dong S, Chen B, Liu Y, Li F, Si F, Xie C, Li Z. Antigenicity Alternations of Variant PEDV S Protein Disclosed by Linear B Cell Epitope Mapping. Viruses 2022; 14:v14071371. [PMID: 35891352 PMCID: PMC9322158 DOI: 10.3390/v14071371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
The spike protein (S) plays a crucial role in porcine epidemic diarrhea virus (PEDV) infection and induces neutralizing antibodies. Mutations of the S protein are supposed to provide the main antigenic shift leading to the antigenic escape of PEDVs. It is therefore a significant question how much accumulation of antigenic shift could lead to the antigenic escape of the variant PEDV. To provide an answer in the study, B cell epitopes (BCEs) on the S protein of the PEDV vaccine strain CV777 (SCV777) and variant strain SD2014 (SSD2014) were mapped using biosynthetic peptides and rabbit anti-PEDV S serum. Seventy-nine and 68 linear BCEs were identified from SCV777 and SSD2014, respectively. While 66.2% of the BCEs of SSD2014 could be recognized by anti-SCV777 serum and 67.1% of SCV777 BCEs could be recognized by anti-SSD2014 serum, more than 40% of the BCEs identified using anti-SCV777 serum on SCV777 could not be recognized by anti-SSD2014 serum and vice versa. The completely shared BCEs took low percentages of 29.4% and 25.3% for SSD2014 and SCV777, respectively. These results indicate a low conservation of antigenicity of the S protein compared to a relatively high amino acid sequence similarity of 92.2% between the two strains. The study provided a BCE shift reference of PEDV antigenic escape and surveillance control.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhen Li
- Correspondence: ; Tel.: +86-21-6220-6391
| |
Collapse
|
12
|
Winter M, Marfil MJ, La Sala LF, Suarez M, Maidana C, Rodriguez C, Mesplet M, Abate S, Rosas C, Peña Martinez J, Barandiaran S. Serological survey suggests circulation of coronavirus on wild Suina from Argentina, 2014-2017. ECOHEALTH 2022; 19:159-163. [PMID: 35652967 PMCID: PMC9161765 DOI: 10.1007/s10393-022-01591-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 04/10/2022] [Indexed: 06/15/2023]
Abstract
Swine coronaviruses affecting pigs have been studied sporadically in wildlife. In Argentina, epidemiological surveillance of TGEV/PRCV is conducted only in domestic pigs. The aim was to assess the prevalence of TGEV/PRCV in wild Suina. Antibodies against these diseases in wild boar and captive collared peccary were surveyed by ELISA. Antibodies against TGEV were found in three collared peccaries (n = 87). No TGEV/PRCV antibodies were detected in wild boar (n = 160). Preventive measures should be conducted in contact nodes where the transmission of agents may increase. Epidemiological surveillance in wildlife populations and in captive animals before their reintroduction should be attempted.
Collapse
Affiliation(s)
- Marina Winter
- Centro de Investigación y Transferencia Río Negro, Universidad Nacional de Río Negro-Sede Atlántica, R8500 Viedma, Río Negro Argentina
| | - María Jimena Marfil
- Catedra de Enfermedades Infecciosas, Facultad de Cs Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, 1427 Buenos Aires, Argentina
| | - Luciano Francisco La Sala
- Instituto de Ciencias Biológicas y Biomédicas del Sur, Universidad Nacional del Sur (CONICET-UNS), 8000 Bahía Blanca, Argentina
| | - Marcos Suarez
- Laboratorio de Enfermedades Exóticas, Dirección de Laboratorios y Control Técnico, SENASA, ACD1063 Buenos Aires, Argentina
| | - Celia Maidana
- Laboratorio de Enfermedades Exóticas, Dirección de Laboratorios y Control Técnico, SENASA, ACD1063 Buenos Aires, Argentina
| | - Carlos Rodriguez
- Laboratorio de Enfermedades Exóticas, Dirección de Laboratorios y Control Técnico, SENASA, ACD1063 Buenos Aires, Argentina
| | - María Mesplet
- Catedra de Enfermedades Infecciosas, Facultad de Cs Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, 1427 Buenos Aires, Argentina
| | - Sergio Abate
- Centro de Investigación y Transferencia Río Negro, Universidad Nacional de Río Negro-Sede Atlántica, R8500 Viedma, Río Negro Argentina
| | - Carolina Rosas
- Endangered Species and Environments Restoration Program, Rewilding Argentina Foundation, 1425 Buenos Aires, Argentina
| | - Jorge Peña Martinez
- Endangered Species and Environments Restoration Program, Rewilding Argentina Foundation, 1425 Buenos Aires, Argentina
| | - Soledad Barandiaran
- Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, 1427 Buenos Aires, Argentina
| |
Collapse
|
13
|
Yan Q, Liu X, Sun Y, Zeng W, Li Y, Zhao F, Wu K, Fan S, Zhao M, Chen J, Yi L. Swine Enteric Coronavirus: Diverse Pathogen–Host Interactions. Int J Mol Sci 2022; 23:ijms23073953. [PMID: 35409315 PMCID: PMC8999375 DOI: 10.3390/ijms23073953] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/23/2022] Open
Abstract
Swine enteric coronavirus (SeCoV) causes acute gastroenteritis and high mortality in newborn piglets. Since the last century, porcine transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV) have swept farms all over the world and caused substantial economic losses. In recent years, porcine delta coronavirus (PDCoV) and swine acute diarrhea syndrome coronavirus (SADS-CoV) have been emerging SeCoVs. Some of them even spread across species, which made the epidemic situation of SeCoV more complex and changeable. Recent studies have begun to reveal the complex SeCoV–host interaction mechanism in detail. This review summarizes the current advances in autophagy, apoptosis, and innate immunity induced by SeCoV infection. These complex interactions may be directly involved in viral replication or the alteration of some signal pathways.
Collapse
Affiliation(s)
- Quanhui Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yawei Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Weijun Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Feifan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (L.Y.); Tel.: +86-20-8528-8017 (J.C. & L.Y.)
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (L.Y.); Tel.: +86-20-8528-8017 (J.C. & L.Y.)
| |
Collapse
|
14
|
Goh GKM, Dunker AK, Foster JA, Uversky VN. Computational, Experimental, and Clinical Evidence of a Specific but Peculiar Evolutionary Nature of (COVID-19) SARS-CoV-2. J Proteome Res 2022; 21:874-890. [PMID: 35142523 PMCID: PMC8864774 DOI: 10.1021/acs.jproteome.2c00001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Indexed: 11/30/2022]
Abstract
The shell disorder models have predicted that SARS-CoV-2 is of a specific but peculiar evolutionary nature. All coronaviruses (CoVs) closely related to SARS-CoV-2 have been found to have the hardest outer shells (M protein) among CoVs. This hard shell (low M percentage of intrinsic disorder (PID)) is associated with burrowing animals, for example, pangolins, and is believed to be responsible for the high contagiousness of SARS-CoV-2 because it will be more resistant to antimicrobial enzymes found in saliva/mucus. Incoming clinical and experimental data do support this along with a prediction based on another aspect of the shell (N, inner shell) disorder models that SARS-CoV-1 is more virulent than SARS-CoV-2 because SARS-CoV-2 produces fewer virus copies in vital organs even if large amounts of infections particles are shed orally and nasally. A phylogenetic study using M reveals a closer relationship of SARS-CoV to pangolin-CoVs than the bat-RaTG13 found in Yunnan, China. Previous studies may have been confused by recombinations that were poorly handled. The shell disorder models suggest that a pangolin-CoV strain may have entered the human population in 2017 or before as an attenuated virus, which could explain why SARS-CoV is found to be highly adapted to humans.
Collapse
Affiliation(s)
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics,
Indiana University School of Medicine, Indianapolis, Indiana
46202, United States
| | - James A. Foster
- Department of Biological Sciences,
University of Idaho, Moscow, Idaho 83844, United
States
- Institute for Bioinformatics and Evolutionary Studies,
University of Idaho, Moscow, Idaho 83844, United
States
| | - Vladimir N. Uversky
- Department of Molecular Medicine, USF Health Byrd
Alzheimer’s Research Institute, Morsani College of Medicine,
University of South Florida, Tampa, Florida 33620,
United States
- Laboratory of New Methods in Biology, Institute for
Biological Instrumentation of the Russian Academy of Sciences, Federal
Research Center “Pushchino Scientific Center for Biological Research of the
Russian Academy of Sciences”, Pushchino, Moscow Region 142290,
Russia
| |
Collapse
|
15
|
Wang F, Wang M, Zhang L, Cheng M, Li M, Zhu J. Generation and functional analysis of single chain variable fragments (scFvs) targeting the nucleocapsid protein of Porcine epidemic diarrhea virus. Appl Microbiol Biotechnol 2022; 106:995-1009. [PMID: 35024918 PMCID: PMC8755980 DOI: 10.1007/s00253-021-11722-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 11/25/2022]
Abstract
Abstract Porcine epidemic diarrhea virus (PEDV) is the causative agent of porcine epidemic diarrhea, which can cause death in suckling piglets. Vaccines confer only partial protection against new mutant strains, whereas antibodies targeting virus-encoded proteins may be effective prophylactics. In this study, we constructed a recombinant single chain variable fragment (scFv) library from the spleens of two pigs immunized with a recombinant PEDV nucleocapsid (N) protein. Among the positive clones directed against PEDV N protein isolated from the library, four scFvs that showed higher affinity for N were functionally analyzed. These scFvs specifically bound to the PEDV N protein, but not to the transmissible gastroenteritis virus (TGEV) N protein. Their framework regions were highly conserved, whereas their complementarity-determining regions displayed clear diversity. An immunofluorescence assay showed the co-localization of the four scFvs with PEDV N protein in cells. They significantly suppressed PEDV replication, detected with reverse transcription (RT)-quantitative PCR (qPCR; P < 0.01). Two of them significantly reduced the viral titer at 48 hpi and 72 hpi (P < 0.05). In addition, they observably suppressed the production of viral protein at 72 hpi. The expression of interferons, interferon regulatory factor 3 (IRF3), and IRF7 was assessed with RT-qPCR, which indicated that PEDV dramatically suppressed the transcription of interferon-λ1 and IRF7 and that the scFvs significantly upregulated their expression (P < 0.05). These findings facilitated the investigation of the mechanism by which PEDV evaded the host immune response and suggested that these porcine scFvs were potential candidate agents for the prevention and treatment of porcine diarrhea caused by PEDV. Key points • Four scFvs targeting PEDV N protein were generated from porcine spleens • These scFvs co-localized with PEDV N protein and suppressed PEDV replication • These scFvs significantly upregulated IFN-λ1 expression Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11722-z.
