1
|
Talker SC, Hope JC, Summerfield A. Phenotype of bovine mononuclear phagocytes- An update. Vet Immunol Immunopathol 2024; 277:110836. [PMID: 39368394 DOI: 10.1016/j.vetimm.2024.110836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Studying mononuclear phagocytes by flow cytometry is challenging due to their phenotypic similarities and the high plasticity of monocytic cells. Despite these challenges, significant progress has been made in cattle research through multicolor flow cytometry, transcriptomics of sorted subsets, and single-cell RNA-sequencing. Here, we provide an overview of established and proposed phenotypic classifications in the bovine mononuclear phagocyte system and discuss the challenges of marker discovery.
Collapse
Affiliation(s)
- S C Talker
- Institute of Virology and Immunology, Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - J C Hope
- The Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG, UK
| | - A Summerfield
- Institute of Virology and Immunology, Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Broutin M, Costa F, Peltier S, Maye J, Versillé N, Klonjkowski B. An Oil-Based Adjuvant Improves Immune Responses Induced by Canine Adenovirus-Vectored Vaccine in Mice. Viruses 2023; 15:1664. [PMID: 37632007 PMCID: PMC10458467 DOI: 10.3390/v15081664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
There is a significant need for highly effective vaccines against emerging and common veterinary infectious diseases. Canine adenovirus type 2 (CAV2) vectors allow rapid development of multiple vaccines and have demonstrated their potential in animal models. In this study, we compared the immunogenicity of a non-replicating CAV2 vector encoding the rabies virus glycoprotein with and without MontanideTM ISA 201 VG, an oil-based adjuvant. All vaccinated mice rapidly achieved rabies seroconversion, which was associated with complete vaccine protection. The adjuvant increased rabies antibody titers without any significant effect on the anti-CAV2 serological responses. An RT2 Profiler™ PCR array was conducted to identify host antiviral genes modulated in the blood samples 24 h after vaccination. Functional analysis of differentially expressed genes revealed the up-regulation of the RIG-I, TLRs, NLRs, and IFNs signaling pathways. These results demonstrate that a water-in-oil-in-water adjuvant can shape the immune responses to an antigen encoded by an adenovirus, thereby enhancing the protection conferred by live recombinant vaccines. The characterization of early vaccine responses provides a better understanding of the mechanisms underlying the efficacy of CAV2-vectored vaccines.
Collapse
Affiliation(s)
- Manon Broutin
- UMR Virologie, INRAE, ANSES, EnvA, 94700 Maisons-Alfort, France; (M.B.); (F.C.)
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France; (S.P.); (J.M.); (N.V.)
| | - Fleur Costa
- UMR Virologie, INRAE, ANSES, EnvA, 94700 Maisons-Alfort, France; (M.B.); (F.C.)
| | - Sandy Peltier
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France; (S.P.); (J.M.); (N.V.)
| | - Jennifer Maye
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France; (S.P.); (J.M.); (N.V.)
| | - Nicolas Versillé
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France; (S.P.); (J.M.); (N.V.)
| | - Bernard Klonjkowski
- UMR Virologie, INRAE, ANSES, EnvA, 94700 Maisons-Alfort, France; (M.B.); (F.C.)
| |
Collapse
|
3
|
Characterisation of dendritic cell frequency and phenotype in bovine afferent lymph reveals kinetic changes in costimulatory molecule expression. Vet Immunol Immunopathol 2021; 243:110363. [PMID: 34861459 DOI: 10.1016/j.vetimm.2021.110363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022]
Abstract
The bovine afferent lymphatic cannulation model allows collection of large volumes of afferent lymph and provides an opportunity to study lymphatic cells trafficking from the periphery directly ex-vivo. The technique requires surgical intervention, but influence of the procedure or time post-surgery on cells trafficking in the lymph has not been well documented. Here, we measured the volume of lymph and number of cells/mL collected daily over a two week time-course. Animal to animal variability was demonstrated but no consistent changes in lymph volume or cell density were observed in relation to time post-cannulation. Cell populations (dendritic cells, αβ T-cells, γδ T-cells and NK cells) were analysed by flow cytometry at 1, 3 and 10 days post-cannulation (DPC) and a reduced percentage of γδ T-cells in afferent lymph was observed at 1 DPC. In addition, cell surface molecule expression by afferent lymphatic dendritic cells (ALDC) was assessed due to the key role of these cells in initiating an adaptive immune response. Co-stimulatory molecules CD80 and CD86 were upregulated by CD172a+ve ALDC early in the time-course, suggesting that the cannulation procedure and duration of experiment may impact the activation state of DCs in the naïve host. This should be considered when analysing the response of these cells to vaccines or pathogens.