Collapse
Affiliation(s)
- Fengqing Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Man Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lei Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Manling Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Mei Li
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jianguo Zhu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
16
|
Zhai X, Wang N, Jiao H, Zhang J, Li C, Ren W, Reiter RJ, Su S. Melatonin and other indoles show antiviral activities against swine coronaviruses in vitro at pharmacological concentrations. J Pineal Res 2021; 71:e12754. [PMID: 34139040 DOI: 10.1111/jpi.12754] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/22/2022]
Abstract
The current coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlights major gaps in our knowledge on the prevention control and cross-species transmission mechanisms of animal coronaviruses. Transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), and porcine delta coronavirus (PDCoV) are three common swine coronaviruses and have similar clinical features. In the absence of effective treatments, they have led to significant economic losses in the swine industry worldwide. We reported that indoles exerted potent activity against swine coronaviruses, the molecules used included melatonin, indole, tryptamine, and L-tryptophan. Herein, we did further systematic studies with melatonin, a ubiquitous and versatile molecule, and found it inhibited TGEV, PEDV, and PDCoV infection in PK-15, Vero, or LLC-PK1 cells by reducing viral entry and replication, respectively. Collectively, we provide the molecular basis for the development of new treatments based on the ability of indoles to control TGEV, PEDV, and PDCoV infection and spread.
Collapse
Affiliation(s)
- Xiaofeng Zhai
- Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Ningning Wang
- Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Houqi Jiao
- Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Jie Zhang
- Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Chaofan Li
- Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Wenkai Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Shuo Su
- Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
17
|
Nan P, Wen D, Opriessnig T, Zhang Q, Yu X, Jiang Y. Novel universal primer-pentaplex PCR assay based on chimeric primers for simultaneous detection of five common pig viruses associated with diarrhea. Mol Cell Probes 2021; 58:101747. [PMID: 34116142 DOI: 10.1016/j.mcp.2021.101747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 11/18/2022]
Abstract
Viral pathogens associated with diarrhea in pigs include porcine circovirus 2 (PCV2), porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine rotavirus A (RVA) and C (RVC) among others. In this study, a novel universal primer-based pentaplex PCR (UP-M-PCR) assay was developed for simultaneous detection and differentiation of these five viruses. The assay uses a short-cycle multiplex amplification by chimeric primers (CP), which are virus specific, with a tail added at the 5' end of the universal primer (UP), followed by universal amplification using UPs and a regular cycle amplification. Five universal primers with CPs (UP1-5) were designed and evaluated in an UP-based single PCR (UP-S-PCR). All five UPs were found to work efficiently and UP2 exhibited the best performance. After system optimizations, the analytical sensitivity of the UP-M-PCR, using plasmids containing the specific viral target fragments, was 5 copies/reaction for each of the five viruses irrespective of presence of a single or multiple viruses in the reaction. No cross-reaction was observed with other non-target viruses. When 273 fecal samples from clinically healthy pigs were tested, the assay sensitivity was 90.9-100%, the specificity was 98.0-100%, and the agreement rate with the UP-S-PCR was 98.5-99.6% with a Kappa value being 0.95-0.98. In summary, the UP-M-PCR developed here is a rapid and highly sensitive and specific detection method that can be used to demonstrate mixed infections in pigs with diarrhea.
Collapse
Affiliation(s)
- Pei Nan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Dan Wen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Tanja Opriessnig
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK; Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Qiuya Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaoya Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yonghou Jiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
| |
Collapse
|
18
|
Srijangwad A, Tripipat T, Saeng-Chuto K, Jermsujarit P, Tantituvanont A, Okabayashi T, Nilubol D. Development and validation of indirect ELISA for antibody detection against different protein antigens of porcine epidemic diarrhea virus in the colostrum and milk of sows. J Immunol Methods 2021; 494:113045. [PMID: 33781786 DOI: 10.1016/j.jim.2021.113045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/20/2021] [Accepted: 03/20/2021] [Indexed: 11/29/2022]
Abstract
The objectives of this study are to develop and optimize indirect ELISA based on three coating antigens of porcine epidemic diarrhea virus (PEDV), recombinant spike (S12), nucleocapsid (N), and whole viral (WV) proteins, for the detection of IgG and IgA antibodies in colostrum and milk and to evaluate the diagnostic sensitivity (DSe) and diagnostic specificity (DSp) of the assay as a diagnostic method. Colostrum (n = 347) and milk (n = 272) samples from sows were employed in this assay. Indirect ELISA based on three coating antigens was assessed by receiver operating characteristic (ROC) curve analysis with a virus neutralization (VN) test as a reference method, and the cutoff value for calculating DSe and DSp was determined. S12-ELISA showed higher DSe and DSp of IgG and IgA detection compared to N- and WV-ELISA in both colostrum and milk samples. Moreover, S12-ELISA showed perfect agreement and a high correlation with the VN test, which was better than the N- and WV-ELISA for both IgG and IgA detection in colostrum and milk. In contrast, N-ELISA showed lower DSe and DSp compared to S12- and WV-ELISA, along with a correlation with VN and substantial agreement with the VN test. Nevertheless, our developed ELISAs have accuracy for repeatability in both inter- and intra-assay variation. Overall, this research demonstrates that S12-ELISA is more suitable than WV- and N-ELISA to detect IgG and IgA antibodies against PEDV from both colostrum and milk samples.
Collapse
Affiliation(s)
- Anchalee Srijangwad
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thitima Tripipat
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kepalee Saeng-Chuto
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Patumporn Jermsujarit
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Angkana Tantituvanont
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tamaki Okabayashi
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Dachrit Nilubol
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
19
|
El-Tholoth M, Bai H, Mauk MG, Saif L, Bau HH. A portable, 3D printed, microfluidic device for multiplexed, real time, molecular detection of the porcine epidemic diarrhea virus, transmissible gastroenteritis virus, and porcine deltacoronavirus at the point of need. LAB ON A CHIP 2021; 21:1118-1130. [PMID: 33527920 PMCID: PMC7990716 DOI: 10.1039/d0lc01229g] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), and porcine deltacoronavirus (PDCoV) are emerging/reemerging coronaviruses (CoVs) of neonatal pigs that cause great economic losses to pig farms and pork processors. Specific, rapid, and simple multiplex detection of these viruses is critical to enable prompt implementation of appropriate control measures. Conventional methods for molecular diagnosis require skilled personnel and relatively sophisticated equipment, restricting their use in centralized laboratories. We developed a low-cost, rapid, semi-quantitative, field deployable, 3D-printed microfluidic device for auto-distribution of samples and self-sealing and real-time and reverse transcription-loop-mediated isothermal amplification (RT-LAMP), enabling the co-detection of PEDV, TGEV and PDCoV within 30 minutes. Our assay's analytical performance is comparable with a benchtop, real-time RT-LAMP assay and the gold standard quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay with limits of detection of 10 genomic copies per reaction for PEDV and PDCoV, and 100 genomic copies per reaction for TGEV. Evaluation of clinical specimens from diseased pigs with our microfluidic device revealed excellent concordance with both benchtop RT-LAMP and qRT-PCR. Our portable RT-LAMP microfluidic chip will potentially facilitate simple, specific, rapid multiplexed detection of harmful infections in minimally equipped veterinary diagnostic laboratories and on-site in pigs' farms.
Collapse
Affiliation(s)
- Mohamed El-Tholoth
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | | | | | | | | |
Collapse
|
20
|
Expression and Purification of a PEDV-Neutralizing Antibody and Its Functional Verification. Viruses 2021; 13:v13030472. [PMID: 33809239 PMCID: PMC7999980 DOI: 10.3390/v13030472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/28/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly infectious and pathogenic virus causing high morbidity and mortality, especially in newborn piglets. There remain problems with contemporary PEDV vaccines, in part because of the rapid variation of PEDV, poor conferred immunity, and numerous side effects. The ability to produce PEDV-neutralizing antibodies suggests that we may be able to increase the success rate of PEDV prevention in piglets using these antibodies. In this study, we produced an anti-PEDV S protein monoclonal antibody (anti-PEDV mAb-2) that neutralized PEDV-CV777 (a G1 strain), PEDV-SDSX16 and PEDV-Aj1102 (two G2 strains). In vivo challenge experiments demonstrated that anti-PEDV mAb-2 inhibited the PEDV infection in piglets. We also produced three HEK293 cell lines that expressed anti-PEDV mAb-2. Overall, our study showed that anti-PEDV mAb-2 produced from hybridoma supernatants effectively inhibited PEDV infection in piglets, and the recombinant HEK293 cell lines expressed anti-PEDV mAb-2 genes.
Collapse
|
21
|
Díaz I, Pujols J, Cano E, Cuadrado R, Navarro N, Mateu E, Martín M. Assessment of three commercial ELISAs for the detection of antibodies against Porcine epidemic diarrhea virus at different stages of the immune response. Vet Immunol Immunopathol 2021; 234:110206. [PMID: 33601087 DOI: 10.1016/j.vetimm.2021.110206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/20/2020] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
Three commercial ELISAs -two based on spike (E1 and E3) and one on nucleocapsid protein (E2)-were used to analyze the development and persistence of antibodies against Porcine epidemic diarrhea virus (PEDV). Seventy-five four-week-old PEDV-negative piglets were inoculated orally with a European G1b PEDV (INOC) and fourteen were kept as controls (CTRL). After the inoculation, E3 detected positive animals as soon as 7 days post inoculation (dpi), while the earliest detection with E1 and E2 was at 14 dpi. All samples were positive at 21 and 28 dpi using E1 and E3, respectively, while E2 failed to detect 23.3 % of the inoculated pigs at any time point. The percentages of positive samples were different through the study: E1 and E3 > E2 from 14 to 56 dpi; and E3 > E1 > E2 from 56 to 154 dpi (P < 0.05). Five months after the inoculation, E3 still detected 92.0 % (IC95 % = 85.1-98.8 %) of pigs as positive, while E1 and E2 detected only 27.0 % (IC95 % = 16.0-37.9 %) and 0%, respectively. The sensitivity for E2 never exceeded 0.62. Specificity was 1 for all ELISAs. These different outcomes could be related to the ELISA strategies (indirect versus competition), the antigens used, the cut-off, or to other intrinsic factors of each test. The observed differences could be of importance when assessing whether older animals, such as fatteners or gilts, had previously been in contact with PEDV.
Collapse
Affiliation(s)
- I Díaz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain.
| | - J Pujols
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - E Cano
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - R Cuadrado
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - N Navarro
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - E Mateu
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain; Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), UAB, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - M Martín
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain; Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), UAB, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
22
|
Qi M, Zambrano-Moreno C, Pineda P, Calderón C, Rincón-Monroy MA, Diaz A, Marthaler DG. Several lineages of porcine epidemic diarrhea virus in Colombia during the 2014 and 2016 epidemic. Transbound Emerg Dis 2020; 68:2465-2476. [PMID: 33155439 DOI: 10.1111/tbed.13914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/16/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a significant global, enteric coronavirus in pigs and was first reported in Colombia in 2014. However, the epidemiology, genetic and antigenic characteristics of the virus have yet to be investigated. In this study, we investigated the dissemination of PEDV by testing 536 samples by RT-PCR over a 33-month period. The 35.8% of positive samples (n = 192) was significantly different (p < .01) between months over time, with a higher number of positives samples occurring at the beginning of the epidemic and during the second epidemic wave within the main pork producing region. The complete PEDV genomes were generated for 21 strains, which shared a high nucleotide and amino acid sequence identity, except for the spike (S) gene. Recombinant regions were identified within the Colombian strains and between Colombian and Asian PEDV strains. Phylogenetic analysis of the 21 Colombian strains demonstrated the presence of 7 lineages that shared common ancestors with PEDV strains from the United States. Moreover, the antigenic analysis demonstrated residue differences in the neutralizing epitopes in the spike and nucleocapsid proteins. Our results illustrated the simultaneous introduction of the two PEDV genotypes (GIIa American pandemic and S-INDEL) into the Colombian swine industry during the 2014 PEDV epidemic and enhanced our understanding of the epidemiology and molecular diversity of PEDV in Colombia.
Collapse
Affiliation(s)
- Mingpu Qi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | | | - Pilar Pineda
- Asociación Colombiana de Porcicultores - PorkColombia, Bogotá, Colombia
| | - Claudia Calderón
- Laboratorio Nacional de Diagnóstico Veterinario, Instituto Colombiano Agropecuario ICA, Bogotá, Colombia
| | - María A Rincón-Monroy
- Laboratorio Nacional de Diagnóstico Veterinario, Instituto Colombiano Agropecuario ICA, Bogotá, Colombia
| | - Andres Diaz
- Asociación Colombiana de Porcicultores - PorkColombia, Bogotá, Colombia.,Pig Improvement Company LATAM, Santiago de Querétaro, Querétaro, Mexico
| | - Douglas G Marthaler
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.,Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| |
Collapse
|
23
|
Goh GKM, Dunker AK, Foster JA, Uversky VN. Shell Disorder Analysis Suggests That Pangolins Offered a Window for a Silent Spread of an Attenuated SARS-CoV-2 Precursor among Humans. J Proteome Res 2020; 19:4543-4552. [PMID: 32790362 PMCID: PMC7640969 DOI: 10.1021/acs.jproteome.0c00460] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Indexed: 02/06/2023]
Abstract
A model to predict the relative levels of respiratory and fecal-oral transmission potentials of coronaviruses (CoVs) by measuring the percentage of protein intrinsic disorder (PID) of the M (Membrane) and N (Nucleoprotein) proteins in their outer and inner shells, respectively, was built before the MERS-CoV outbreak. With MPID = 8.6% and NPID = 50.2%, the 2003 SARS-CoV falls into group B, which consists of CoVs with intermediate levels of both fecal-oral and respiratory transmission potentials. Further validation of the model came with MERS-CoV (MPID = 9%, NPID = 44%) and SARS-CoV-2 (MPID = 5.5%, NPID = 48%) falling into the groups C and B, respectively. Group C contains CoVs with higher fecal-oral but lower respiratory transmission potentials. Unlike SARS-CoV, SARS-CoV-2 with MPID = 5.5% has one of the hardest outer shells among CoVs. Because the hard shell is able to resist the antimicrobial enzymes in body fluids, the infected person is able to shed large quantities of viral particles via saliva and mucus, which could account for the higher contagiousness of SARS-COV-2. Further searches have found that high rigidity of the outer shell is characteristic for the CoVs of burrowing animals, such as rabbits (MPID = 5.6%) and pangolins (MPID = 5-6%), which are in contact with the buried feces. A closer inspection of pangolin-CoVs from 2017 to 2019 reveals that pangolins provided a unique window of opportunity for the entry of an attenuated SARS-CoV-2 precursor into the human population in 2017 or earlier, with the subsequent slow and silent spread as a mild cold that followed by its mutations into the current more virulent form. Evidence of this lies in both the genetic proximity of the pangolin-CoVs to SARS-CoV-2 (∼90%) and differences in N disorder. A 2017 pangolin-CoV strain shows evidence of higher levels of attenuation and higher fecal-oral transmission associated with lower human infectivity via having lower NPID (44.8%). Our shell disorder model predicts this to be a SARS-CoV-2 vaccine strain, as lower inner shell disorder is associated with the lesser virulence in a variety of viruses.
Collapse
Affiliation(s)
| | - A. Keith Dunker
- Center
for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - James A. Foster
- Department
of Biological Sciences, University of Idaho, Moscow, Idaho 83844, United States
- Institute
for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho 83844, United States
| | - Vladimir N. Uversky
- Department
of Molecular Medicine, USF Health Byrd Alzheimer’s Research
Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33620, United States
- Laboratory
of New Methods in Biology, Institute for Biological Instrumentation
of the Russian Academy of Sciences, Federal
Research Center “Pushchino Scientific Center for Biological
Research of the Russian Academy of Sciences”, Pushchino, Moscow 119991, Russia
| |
Collapse
|
24
|
Zhao F, Liu L, Xu M, Shu X, Zheng L, Wei Z. Assessments of different inactivating reagents in formulating transmissible gastroenteritis virus vaccine. Virol J 2020; 17:163. [PMID: 33097081 PMCID: PMC7582447 DOI: 10.1186/s12985-020-01433-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/12/2020] [Indexed: 11/21/2022] Open
Abstract
Background Transmissible gastroenteritis virus (TGEV) causes enteric infection in piglets, characterized by vomiting, severe diarrhea and dehydration, and the mortality in suckling piglets is often high up to 100%. Vaccination is an effective measure to control the disease caused by TGEV. Methods In this study, cell-cultured TGEV HN-2012 strain was inactivated by formaldehyde (FA), β-propiolactone (BPL) or binaryethylenimine (BEI), respectively. Then the inactivated TGEV vaccine was prepared with freund's adjuvant, and the immunization effects were evaluated in mice. The TGEV-specific IgG level was detected by ELISA. The positive rates of CD4+, CD8+, CD4+IFN-γ+, CD4+IL-4+ T lymphocytes were detected by flow cytometry assay. Lymphocyte proliferation assay and gross pathology and histopathology examination were also performed to assess the three different inactivating reagents in formulating TGEV vaccine. Results The results showed that the TGEV-specific IgG level in FA group (n = 17) was earlier and stronger, while the BEI group produced much longer-term IgG level. The lymphocyte proliferation test demonstrated that the BEI group had a stronger ability to induce spleen lymphocyte proliferation. The positive rates of CD4+ and CD8+ T lymphocyte subsets of peripheral blood lymphocyte in BEI group was higher than that in FA group and BPL groups by flow cytometry assay. The positive rate of CD4+IFN-γ+ T lymphocyte subset was the highest in the BPL group, and the positive rate of CD4+IL-4+ T lymphocyte subset was the highest in the FA group. There were no obvious pathological changes in the vaccinated mice and the control group after the macroscopic and histopathological examination. Conclusions These results indicated that all the three experimental groups could induce cellular and humoral immunity, and the FA group had the best humoral immunity effect, while the BEI group showed its excellent cellular immunity effect.
Collapse
Affiliation(s)
- Fujie Zhao
- The College of Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Lintao Liu
- The College of Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Menglong Xu
- The College of Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Xiangli Shu
- The College of Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Lanlan Zheng
- The College of Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China.
| | - Zhanyong Wei
- The College of Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China. .,Key Laboratory for Animal-Derived Food Safety of Henan Province, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
25
|
Hsu CW, Chang MH, Chang HW, Wu TY, Chang YC. Parenterally Administered Porcine Epidemic Diarrhea Virus-Like Particle-Based Vaccine Formulated with CCL25/28 Chemokines Induces Systemic and Mucosal Immune Protectivity in Pigs. Viruses 2020; 12:E1122. [PMID: 33023277 PMCID: PMC7600258 DOI: 10.3390/v12101122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 01/12/2023] Open
Abstract
Generation of a safe, economical, and effective vaccine capable of inducing mucosal immunity is critical for the development of vaccines against enteric viral diseases. In the current study, virus-like particles (VLPs) containing the spike (S), membrane (M), and envelope (E) structural proteins of porcine epidemic diarrhea virus (PEDV) expressed by the novel polycistronic baculovirus expression vector were generated. The immunogenicity and protective efficacy of the PEDV VLPs formulated with or without mucosal adjuvants of CCL25 and CCL28 (CCL25/28) were evaluated in post-weaning pigs. While pigs intramuscularly immunized with VLPs alone were capable of eliciting systemic anti-PEDV S-specific IgG and cellular immunity, co-administration of PEDV VLPs with CCL25/28 could further modulate the immune responses by enhancing systemic anti-PEDV S-specific IgG, mucosal IgA, and cellular immunity. Upon challenge with PEDV, both VLP-immunized groups showed milder clinical signs with reduced fecal viral shedding as compared to the control group. Furthermore, pigs immunized with VLPs adjuvanted with CCL25/28 showed superior immune protection against PEDV. Our results suggest that VLPs formulated with CCL25/28 may serve as a potential PEDV vaccine candidate and the same strategy may serve as a platform for the development of other enteric viral vaccines.