Collapse
|
4
|
Rojas JM, Sevilla N, Martín V. A New Look at Vaccine Strategies Against PPRV Focused on Adenoviral Candidates. Front Vet Sci 2021; 8:729879. [PMID: 34568477 PMCID: PMC8455998 DOI: 10.3389/fvets.2021.729879] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) is a virus that mainly infects goats and sheep causing significant economic loss in Africa and Asia, but also posing a serious threat to Europe, as recent outbreaks in Georgia (2016) and Bulgaria (2018) have been reported. In order to carry out the eradication of PPRV, an objective set for 2030 by the Office International des Epizooties (OIE) and the Food and Agriculture Organization of the United Nations (FAO), close collaboration between governments, pharmaceutical companies, farmers and researchers, among others, is needed. Today, more than ever, as seen in the response to the SARS-CoV2 pandemic that we are currently experiencing, these goals are feasible. We summarize in this review the current vaccination approaches against PPRV in the field, discussing their advantages and shortfalls, as well as the development and generation of new vaccination strategies, focusing on the potential use of adenovirus as vaccine platform against PPRV and more broadly against other ruminant pathogens.
Collapse
Affiliation(s)
| | | | - Verónica Martín
- Centro de Investigación en Sanidad Animal (CISA-INIA-CSIC), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
5
|
Quattrocchi V, Bidart J, Mignaqui AC, Ruiz V, Ferella A, Langellotti C, Gammella M, Ferraris S, Carrillo J, Wigdorovitz A, Durocher Y, Cardillo SB, Charleston B, Zamorano PI. Bovine Dendritic Cell Activation, T Cell Proliferation and Antibody Responses to Foot-And-Mouth Disease, Is Similar With Inactivated Virus and Virus Like Particles. Front Vet Sci 2020; 7:594. [PMID: 33195496 PMCID: PMC7554300 DOI: 10.3389/fvets.2020.00594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/24/2020] [Indexed: 11/13/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals that causes severe economic losses in the livestock industry. Currently available vaccines are based on the inactivated FMD virus (FMDV). Although inactivated vaccines have been effective in controlling the disease, they have some disadvantages. Because of these disadvantages, investigations are being made to produce vaccines in low containment facilities. The use of recombinant empty capsids (also referred as Virus Like Particles, VLPs) has been reported to be a promising candidate as a subunit vaccine because it avoids the use of virus in the vaccine production and conserves the conformational epitopes of the virus. Mignaqui and collaborators have produced recombinant FMDV empty capsids from serotype A/ARG/2001 using a scalable technology in mammalian cells that elicited a protective immunity against viral challenge in a mouse model. However, further evaluation of the immune response elicited by these VLPs in cattle is required. In the present work we compare the effect that VLPs or inactivated FMDV has on bovine dendritic cells and the humoral response elicited in cattle after a single vaccination.