Collapse
Affiliation(s)
- Chin-Wei Hsu
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan; (C.-W.H.); (H.-W.C.)
| | - Ming-Hao Chang
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320, Taiwan;
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan; (C.-W.H.); (H.-W.C.)
| | - Tzong-Yuan Wu
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 406, Taiwan
| | - Yen-Chen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan; (C.-W.H.); (H.-W.C.)
| |
Collapse
|
26
|
Zhang Y, Han L, Xia L, Yuan Y, Hu H. Assessment of hemagglutination activity of porcine deltacoronavirus. J Vet Sci 2020; 21:e12. [PMID: 31940691 PMCID: PMC7000906 DOI: 10.4142/jvs.2020.21.e12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/12/2019] [Accepted: 10/23/2019] [Indexed: 11/30/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging swine enteric coronavirus that causes diarrhea in piglets. However, the biological characteristics of PDCoV are unclear. In this study, the hemagglutination (HA) abilities of two PDCoV strains (CH-01 and HNZK-04) were investigated. Our results showed that PDCoV has the ability to agglutinate rabbit erythrocytes after virion pretreatment with trypsin or neuraminidase. Additionally, the HA assay results showed a significant positive correlation with the infectious viral titer. Our results suggest that assessing the HA activity of PDCoV may be a useful diagnostic method for investigating and surveilling PDCoV infections.
Collapse
Affiliation(s)
- Yunfei Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Li Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Lu Xia
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yixin Yuan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Hui Hu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.,Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou 450002, China.
| |
Collapse
|
27
|
Jung K, Saif LJ, Wang Q. Porcine epidemic diarrhea virus (PEDV): An update on etiology, transmission, pathogenesis, and prevention and control. Virus Res 2020; 286:198045. [PMID: 32502552 PMCID: PMC7266596 DOI: 10.1016/j.virusres.2020.198045] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV), a member of the genus Alphacoronavirus in the family Coronaviridae, causes acute diarrhea and/or vomiting, dehydration and high mortality in neonatal piglets. Two different genogroups of PEDV, S INDEL [PEDV variant containing multiple deletions and insertions in the S1 subunit of the spike (S) protein, G1b] and non-S INDEL (G2b) strains were detected during the diarrheal disease outbreak in US swine in 2013-2014. Similar viruses are also circulating globally. Continuous improvement and update of biosecurity and vaccine strains and protocols are still needed to control and prevent PEDV infections worldwide. Although the non-S INDEL PEDV was highly virulent and the S INDEL PEDV caused milder disease, the latter has the capacity to cause illness in a high number of piglets on farms with low biosecurity and herd immunity. The main PEDV transmission route is fecal-oral, but airborne transmission via the fecal-nasal route may play a role in pig-to-pig and farm-to-farm spread. PEDV infection of neonatal pigs causes fecal virus shedding (alongside frequent detection of PEDV RNA in the nasal cavity), acute viremia, severe atrophic enteritis (mainly jejunum and ileum), and increased pro-inflammatory and innate immune responses. PEDV-specific IgA effector and memory B cells in orally primed sows play a critical role in sow lactogenic immunity and passive protection of piglets. This review focuses on the etiology, transmission, pathogenesis, and prevention and control of PEDV infection.
Collapse
Affiliation(s)
- Kwonil Jung
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| | - Qiuhong Wang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| |
Collapse
|
28
|
Goh GKM, Dunker AK, Foster JA, Uversky VN. Shell disorder analysis predicts greater resilience of the SARS-CoV-2 (COVID-19) outside the body and in body fluids. Microb Pathog 2020; 144:104177. [PMID: 32244041 PMCID: PMC7118597 DOI: 10.1016/j.micpath.2020.104177] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/18/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022]
Abstract
The coronavirus (CoV) family consists of viruses that infects a variety of animals including humans with various levels of respiratory and fecal-oral transmission levels depending on the behavior of the viruses' natural hosts and optimal viral fitness. A model to classify and predict the levels of respective respiratory and fecal-oral transmission potentials of the various viruses was built before the outbreak of MERS-CoV using AI and empirically-based molecular tools to predict the disorder level of proteins. Using the percentages of intrinsic disorder (PID) of the nucleocapsid (N) and membrane (M) proteins of CoV, the model easily clustered the viruses into three groups with the SARS-CoV (M PID = 8%, N PID = 50%) falling into Category B, in which viruses have intermediate levels of both respiratory and fecal-oral transmission potentials. Later, MERS-CoV (M PID = 9%, N PID = 44%) was found to be in Category C, which consists of viruses with lower respiratory transmission potential but with higher fecal-oral transmission capabilities. Based on the peculiarities of disorder distribution, the SARS-CoV-2 (M PID = 6%, N PID = 48%) has to be placed in Category B. Our data show however, that the SARS-CoV-2 is very strange with one of the hardest protective outer shell, (M PID = 6%) among coronaviruses. This means that it might be expected to be highly resilient in saliva or other body fluids and outside the body. An infected body is likelier to shed greater numbers of viral particles since the latter is more resistant to antimicrobial enzymes in body fluids. These particles are also likelier to remain active longer. These factors could account for the greater contagiousness of the SARS-CoV-2 and have implications for efforts to prevent its spread.
Collapse
Affiliation(s)
| | - A Keith Dunker
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - James A Foster
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA; Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow region, Russia
| |
Collapse
|
29
|
Identification and characterization of linear B cell epitopes on the nucleocapsid protein of porcine epidemic diarrhea virus using monoclonal antibodies. Virus Res 2020; 281:197912. [PMID: 32142743 PMCID: PMC7114562 DOI: 10.1016/j.virusres.2020.197912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 01/19/2023]
Abstract
The nucleocapsid (N) protein of porcine epidemic diarrhea virus (PEDV), the most important pathogen causing severe diarrhea in piglets, is a highly conserved structural protein. In this study, 5 monoclonal antibodies (McAbs) against the PEDV N-protein were prepared and identified. Three new epitopes, 56QIRWRMRRGERI67, 318GYAQIASLAPNVAALLFGGNVA VRE342 and 398HEEAIYDDV406, were firstly identified in the viral N-protein, by using McAbs 3F10, 6A11, and 1C9. The epitope 398HEEAIYDDV406 was deleted in SH strain (isolated by our lab) and different between CV777 and YZ strain (isolated by our lab). To study the characters of this epitope, four peptides were synthesized according to the sequence of SH and CV777 and used in the study. The result showed that the 398th amino acid maybe an important amino acid of the epitope. Biological information analysis showed that the three B cell linear epitopes are highly conserved among different PEDV isolates. In addition, McAb 1C9, which attached to the epitope 398HEEAIYDDV406, showed variant reactivity with PEDV CV777, SH, YZ and MS strains. McAb 1C9 reacted with PEDV strains CV777 and YZ, but not with SH which had a deletion from 399 to 410 amino acids in N-protein (No. MK841494). Among the three McAbs, 6A11, 3F10 and 1C9, only 6A11 reacted with porcine transmissible gastroenteritis virus (TGEV) in immunofluorescence assay, therefore the other two could be used to distinguish TGEV and PEDV. These mAbs and their defined epitopes may provide useful tool for the study of the PEDV N-protein structure and function, and facilitate the development of diagnostic methods for PEDV.
Collapse
|
30
|
Malik YS, Singh RK, Yadav MP, Langel SN, Malik YS, Saif LJ. Porcine Coronaviruses. EMERGING AND TRANSBOUNDARY ANIMAL VIRUSES 2020. [PMCID: PMC7123000 DOI: 10.1007/978-981-15-0402-0_4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhoea virus (PEDV), and porcine deltacoronavirus (PDCoV) are enteropathogenic coronaviruses (CoVs) of swine. TGEV appearance in 1946 preceded identification of PEDV (1971) and PDCoV (2009) that are considered as emerging CoVs. A spike deletion mutant of TGEV associated with respiratory tract infection in piglets appeared in 1984 in pigs in Belgium and was designated porcine respiratory coronavirus (PRCV). PRCV is considered non-pathogenic because the infection is very mild or subclinical. Since PRCV emergence and rapid spread, most pigs have become immune to both PRCV and TGEV, which has significantly reduced the clinical and economic importance of TGEV. In contrast, PDCoV and PEDV are currently expanding their geographic distribution, and there are reports on the circulation of TGEV-PEDV recombinants that cause a disease clinically indistinguishable from that associated with the parent viruses. TGEV, PEDV and PDCoV cause acute gastroenteritis in pigs (most severe in neonatal piglets) and matches in their clinical signs and pathogenesis. Necrosis of the infected intestinal epithelial cells causes villous atrophy and malabsorptive diarrhoea. Profuse diarrhoea frequently combined with vomiting results in dehydration, which can lead to the death of piglets. Strong immune responses following natural infection protect against subsequent homologous challenge; however, these viruses display no cross-protection. Adoption of advance biosecurity measures and effective vaccines control and prevent the occurrence of diseases due to these porcine-associated CoVs. Recombination and reversion to virulence are the risks associated with generally highly effective attenuated vaccines necessitating further research on alternative vaccines to ensure their safe application in the field.
Collapse
Affiliation(s)
- Yashpal Singh Malik
- grid.417990.20000 0000 9070 5290Biological Standardization, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh India
| | - Raj Kumar Singh
- grid.417990.20000 0000 9070 5290ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh India
| | - Mahendra Pal Yadav
- grid.444573.5ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India, Sardar Vallabhbhai Patel University of Agriculture & Technology, Meerut, Uttar Pradesh India
| | | | | | | |
Collapse
|
31
|
Identification of a Novel Linear B-Cell Epitope on the Nucleocapsid Protein of Porcine Deltacoronavirus. Int J Mol Sci 2020; 21:ijms21020648. [PMID: 31963776 PMCID: PMC7013544 DOI: 10.3390/ijms21020648] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 01/11/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV), first identified in 2012, is a swine enteropathogen now found in many countries. The nucleocapsid (N) protein, a core component of PDCoV, is essential for virus replication and is a significant candidate in the development of diagnostics for PDCoV. In this study, monoclonal antibodies (mAbs) were generated and tested for reactivity with three truncations of the full protein (N1, N2, N3) that contained partial overlaps; of the five monoclonals chosen tested, each reacted with only the N3 truncation. The antibody designated 4E88 had highest binding affinity with the N protein and was chosen for in-depth examination. The 4E88 epitope was located to amino acids 308-AKPKQQKKPKK-318 by testing the 4E88 monoclonal for reactivity with a series of N3 truncations, then the minimal epitope, 309-KPKQQKKPK-317 (designated EP-4E88), was pinpointed by testing the 4E88 monoclonal for reactivity with a series of synthetic peptides of this region. Homology analysis showed that the EP-4E88 sequence is highly conserved among PDCoV strains, and also shares high similarity with sparrow coronavirus (HKU17), Asian leopard cat coronavirus (ALCCoV), quail coronavirus (UAE-HKU30), and sparrow deltacoronavirus (SpDCoV). Of note, the PDCoV EP-4E88 sequence shared very low similarity (<22.2%) with other porcine coronaviruses (PEDV, TGEV, PRCV, SADS-CoV, PHEV), demonstrating that it is an epitope that can be used for distinguishing PDCoV and other porcine coronavirus. 3D structural analysis revealed that amino acids of EP-4E88 were in close proximity and may be exposed on the surface of the N protein.