Collapse
Affiliation(s)
| | - Juan Bidart
- IVIT, INTA, CONICET, Buenos Aires, Argentina
| | | | - Vanesa Ruiz
- IVIT, INTA, CONICET, Buenos Aires, Argentina
| | | | | | | | - Sergio Ferraris
- Centro de Ciencias Veterinarias, Universidad Maimónides, Buenos Aires, Argentina
| | | | | | - Yves Durocher
- Human Health Therapeutics Research Center, National Research Council Canada, Montreal, QC, Canada
| | | | - Bryan Charleston
- BBSRC National Virology Centre, The Pirbright Institute, Woking, United Kingdom
| | | |
Collapse
|
6
|
Goatley LC, Reis AL, Portugal R, Goldswain H, Shimmon GL, Hargreaves Z, Ho CS, Montoya M, Sánchez-Cordón PJ, Taylor G, Dixon LK, Netherton CL. A Pool of Eight Virally Vectored African Swine Fever Antigens Protect Pigs Against Fatal Disease. Vaccines (Basel) 2020; 8:E234. [PMID: 32443536 PMCID: PMC7349991 DOI: 10.3390/vaccines8020234] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/01/2020] [Accepted: 05/14/2020] [Indexed: 01/08/2023] Open
Abstract
Classical approaches to African swine fever virus (ASFV) vaccine development have not been successful; inactivated virus does not provide protection and use of live attenuated viruses generated by passage in tissue culture had a poor safety profile. Current African swine fever (ASF) vaccine research focuses on the development of modified live viruses by targeted gene deletion or subunit vaccines. The latter approach would be differentiation of vaccinated from infected animals (DIVA)-compliant, but information on which viral proteins to include in a subunit vaccine is lacking. Our previous work used DNA-prime/vaccinia-virus boost to screen 40 ASFV genes for immunogenicity, however this immunization regime did not protect animals after challenge. Here we describe the induction of both antigen and ASFV-specific antibody and cellular immune responses by different viral-vectored pools of antigens selected based on their immunogenicity in pigs. Immunization with one of these pools, comprising eight viral-vectored ASFV genes, protected 100% of pigs from fatal disease after challenge with a normally lethal dose of virulent ASFV. This data provide the basis for the further development of a subunit vaccine against this devastating disease.
Collapse
Affiliation(s)
- Lynnette C. Goatley
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK; (L.C.G.); (A.L.R.); (R.P.); (H.G.); (G.L.S.); (Z.H.); (M.M.); (P.J.S.-C.); (G.T.); (L.K.D.)
| | - Ana Luisa Reis
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK; (L.C.G.); (A.L.R.); (R.P.); (H.G.); (G.L.S.); (Z.H.); (M.M.); (P.J.S.-C.); (G.T.); (L.K.D.)
| | - Raquel Portugal
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK; (L.C.G.); (A.L.R.); (R.P.); (H.G.); (G.L.S.); (Z.H.); (M.M.); (P.J.S.-C.); (G.T.); (L.K.D.)
| | - Hannah Goldswain
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK; (L.C.G.); (A.L.R.); (R.P.); (H.G.); (G.L.S.); (Z.H.); (M.M.); (P.J.S.-C.); (G.T.); (L.K.D.)
| | - Gareth L. Shimmon
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK; (L.C.G.); (A.L.R.); (R.P.); (H.G.); (G.L.S.); (Z.H.); (M.M.); (P.J.S.-C.); (G.T.); (L.K.D.)
| | - Zoe Hargreaves
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK; (L.C.G.); (A.L.R.); (R.P.); (H.G.); (G.L.S.); (Z.H.); (M.M.); (P.J.S.-C.); (G.T.); (L.K.D.)
| | - Chak-Sum Ho
- Gift of Hope Organ and Tissue Donor Network, Itasca, IL 60143, USA;
| | - María Montoya
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK; (L.C.G.); (A.L.R.); (R.P.); (H.G.); (G.L.S.); (Z.H.); (M.M.); (P.J.S.-C.); (G.T.); (L.K.D.)
| | - Pedro J. Sánchez-Cordón
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK; (L.C.G.); (A.L.R.); (R.P.); (H.G.); (G.L.S.); (Z.H.); (M.M.); (P.J.S.-C.); (G.T.); (L.K.D.)
| | - Geraldine Taylor
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK; (L.C.G.); (A.L.R.); (R.P.); (H.G.); (G.L.S.); (Z.H.); (M.M.); (P.J.S.-C.); (G.T.); (L.K.D.)
| | - Linda K. Dixon
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK; (L.C.G.); (A.L.R.); (R.P.); (H.G.); (G.L.S.); (Z.H.); (M.M.); (P.J.S.-C.); (G.T.); (L.K.D.)
| | - Christopher L. Netherton
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK; (L.C.G.); (A.L.R.); (R.P.); (H.G.); (G.L.S.); (Z.H.); (M.M.); (P.J.S.-C.); (G.T.); (L.K.D.)
| |
Collapse
|
7
|
Jaramillo Ortiz JM, Paoletta MS, Gravisaco MJ, López Arias LS, Montenegro VN, de la Fournière SAM, Valenzano MN, Guillemi EC, Valentini B, Echaide I, Farber MD, Wilkowsky SE. Immunisation of cattle against Babesia bovis combining a multi-epitope modified vaccinia Ankara virus and a recombinant protein induce strong Th1 cell responses but fails to trigger neutralising antibodies required for protection. Ticks Tick Borne Dis 2019; 10:101270. [PMID: 31445874 DOI: 10.1016/j.ttbdis.2019.101270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/04/2019] [Accepted: 08/15/2019] [Indexed: 01/01/2023]
Abstract
Protection against the intraerythrocytic protozoan parasite Babesia bovis depends on both strong innate and adaptive immune response, this latter involving the presentation of parasite antigens to CD4+ T-lymphocytes by professional antigen-presenting cells. Secretion of Th1 cytokines by CD4+ T cell is also very important for isotype switching to IgG2, the best opsonising antibody isotype in cattle, to target extracellular parasites and parasite antigens displayed at the erythrocyte surface. In the field of vaccinology, heterologous prime-boost schemes combining protein-adjuvant formulations with a modified vaccinia Ankara vector expressing the same antigen have demonstrated the induction of both humoral and cellular immune responses. It has been previously demonstrated that MVA-infected dendritic cells can present antigens in the context of MHC II and activate CD4+ T cell. These results support the use of the MVA viral vector for a pathogen like Babesia bovis, which only resides within erythrocytes. In this study, 13-15-months-old Holstein-Friesian steers were immunised with a subunit vaccine as a prime and a modified vaccinia Ankara vector as a boost, both expressing a chimeric multi-antigen (rMABbo - rMVA). This antigen includes the immunodominant B and T cell epitopes of three B. bovis proteins: merozoite surface antigen - 2c (MSA - 2c), rhoptry associated protein 1 (RAP - 1) and heat shock protein 20 (HSP20). Responses were compared with the Babesia bovis live attenuated vaccine used in Argentina (R1A). Eleven weeks after the first immunisation, all bovines were challenged by the inoculation of a virulent B. bovis strain. All groups were monitored daily for hyperthermia and reduction of packed cell volume. Both the rMABbo - rMVA and R1A vaccinated animals developed high titters of total IgG antibodies and an antigen-specific Th1 cellular response before and after challenge. However, all rMABbo - rMVA steers showed clinical signs of disease upon challenge. Only the R1A live vaccine group developed an immune response associated with in vitro neutralising antibodies at a level that significantly inhibited the parasite invasion. The lack of protection observed with this recombinant formulation indicates the need to perform further basic and clinical studies in the bovine model in order to achieve the desired effectiveness. This is the first report in which a novel vaccine candidate against Babesia bovis was constructed based on a recombinant and rationally designed viral vector and evaluated in the biological model of the disease.
Collapse
Affiliation(s)
- José Manuel Jaramillo Ortiz
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Martina Soledad Paoletta
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - María José Gravisaco
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Ludmila Sol López Arias
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Valeria Noely Montenegro
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Sofía Ana María de la Fournière
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Magalí Nicole Valenzano
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Eliana Carolina Guillemi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Beatriz Valentini
- Laboratorio de Inmunología y Parasitología Veterinaria, EEA Rafaela, INTA, RN 34, Km 227, CC 22, 2300, Rafaela, Santa Fe, Argentina
| | - Ignacio Echaide
- Laboratorio de Inmunología y Parasitología Veterinaria, EEA Rafaela, INTA, RN 34, Km 227, CC 22, 2300, Rafaela, Santa Fe, Argentina
| | - Marisa Diana Farber
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Silvina Elizabeth Wilkowsky
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, De Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Guzman E, Pujol M, Ribeca P, Montoya M. Bovine Derived in vitro Cultures Generate Heterogeneous Populations of Antigen Presenting Cells. Front Immunol 2019; 10:612. [PMID: 30984187 PMCID: PMC6450137 DOI: 10.3389/fimmu.2019.00612] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 03/07/2019] [Indexed: 12/22/2022] Open
Abstract
Antigen presenting cells (APC) of the mononuclear phagocytic system include dendritic cells (DCs) and macrophages (Macs) which are essential mediators of innate and adaptive immune responses. Many of the biological functions attributed to these cell subsets have been elucidated using models that utilize in vitro-matured cells derived from common progenitors. However, it has recently been shown that monocyte culture systems generate heterogeneous populations of cells, DCs, and Macs. In light of these findings, we analyzed the most commonly used bovine in vitro-derived APC models and compared them to bona fide DCs. Here, we show that bovine monocyte-derived DCs and Macs can be differentiated on the basis of CD11c and MHC class II (MHCII) expression and that in vitro conditions generate a heterologous group of both DCs and Macs with defined and specific biological activities. In addition, skin-migrating macrophages present in the bovine afferent lymph were identified and phenotyped for the first time. RNA sequencing analyses showed that these monophagocytic cells have distinct transcriptomic profiles similar to those described in other species. These results have important implications for the interpretation of data obtained using in vitro systems.