Collapse
|
32
|
Chang CY, Peng JY, Cheng YH, Chang YC, Wu YT, Tsai PS, Chiou HY, Jeng CR, Chang HW. Development and comparison of enzyme-linked immunosorbent assays based on recombinant trimeric full-length and truncated spike proteins for detecting antibodies against porcine epidemic diarrhea virus. BMC Vet Res 2019; 15:421. [PMID: 31775769 PMCID: PMC6880432 DOI: 10.1186/s12917-019-2171-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 11/08/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since 2010, outbreaks of genotype 2 (G2) porcine epidemic diarrhea virus (PEDV) have caused high mortality in neonatal piglets and have had devastating impacts on the swine industry in many countries. A reliable serological assay for evaluating the PEDV-specific humoral and mucosal immune response is important for disease survey, monitoring the efficacy of immunization, and designing strategies for the prevention and control of PED. Two PEDV spike (S) glycoprotein-based indirect enzyme-linked immunosorbent assays (ELISAs) were developed using G2b PEDV-Pintung 52 (PEDV-PT) trimeric full-length S and truncated S1-501 proteins derived from the human embryonic kidney (HEK)-293 cell expression system. The truncated S1-501 protein was selected from a superior expressed stable cell line. The sensitivity and specificity of these two ELISAs were compared to immunostaining of G2b PEDV-PT infected cells and to a commercial nucleocapsid (N)-based indirect ELISA kit using a panel of PEDV negative and hyperimmune sera. RESULTS The commercial N-based ELISA exhibited a sensitivity of 37%, a specificity of 100%, and a fair agreement (kappa = 0.37) with the immunostaining result. In comparison, the full-length S-based ELISA showed a sensitivity of 97.8%, a specificity of 94%, and an almost perfect agreement (kappa = 0.90) with the immunostaining result. Interestingly, the S1-501-based ELISA had even higher sensitivity of 98.9% and specificity of 99.1%, and an almost perfect agreement (kappa = 0.97) with the immunostaining result. A fair agreement (kappa< 0.4) was seen between the commercial N-based ELISA and either of our S-based ELISAs. However, the results of the full-length S-based ELISA shared an almost perfect agreement (kappa = 0.92) with that of S1-501-based ELISA. CONCLUSIONS Both full-length S-based and S1-501-based ELISAs exhibit high sensitivity and high specificity for detecting antibodies against PEDVs. Considering the high protein yield and cost-effectiveness, the S1-501-based ELISA could be used as a reliable, sensitive, specific, and economic serological test for PEDV.
Collapse
Affiliation(s)
- Chia-Yu Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei, 10617, Taiwan.,School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Ju-Yi Peng
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Yun-Han Cheng
- School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Yen-Chen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei, 10617, Taiwan.,School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Yen-Tse Wu
- School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Pei-Shiue Tsai
- School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Hue-Ying Chiou
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| | - Chian-Ren Jeng
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei, 10617, Taiwan.,School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei, 10617, Taiwan. .,School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
33
|
Wang XW, Wang M, Zhan J, Liu QY, Fang LL, Zhao CY, Jiang P, Li YF, Bai J. Pathogenicity and immunogenicity of a new strain of porcine epidemic diarrhea virus containing a novel deletion in the N gene. Vet Microbiol 2019; 240:108511. [PMID: 31902508 PMCID: PMC7173345 DOI: 10.1016/j.vetmic.2019.108511] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 10/25/2022]
Abstract
Since late 2010, highly virulent PEDV G2-genotype strains have emerged globally extracting heavy losses on the pork industries of numerous countries. We investigated the characteristics of a field strain of PEDV (PEDV strain SH) isolated from a piglet with severe diarrhea on a farm in Shanghai China. Whole genome sequencing and analysis revealed that the SH strain belonged to subtype G2b and has a unique 12-aa deletion (aa 399-410) including the antigenic epitope NEP-1C9 (aa 398-406) of the N protein. PEDV SH strain is highly pathogenic to challenged newborn piglets, resulting in 100 % morbidity and mortality. Pathological examination revealed significant villus atrophy in the jejuna of infected piglets. Mice inoculated with inactivated PEDV SH produced antibodies against the N protein, but no antibodies against the deletions. These results illustrated that deletion of the NEP-1C9 epitope had no effect on the immunogenicity or pathogenicity of PEDV, providing evidence of the necessity to monitor the genetic diversity of the virus. Our study also contributes to development of candidate for vaccines and diagnostics that could differentiate pigs seropositive due to vaccination by conventional strains from wild virus infection.
Collapse
Affiliation(s)
- Xian-Wei Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Mi Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Zhan
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian-Yu Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin-Lin Fang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen-Yao Zhao
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yu-Feng Li
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
34
|
Myint O, Yoshida A, Sekiguchi S, Van Diep N, Fuke N, Izzati UZ, Hirai T, Yamaguchi R. Development of indirect enzyme-linked immunosorbent assay for detection of porcine epidemic diarrhea virus specific antibodies (IgG) in serum of naturally infected pigs. BMC Vet Res 2019; 15:409. [PMID: 31718620 PMCID: PMC6852973 DOI: 10.1186/s12917-019-2123-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 10/09/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Porcine epidemic diarrhea virus (PEDV) infection is a highly contagious infectious disease causing watery diarrhea, vomiting, dehydration and high mortality rate in newborn piglets. PEDV infection can cause high economic losses in pig industry. In Japan, a PEDV outbreak occurred with high mortality from 2013 to 2015. Even though until now, PEDV infection occurs sporadically. For the control and monitoring of PEDV infection, not only symptomatic pigs, but also asymptomatic pigs should be identified. The objective of this study is to develop and optimize novel indirect ELISA as a simple, rapid, sensitive and specific method for the detection of anti-PEDV antibodies and evaluate the efficacy of the assay as a diagnostic method for PED. RESULTS One hundred sixty-two serum samples, consisting of 81 neutralization test (NT) positive and 81 NT negative sera, were applied to the assay. Indirect ELISA test based on whole virus antigen (NK94P6 strain) derived from Vero cell culture was evaluated by receiver operating characteristic (ROC) analysis with neutralization test (NT) as a reference method, and cut-off value was determined as 0.320 with sensitivity and specificity of 92.6 and 90.1%, respectively. The area under curve (AUC) was 0.949, indicating excellent accuracy of indirect ELISA test. There was significant positive correlation between indirect ELISA and neutralization test (R = 0.815, P < 0.05). Furthermore, the kappa statics showed the excellent agreement between these two tests (kappa value = 0.815). In addition, the sensitivity and specificity of preserved plates with different periods (1 day, 2 weeks, 1, 2, 3, 4, 5 and 6 months) after drying antigen coated plates were 100% and 80-100%, respectively. CONCLUSIONS The developed indirect ELISA test in our study would be useful as a reliable test for serological survey and disease control of PEDV infection, and our pre-antigen coated ELISA plates can be preserved at 4 °C until at least 6 months.
Collapse
Affiliation(s)
- Ohnmar Myint
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki, 889-2192, Japan
| | - Ayako Yoshida
- Department of Veterinary Parasitic Diseases, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan.,Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Satoshi Sekiguchi
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan.,Department of Animal Infectious Disease and Prevention, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Nguyen Van Diep
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki, 889-2192, Japan
| | - Naoyuki Fuke
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki, 889-2192, Japan
| | - Uda Zahli Izzati
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki, 889-2192, Japan
| | - Takuya Hirai
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki, 889-2192, Japan
| | - Ryoji Yamaguchi
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki, 889-2192, Japan.
| |
Collapse
|
35
|
Sungsuwan S, Jongkaewwattana A, Jaru-Ampornpan P. Nucleocapsid proteins from other swine enteric coronaviruses differentially modulate PEDV replication. Virology 2019; 540:45-56. [PMID: 31756532 PMCID: PMC7112109 DOI: 10.1016/j.virol.2019.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 01/08/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV) and porcine deltacoronavirus (PDCoV) share tropism for swine intestinal epithelial cells. Whether mixing of viral components during co-infection alters pathogenic outcomes or viral replication is not known. In this study, we investigated how different coronavirus nucleocapsid (CoV N) proteins interact and affect PEDV replication. We found that PDCoV N and TGEV N can competitively interact with PEDV N. However, the presence of PDCoV or TGEV N led to very different outcomes on PEDV replication. While PDCoV N significantly suppresses PEDV replication, overexpression of TGEV N, like that of PEDV N, increases production of PEDV RNA and virions. Despite partial interchangeability in nucleocapsid oligomerization and viral RNA synthesis, endogenous PEDV N cannot be replaced in the production of infectious PEDV particles. Results from this study give insights into functional compatibilities and evolutionary relationship between CoV viral proteins during viral co-infection and co-evolution. PDCoV N and TGEV N interact with PEDV N in a competitive, RNA-dependent manner. PEDV replication in cell culture is enhanced by overexpression of TGEV or PEDV N but strongly suppressed by that of PDCoV N. Both TGEV and PDCoV N can partially rescue viral RNA and protein synthesis functions of PEDV N, albeit to different degrees. Neither TGEV nor PDCoV N can completely replace PEDV N in the production of PEDV infectious virions.
Collapse
Affiliation(s)
- Suttipun Sungsuwan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Anan Jongkaewwattana
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Peera Jaru-Ampornpan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| |
Collapse
|
36
|
Lei XM, Yang YL, He YQ, Peng L, Zhao P, Xu SY, Cao H, Fang P, Qiu W, Qin P, Wang B, Huang YW. Specific recombinant proteins of porcine epidemic diarrhea virus are immunogenic, revealing their potential use as diagnostic markers. Vet Microbiol 2019; 236:108387. [PMID: 31500721 PMCID: PMC7117304 DOI: 10.1016/j.vetmic.2019.108387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/04/2019] [Accepted: 08/08/2019] [Indexed: 01/03/2023]
Abstract
Given the highly contagious and acute nature of porcine epidemic diarrhea (PED), especially in piglets, there is an urgent need for the development of rapid and sensitive diagnostic assays. The diagnostic potentials of specific porcine epidemic diarrhea virus (PEDV) accessory and nonstructural proteins, if any, have not yet been investigated. In order to determine and compare which of the viral proteins may be useful as diagnostic antigens, whole virus (WV) particles and a panel of structural and nonstructural PEDV proteins [spike subunit 1 (S1), the C-terminal part of ORF3 (ORF3C), envelope (E), nonstructural protein 1 (Nsp1), Nsp2, Ac (acidic domain of Nsp3), and ADRP (ADP-ribose-1-monophosphatase domain of Nsp3), expressed individually in bacterial and/or mammalian cells] were tested for reactivity with sera from PEDV-infected pigs by ELISA and/or western blot analysis. According to western blots, serum antibody interactions with the S1 protein were relatively more sensitive and specific than ORF3C, E and Ac. Furthermore, a total of 851 serum samples from diarrheal pigs of different ages were analyzed by ELISA, with most showing immune-reactivity towards the WV, S1, ORF3C, and E proteins. The earliest IgG antibody response was observed in the one-week-old piglets, with similar antibody ontogeny and patterns of seroconversion for S1, ORF3C, E, and WV antigens. In addition, the pattern of neutralizing antibody was more similar to that of IgA in weaning piglets after PEDV infection. Collectively, these data provide more reliable information on the host immune response to different viral proteins, which will be useful for development of novel serological assays and for design of vaccines that better stimulate protective immunity.
Collapse
Affiliation(s)
- Xi-Mei Lei
- Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong-Le Yang
- Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong-Qiang He
- The Technical Center of Zhejiang Entry-exit Inspection and Quarantine Bureau of The P.R. China, Hangzhou 310016, China
| | - Lei Peng
- Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Pengwei Zhao
- Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shu-Ya Xu
- Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongwei Cao
- College of Life Science and Technology, Hei Long Jiang Bayi Agricultural University, Daqing 163319, China
| | - Pengfei Fang
- Huapai Bioengineering Group Co., Ltd, Jianyang 641423, China
| | - Wenying Qiu
- Huapai Bioengineering Group Co., Ltd, Jianyang 641423, China
| | - Pan Qin
- Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bin Wang
- Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yao-Wei Huang
- Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
37
|
Interferon gamma inhibits transmissible gastroenteritis virus infection mediated by an IRF1 signaling pathway. Arch Virol 2019; 164:2659-2669. [PMID: 31385116 PMCID: PMC7086799 DOI: 10.1007/s00705-019-04362-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/01/2019] [Indexed: 01/05/2023]
Abstract
Interferon gamma (IFN-γ) is best known for its ability to regulate host immune responses; however, its direct antiviral activity is less well studied. Transmissible gastroenteritis virus (TGEV) is an economically important swine enteric coronavirus and causes acute diarrhea in piglets. At present, little is known about the function of IFN-γ in the control of TGEV infection. In this study, we demonstrated that IFN-γ inhibited TGEV infection directly in ST cells and intestine epithelial IPEC-J2 cells and that the anti-TGEV activity of IFN-γ was independent of IFN-α/β. Moreover, IFN-γ suppressed TGEV infection in ST cells more efficiently than did IFN-α, and the combination of IFN-γ and IFN-α displayed a synergistic effect against TGEV. Mechanistically, using overexpression and functional knockdown experiments, we demonstrated that porcine interferon regulatory factor 1 (poIRF1) elicited by IFN-γ primarily mediated IFN-γ signaling cascades and the inhibition of TGEV infection by IFN-γ. Importantly, we found that TGEV elevated the expression of poIRF1 and IFN-γ in infected small intestines and peripheral blood mononuclear cells. Thus, IFN-γ plays a crucial role in curtailing enteric coronavirus infection and may serve as an effective prophylactic and/or therapeutic agent against TGEV infection.
Collapse
|
38
|
Pascual-Iglesias A, Sanchez CM, Penzes Z, Sola I, Enjuanes L, Zuñiga S. Recombinant Chimeric Transmissible Gastroenteritis Virus (TGEV) - Porcine Epidemic Diarrhea Virus (PEDV) Virus Provides Protection against Virulent PEDV. Viruses 2019; 11:v11080682. [PMID: 31349683 PMCID: PMC6723174 DOI: 10.3390/v11080682] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus causing high morbidity and mortality in porcine herds worldwide. Although both inactivated and live attenuated vaccines have been extensively used, the emergence of highly virulent strains and the recurrent outbreaks even in vaccinated farms highlight the need of effective vaccines. Engineering of genetically defined live attenuated vaccines is a rational approach for novel vaccine development. In this line, we engineered an attenuated virus based on the transmissible gastroenteritis virus (TGEV) genome, expressing a chimeric spike protein from a virulent United States (US) PEDV strain. This virus (rTGEV-RS-SPEDV) was attenuated in highly-sensitive five-day-old piglets, as infected animals did not lose weight and none of them died. In addition, the virus caused very minor tissue damage compared with a virulent virus. The rTGEV-RS-SPEDV vaccine candidate was also attenuated in three-week-old animals that were used to evaluate the protection conferred by this virus, compared with the protection induced by infection with a virulent PEDV US strain (PEDV-NVSL). The rTGEV-RS-SPEDV virus protected against challenge with a virulent PEDV strain, reducing challenge virus titers in jejunum and leading to undetectable challenge virus RNA levels in feces. The rTGEV-RS-SPEDV virus induced a humoral immune response specific for PEDV, including neutralizing antibodies. Altogether, the data indicated that rTGEV-RS-SPEDV is a promising vaccine candidate against virulent PEDV infection.
Collapse
Affiliation(s)
- Alejandro Pascual-Iglesias
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | - Carlos M Sanchez
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | - Zoltan Penzes
- Ceva Animal Health, Ceva-Phylaxia, Szallas u. 5, 1107 Budapest, Hungary
| | - Isabel Sola
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain.
| | - Sonia Zuñiga
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
39
|
Brnić D, Šimić I, Lojkić I, Krešić N, Jungić A, Balić D, Lolić M, Knežević D, Hengl B. The emergence of porcine epidemic diarrhoea in Croatia: molecular characterization and serology. BMC Vet Res 2019; 15:249. [PMID: 31319854 PMCID: PMC6637520 DOI: 10.1186/s12917-019-2002-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/11/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Porcine epidemic diarrhoea (PED) is an emergent/re-emergent viral pig disease (caused by the virus belonging to the Coronaviridae family, in specific the Alphacoronavirus genus) of global importance. Clinical presentation is characterized with acute diarrhoea, vomiting and dehydration in pigs of all ages, with a possible high mortality in suckling piglets. The disease emerged in the USA in 2013 causing heavy losses, and re-emerged in Europe in 2014, but with milder consequences. RESULTS In the spring 2016, PED-like symptoms were reported to be seen on an agricultural holding in Eastern Croatia; laboratory workup confirmed the Croatia's first PED outbreak ever. Porcine epidemic diarrhoea virus (PEDV) strain responsible for the outbreak was of the S-INDEL genotype, much the same as other European PEDV strains. In 2017, a post-outbreak serology was carried out in three counties in Eastern Croatia, revealing seropositivity in pigs bred on four large industrial holdings (9.09%). The seroprevalence across PEDV-positive holdings was up to 82.8%. The latter holdings were unanimously managed by an enterprise that had never reported PED before. CONCLUSIONS PED has emerged in Croatian pig population causing potentially considerable losses. The circulating strain was of the S-INDEL genotype. Serological workup proved PEDV spread to another four agricultural holdings, demonstrating the importance of not only external, but also internal biosecurity measures.
Collapse
Affiliation(s)
- Dragan Brnić
- Virology Department, Croatian Veterinary Institute, Savska Cesta 143, 10000, Zagreb, Croatia.
| | - Ivana Šimić
- Virology Department, Croatian Veterinary Institute, Savska Cesta 143, 10000, Zagreb, Croatia
| | - Ivana Lojkić
- Virology Department, Croatian Veterinary Institute, Savska Cesta 143, 10000, Zagreb, Croatia
| | - Nina Krešić
- Virology Department, Croatian Veterinary Institute, Savska Cesta 143, 10000, Zagreb, Croatia
| | - Andreja Jungić
- Virology Department, Croatian Veterinary Institute, Savska Cesta 143, 10000, Zagreb, Croatia
| | - Davor Balić
- Veterinary Department Vinkovci, Croatian Veterinary Institute, Josipa Kozarca 24, 32100, Vinkovci, Croatia
| | - Marica Lolić
- Veterinary Department Vinkovci, Croatian Veterinary Institute, Josipa Kozarca 24, 32100, Vinkovci, Croatia
| | - Dražen Knežević
- Croatian Agency for Agriculture and Food, Ivana Gundulića 36b, 31000, Osijek, Croatia
| | - Brigita Hengl
- Croatian Agency for Agriculture and Food, Ivana Gundulića 36b, 31000, Osijek, Croatia
| |
Collapse
|
40
|
|
41
|
Tuanthap S, Vongpunsawad S, Phupolphan C, Duang-In A, Wattanaphansak S, Assavacheep P, Theamboonlers A, Luengyosluechakul S, Amonsin A, Poovorawan Y. Analysis of the spike, ORF3, and nucleocapsid genes of porcine epidemic diarrhea virus circulating on Thai swine farms, 2011-2016. PeerJ 2019; 7:e6843. [PMID: 31106060 PMCID: PMC6499054 DOI: 10.7717/peerj.6843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/19/2019] [Indexed: 11/20/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) outbreaks on pig farms have caused significant economic loss in the swine industry since it was first reported in Thailand a decade ago. Anecdotal evidence suggests that PEDV is now endemic in this region, therefore genome information of circulating PEDV is important for molecular surveillance and evaluation of potential benefits of field vaccination. Here, we characterized PEDV infection on commercial Thai swine farms by screening 769 samples of feces and small intestinal contents from pigs with diarrhea between 2011 and 2016. Using reverse-transcription polymerase chain reaction targeting the spike (S) gene, 153 PEDV-positive samples were further subjected to analysis of the open reading frame 3 and nucleocapsid (N) genes. Comparison of 95 samples in which nucleotide sequencing was successfully obtained for all three genes revealed evolutionary diversity among the Thai PEDV strains. Phylogenetic analyses suggest that although some Thai strains changed little from years past, others resembled more closely to the recent strains reported in China. Interestingly, eight Thai PEDV strains possessed amino acid deletions in the N protein. The PEDV sequence divergence may be responsible for driving periodic outbreaks and continued persistence of PEDV on commercial swine farms. Our findings provide important insight into regional PEDV strains in circulation, which may assist future inclusions of suitable strains for future PEDV vaccines.
Collapse
Affiliation(s)
- Supansa Tuanthap
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Cherdpong Phupolphan
- The Livestock Animal Hospital, Faculty of Veterinary Science, Chulalongkorn University, Nakhon Pathom, Thailand
| | - Ausanee Duang-In
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suphot Wattanaphansak
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Pornchalit Assavacheep
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Apiradee Theamboonlers
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supol Luengyosluechakul
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Alongkorn Amonsin
- Center of Excellence for Emerging and Reemerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
42
|
Generation, identification, and functional analysis of monoclonal antibodies against porcine epidemic diarrhea virus nucleocapsid. Appl Microbiol Biotechnol 2019; 103:3705-3714. [PMID: 30877355 PMCID: PMC7079923 DOI: 10.1007/s00253-019-09702-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/18/2022]
Abstract
The variant strains of porcine epidemic diarrhea virus (PEDV) severely threaten the pig industry worldwide and cause up to 100% mortality in suckling piglets. It is critically important and urgent to develop tools for detection of PEDV infection. In this study, we developed six monoclonal antibodies (mAbs) targeting N protein of PEDV and analyzed their applications on enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence assay (IFA), western blot assay, and flow cytometry assay. The results demonstrated that all these six mAbs were IgG1 isotype and κ chain. Among these six mAbs, 3F12 recognizes a linear epitope (VAAVKDALKSLGI) while the other five mAbs recognize different conformational epitopes formed by a specific peptide fragment or the full length of N protein. The functional analysis showed that all these six mAbs were applicable to ELISA, western blot, IFA, and flow cytometry assay. In conclusion, we developed six mAbs against PEDV-N protein to facilitate the early detection of PEDV infection using ELISA, western blot, IFA, and flow cytometry.
Collapse
|
43
|
Magtoto R, Poonsuk K, Baum D, Zhang J, Chen Q, Ji J, Piñeyro P, Zimmerman J, Giménez-Lirola LG. Evaluation of the Serologic Cross-Reactivity between Transmissible Gastroenteritis Coronavirus and Porcine Respiratory Coronavirus Using Commercial Blocking Enzyme-Linked Immunosorbent Assay Kits. mSphere 2019; 4:e00017-19. [PMID: 30867325 PMCID: PMC6416363 DOI: 10.1128/msphere.00017-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/28/2019] [Indexed: 01/14/2023] Open
Abstract
This study compared the performances of three commercial transmissible gastroenteritis virus/porcine respiratory coronavirus (TGEV/PRCV) blocking enzyme-linked immunosorbent assays (ELISAs) using serum samples (n = 528) collected over a 49-day observation period from pigs inoculated with TGEV strain Purdue (n = 12), TGEV strain Miller (n = 12), PRCV (n = 12), or with virus-free culture medium (n = 12). ELISA results were evaluated both with "suspect" results interpreted as positive and then as negative. All commercial kits showed excellent diagnostic specificity (99 to 100%) when testing samples from pigs inoculated with virus-free culture medium. However, analyses revealed differences between the kits in diagnostic sensitivity (percent TGEV- or PRCV-seropositive pigs), and all kits showed significant (P < 0.05) cross-reactivity between TGEV and PRCV serum antibodies, particularly during early stages of the infections. Serologic cross-reactivity between TGEV and PRCV seemed to be TGEV strain dependent, with a higher percentage of PRCV-false-positive results for pigs inoculated with TGEV Purdue than for TGEV Miller. Moreover, the overall proportion of false positives was higher when suspect results were interpreted as positive, regardless of the ELISA kit evaluated.IMPORTANCE Current measures to prevent TGEV from entering a naive herd include quarantine and testing for TGEV-seronegative animals. However, TGEV serology is complicated due to the cross-reactivity with PRCV, which circulates subclinically in most swine herds worldwide. Conventional serological tests cannot distinguish between TGEV and PRCV antibodies; however, blocking ELISAs using antigen containing a large deletion in the amino terminus of the PRCV S protein permit differentiation of PRCV and TGEV antibodies. Several commercial TGEV/PRCV blocking ELISAs are available, but performance comparisons have not been reported in recent research. This study demonstrates that the serologic cross-reactivity between TGEV and PRCV affects the accuracy of commercial blocking ELISAs. Individual test results must be interpreted with caution, particularly in the event of suspect results. Therefore, commercial TGEV/PRCV blocking ELISAs should only be applied on a herd basis.
Collapse
Affiliation(s)
- Ronaldo Magtoto
- College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Korakrit Poonsuk
- College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - David Baum
- College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Jianqiang Zhang
- College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Qi Chen
- College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Ju Ji
- College of Liberal Arts and Sciences, Iowa State University, Ames, Iowa, USA
| | - Pablo Piñeyro
- College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Jeffrey Zimmerman
- College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | | |
Collapse
|
44
|
Chang CY, Cheng IC, Chang YC, Tsai PS, Lai SY, Huang YL, Jeng CR, Pang VF, Chang HW. Identification of Neutralizing Monoclonal Antibodies Targeting Novel Conformational Epitopes of the Porcine Epidemic Diarrhoea Virus Spike Protein. Sci Rep 2019; 9:2529. [PMID: 30792462 PMCID: PMC6385244 DOI: 10.1038/s41598-019-39844-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/30/2019] [Indexed: 01/20/2023] Open
Abstract
Since 2010, newly identified variants of porcine epidemic diarrhoea virus (PEDV) have caused high mortality in neonatal piglets which has devastated the swine industry. The spike (S) glycoprotein of PEDV contains multiple neutralizing epitopes and is a major target for PEDV neutralization and vaccine development. To understand the antigenicity of the new PEDV variant, we characterized the neutralizing epitopes of a new genotype 2b PEDV isolate from Taiwan, PEDV Pintung 52 (PEDV-PT), by the generation of neutralizing monoclonal antibodies (NmAbs). Two NmAbs, P4B-1, and E10E-1–10 that recognized the ectodomain of the full-length recombinant PEDV S protein and exhibited neutralizing ability against the PEDV-PT virus were selected. Recombinant truncated S proteins were used to identify the target sequences for the NmAbs and P4B-1 was shown to recognize the C-terminus of CO-26K equivalent epitope (COE) at amino acids (a.a.) 575–639 of the PEDV S. Interestingly, E10E-1–10 could recognize a novel neutralizing epitope at a.a. 435–485 within the S1A domain of the PEDV S protein, whose importance and function are yet to be determined. Moreover, both NmAbs could not bind to linearized S proteins, indicating that only conformational epitopes are recognized. This data could improve our understanding of the antigenic structures of the PEDV S protein and facilitate future development of novel epitope-based vaccines.
Collapse
Affiliation(s)
- Chia-Yu Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Ivan-Chen Cheng
- School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Yen-Chen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Pei-Shiue Tsai
- School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Seiu-Yu Lai
- School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Liang Huang
- Animal Health Research Institute, Council of Agriculture, New Taipei City, 251, Taiwan
| | - Chian-Ren Jeng
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan.,School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Victor Fei Pang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan.,School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan. .,School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
45
|
Xie W, Ao C, Yang Y, Liu Y, Liang R, Zeng Z, Ye G, Xiao S, Fu ZF, Dong W, Peng G. Two critical N-terminal epitopes of the nucleocapsid protein contribute to the cross-reactivity between porcine epidemic diarrhea virus and porcine transmissible gastroenteritis virus. J Gen Virol 2019; 100:206-216. [PMID: 30652967 DOI: 10.1099/jgv.0.001216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Both porcine epidemic diarrhoea virus (PEDV) and porcine transmissible gastroenteritis virus (TGEV), which cause high mortality in piglets and produce similar clinical symptoms and histopathological morphology, belong to the genus Alphacoronavirus. Serological diagnosis plays an important role in distinguishing pathogen species. Together with the spike (S) protein, the nucleocapsid (N) protein is one of the immunodominant regions among coronaviruses. In this study, two-way antigenic cross-reactivity between the N proteins of PEDV and TGEV was observed by indirect immunofluorescence assay (IFA) and Western blot analysis. Furthermore, the PEDV N protein harbouring truncations of amino acids (aa) 1 to 170 or aa 125 to 301 was demonstrated to cross-react with the anti-TGEV N polyclonal antibody (PAb), whereas the truncation-expressing aa 302 to 401 resulted in a specific reaction with the anti-PEDV N PAb but not with the anti-TGEV N PAb. Mutants of the PEDV N protein were generated based on sequence alignment and structural analysis; we then confirmed that the N-terminal residues 58-RWRMRRGERIE-68 and 78-LGTGPHAD-85 contributed to the cross-reactivity. All the results provide vital clues for the development of precise diagnostic assays for porcine coronaviruses.
Collapse
Affiliation(s)
- Wenting Xie
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 3The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Chaojie Ao
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Yilin Yang
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 3The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Yinan Liu
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 3The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Rui Liang
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 3The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Zhe Zeng
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 3The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Gang Ye
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 3The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Shaobo Xiao
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Zhen F Fu
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 4Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Wanyu Dong
- 5National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
- 3The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Guiqing Peng
- 3The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| |
Collapse
|
46
|
Wang Q, Vlasova AN, Kenney SP, Saif LJ. Emerging and re-emerging coronaviruses in pigs. Curr Opin Virol 2019; 34:39-49. [PMID: 30654269 PMCID: PMC7102852 DOI: 10.1016/j.coviro.2018.12.001] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023]
Abstract
Three coronaviruses are emerging/reemerging in pigs. The three porcine coronaviruses may have originated from other species. The clinical signs and pathogenesis of the three viruses are similar. No cross-protection among the three porcine coronaviruses. Individual vaccines are needed for each virus for disease prevention and control.
Porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome-coronavirus (SADS-CoV) are emerging/reemerging coronaviruses (CoVs). They cause acute gastroenteritis in neonatal piglets. Sequence analyses suggest that PEDV and SADS-CoV may have originated from bat CoVs and PDCoV from a sparrow CoV, reaffirming the interspecies transmission of CoVs. The clinical signs and pathogenesis of the three viruses are similar. Necrosis of infected intestinal epithelial cells occurs, causing villous atrophy that results in malabsorptive diarrhea. The severe diarrhea and vomiting may lead to dehydration and death of piglets. Natural infection induces protective immunity, but there is no cross-protection among the three viruses. Besides strict biosecurity measures, individual vaccines are needed for each virus for disease prevention and control.
Collapse
Affiliation(s)
- Qiuhong Wang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH, USA.
| | - Anastasia N Vlasova
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH, USA
| | - Scott P Kenney
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH, USA
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
47
|
Lin CM, Ghimire S, Hou Y, Boley P, Langel SN, Vlasova AN, Saif LJ, Wang Q. Pathogenicity and immunogenicity of attenuated porcine epidemic diarrhea virus PC22A strain in conventional weaned pigs. BMC Vet Res 2019; 15:26. [PMID: 30634958 PMCID: PMC6329175 DOI: 10.1186/s12917-018-1756-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/20/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Porcine epidemic diarrhea virus (PEDV) causes diarrhea in all ages of pigs with 50-100% mortality rates in neonatal piglets. In the United States, inactivated and subunit PEDV vaccines for pregnant sows are available, but fail to induce sufficient protection in neonatal piglets farrowed from PEDV naïve sows. A safe and efficacious live attenuated vaccine that can prime mucosal immune responses is urgently needed. In this study, we evaluated the safety and efficacy of two attenuated PEDV vaccine candidates, the emerging non-S INDEL PEDV strain PC22A at the 100th cell culture passage level - Clone no. 4 (P100C4) and at the 120th passage level (P120), in weaned pigs. RESULTS Four groups of 40-day-old weaned pigs were inoculated orally with PEDV PC22A-P3 (virulent), -P100C4, -P120, and mock, respectively, and challenged with the P3 virus at 24 days post-inoculation (dpi). After inoculation, P3 caused diarrhea in all pigs with a high level of fecal viral RNA shedding. P100C4 and P120 did not cause diarrhea in pigs, although viral RNA was detected in feces of all pigs, except for one P100C4-inoculated pig. Compared with the P120 group, P3- and P100C4-inoculated pigs had higher serum PEDV-specific IgG and viral neutralizing (VN) antibody (Ab) titers at 14 dpi. After the challenge, no pigs in the P3 group but all pigs in the P100C4, P120, and mock groups had diarrhea. Compared with the P120 group, pigs in the P100C4 group had a more rapid decline in fecal PEDV RNA shedding titers, higher titers of serum PEDV-specific IgG, IgA, and VN Abs, and higher numbers of intestinal IgA Ab-secreting cells. CONCLUSIONS PEDV PC22A P100C4 and P120 were fully attenuated in weaned pigs but failed to elicit protection against virulent P3 challenge. P100C4 induced higher PEDV-specific antibody responses than P120 post inoculation resulting in a greater anamnestic response post challenge. Therefore, P100C4 potentially could be tested as a priming vaccine or be further modified using reverse genetics. It also can be administered in multiple doses or be combined with inactivated or subunit vaccines and adjuvants as a PEDV vaccination regimen, whose efficacy can be tested in the future.
Collapse
Affiliation(s)
- Chun-Ming Lin
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Colleage of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH, USA
| | - Shristi Ghimire
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Colleage of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH, USA
| | - Yixuan Hou
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Colleage of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH, USA
| | - Patricia Boley
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Colleage of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH, USA
| | - Stephanie N Langel
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Colleage of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH, USA
| | - Anastasia N Vlasova
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Colleage of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH, USA
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Colleage of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH, USA
| | - Qiuhong Wang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Colleage of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH, USA.
| |
Collapse
|
48
|
Chen Y, Zhang Z, Li J, Gao Y, Zhou L, Ge X, Han J, Guo X, Yang H. Porcine epidemic diarrhea virus S1 protein is the critical inducer of apoptosis. Virol J 2018; 15:170. [PMID: 30404647 PMCID: PMC6222994 DOI: 10.1186/s12985-018-1078-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 10/10/2018] [Indexed: 02/10/2023] Open
Abstract
Background Porcine Epidemic Diarrhea (PED) is an acute and highly contagious enteric disease caused by PED virus (PEDV), characterized by vomitting, watery diarrhea and fatal dehydration with high mortality in sucking piglets of one week of age. Although PEDV induced cell apoptosis has been established in vitro and in vivo, the functional protein that contributes to this event remains unclear. Methods The activation or cleavage of main apoptosis-associated molecular such as AIFM1, caspase-3, caspase-8, caspase-9 and PARP in PEDV infected host cells were analyzed by western blotting. The nuclear change of infected cell was monitored by confocal immunofluorescence assay. The overexpressing plasmids of 16 non-structural proteins (Nsp1–16) and 6 structural proteins (M, N, E, ORF3, S1 and S2) were constructed by cloning. Cell apoptosis induced by PEDV or overexpression non-structural or structural proteins was measured by the flow cytometry assay. Results PEDV could infect various host cells including Vero, Vero-E6 and Marc-145 and cause obvious cytopathic effects, including roundup, cell fusion, cell membrane vacuolation, syncytium formation and cause apparent apoptosis. In infected cells, PEDV-induced apoptosis is accompanied by nuclear concentration and fragmentation as a result of caspase-3 and caspase-8 activation and AIFM1 and PARP cleavage. Overexpression of S1 Spike protein of PEDV SM98 strain effectively induced host cell apoptosis, while the expression of the other non-structure proteins (Nsp1–16) and structural proteins (M, N, E, S2 and ORF3) has no or less effect on cell apoptosis. Similarly, expression of S1 protein from wild-type strain BJ2011 or cell-adapted strain CV777, also induce apoptosis in transfected cells. Finally, we demonstrated that the S1 proteins from various coronavirus family members such as TGEV, IBV, CCoV, SARS and MERS could also induce Vero-E6 cells apoptosis. Conclusion S1 Spike protein is one of the most critical functional proteins that contribute to cell apoptosis. Expression of S1 proteins of the coronavirus tested in this study could all induce cell apoptosis suggesting S1 maybe is an effective inducer in Coronavirus-induced cell apoptosis and targeting S1 protein expression probably is a promising strategy to inhibit coronavirus infection and thus mediated apoptosis on host cells. Electronic supplementary material The online version of this article (10.1186/s12985-018-1078-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yifeng Chen
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian Distract, Beijing, 100193, People's Republic of China.,Animal Medicine Research Center of DBN Group, South Crossroad of Xiangrui Street and Huatuo Road DBN Daxing Science Park, Daxing Distract, Beijing, 102600, People's Republic of China
| | - Zhibang Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian Distract, Beijing, 100193, People's Republic of China
| | - Jie Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian Distract, Beijing, 100193, People's Republic of China
| | - Yueyi Gao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian Distract, Beijing, 100193, People's Republic of China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian Distract, Beijing, 100193, People's Republic of China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian Distract, Beijing, 100193, People's Republic of China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian Distract, Beijing, 100193, People's Republic of China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian Distract, Beijing, 100193, People's Republic of China.
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian Distract, Beijing, 100193, People's Republic of China
| |
Collapse
|
49
|
Prevalence of antibodies against transmissible gastroenteritis virus (TGEV) in Hungary. Vet Anim Sci 2018; 7:100042. [PMID: 32289094 PMCID: PMC7104163 DOI: 10.1016/j.vas.2018.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/12/2018] [Accepted: 11/01/2018] [Indexed: 11/22/2022] Open
Abstract
Transmissible gastroenteritis (TGE) is a highly contagious enteric disease of swine, which became infrequent with the appearance of porcine respiratory coronavirus (PRCV). TGE was last reported in Hungary in 2013 and the virus has not been found since, therefore a serological survey was planned to estimate the level of protection against it. 908 sera of sows from 93 farms were selected together with 174 archive samples from one farm covering a wider age group. All samples were screened with an indirect immunofluorescence (IF) test with a positive result of 15.42% and 17.82%, respectively. All IF-positive samples were examined with a commercial ELISA, revealing seropositivity against PRCV in almost all cases. These findings should serve as a recommendation to not omit TGE from the diagnostics of diarrhoea in swine.
Collapse
|
50
|
Liu X, Zhang Q, Zhang L, Zhou P, Yang J, Fang Y, Dong Z, Zhao D, Li W, Feng J, Cui B, Zhang Y, Wang Y. A newly isolated Chinese virulent genotype GIIb porcine epidemic diarrhea virus strain: Biological characteristics, pathogenicity and immune protective effects as an inactivated vaccine candidate. Virus Res 2018; 259:18-27. [PMID: 30342075 PMCID: PMC7111334 DOI: 10.1016/j.virusres.2018.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 01/07/2023]
Abstract
A Chinese virulent genotype GIIb PEDV strain, CH/HNPJ/2017, was successfully separated and serially propagated in Vero cells. The biological characteristics and pathogenicity of PEDV strain CH/HNPJ/2017 were determined. The median pig diarrhea dose (PDD50) of Chinese PEDV strain was first determined. The immune protective effect of PEDV strain CH/HNPJ/2017 as vaccine candidates was also be evaluated.
Since October 2010, severe porcine epidemic diarrhea (PED) outbreaks caused by highly virulent PED virus (PEDV) strains have occurred continuously in the Chinese pig population and caused considerable economic losses. Although PEDV vaccines based on classical PEDV strains have been widely used in China in recent years, the morbidity and mortality in piglets remain high. Therefore, virulent genotype GII PEDV strains that are prevalent in the field should be isolated and used to develop next-generation vaccines. In the present study, a Chinese virulent genotype GIIb PEDV strain, CH/HNPJ/2017, was serially propagated in Vero cells for up to 90 passages. The S genes contained typical insertions and deletions that were also found in other recently isolated highly virulent PEDV strains from China and other countries and had two neighboring unique insertion mutations, which resulted in four amino acid changes in the S1 region of passages P10 and P60. Pig infection studies revealed that the CH/HNPJ/2017 strain was highly virulent in piglets, and the median pig diarrhea dose (PDD50) was 7.68 log10PDD50/3 mL. Furthermore, the cell-adapted CH/HNPJ/2017 strain elicited potent serum IgG and neutralizing antibody responses in immunized pigs when it was used as an inactivated vaccine candidate. In addition, the pigs that received the experimental inactivated vaccines were partially protected (3/5) against subsequent viral challenge. In brief, these data indicate that the CH/HNPJ/2017 strain is a promising candidate for developing a safe and effective PEDV vaccine in the future.
Collapse
Affiliation(s)
- Xinsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Qiaoling Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Liping Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Peng Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Jun Yang
- Hunan Institute of Animal and Veterinary Science, Changsha, 410131, China.
| | - Yuzhen Fang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Zhaoliang Dong
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Donghong Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Weiyan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Jiaxin Feng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Baofeng Cui
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Yongguang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Yonglu Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|