Collapse
Affiliation(s)
| | - Myriam Pujol
- Doctoral Program in Agronomy Forestry and Veterinary Sciences, Universidad de Chile, Santiago, Chile
| | | | - Maria Montoya
- The Pirbright Institute, Woking, United Kingdom.,Centro de Investigaciones Biológicas (CIB - CSIC), Madrid, Spain
| |
Collapse
|
9
|
Netherton CL, Goatley LC, Reis AL, Portugal R, Nash RH, Morgan SB, Gault L, Nieto R, Norlin V, Gallardo C, Ho CS, Sánchez-Cordón PJ, Taylor G, Dixon LK. Identification and Immunogenicity of African Swine Fever Virus Antigens. Front Immunol 2019; 10:1318. [PMID: 31275307 PMCID: PMC6593957 DOI: 10.3389/fimmu.2019.01318] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/23/2019] [Indexed: 12/22/2022] Open
Abstract
African swine fever (ASF) is a lethal haemorrhagic disease of domestic pigs for which there is no vaccine. Strains of the virus with reduced virulence can provide protection against related virulent strains of ASFV, but protection is not 100% and there are concerns about the safety profile of such viruses. However, they provide a useful tool for understanding the immune response to ASFV and previous studies using the low virulent isolate OUR T88/3 have shown that CD8+ cells are crucial for protection. In order to develop a vaccine that stimulates an effective anti-ASFV T-cell response we need to know which of the >150 viral proteins are recognized by the cellular immune response. Therefore, we used a gamma interferon ELIspot assay to screen for viral proteins recognized by lymphocytes from ASF-immune pigs using peptides corresponding to 133 proteins predicted to be encoded by OUR T88/3. Eighteen antigens that were recognized by ASFV-specific lymphocytes were then incorporated into adenovirus and MVA vectors, which were used in immunization and challenge experiments in pigs. We present a systematic characterization of the cellular immune response to this devastating disease and identify proteins capable of inducing ASFV-specific cellular and humoral immune responses in pigs. Pools of viral vectors expressing these genes did not protect animals from severe disease, but did reduce viremia in a proportion of pigs following ASFV challenge.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lynden Gault
- Gift of Life Michigan Histocompatibility Laboratory, Ann Arbor, MI, United States
| | - Raquel Nieto
- European Union Reference Laboratory for ASF, Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Veronica Norlin
- Gift of Life Michigan Histocompatibility Laboratory, Ann Arbor, MI, United States
| | - Carmina Gallardo
- European Union Reference Laboratory for ASF, Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Chak-Sum Ho
- Gift of Life Michigan Histocompatibility Laboratory, Ann Arbor, MI, United States
| | | | | | | |
Collapse
|
10
|
De Vleeschauwer AR, Zhou X, Lefebvre DJ, Garnier A, Watier F, Pignon C, Lacour SA, Zientara S, Bakkali-Kassimi L, De Clercq K, Klonjkowski B. A canine adenovirus type 2 vaccine vector confers protection against foot-and-mouth disease in guinea pigs. Vaccine 2018; 36:2193-2198. [PMID: 29544690 DOI: 10.1016/j.vaccine.2018.02.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 02/07/2018] [Accepted: 02/16/2018] [Indexed: 11/30/2022]
Abstract
Vaccination is a key element in the control of foot-and-mouth disease (FMD). The majority of the antigenic sites that induce protective immune responses are localized on the FMD virus (FMDV) capsid that is formed by four virus-encoded structural proteins, VP1 to VP4. In the present study, recombinant canine adenovirus type 2 (CAV2)-based FMD vaccines, Cav-P1/3C R° and Cav-VP1 R°, respectively expressing the structural P1 precursor protein along with the non-structural 3C protein or expressing the structural VP1 protein of the FMDV strain O/FRA/1/2001, were evaluated as novel vaccines against FMD. A strong humoral immune response was elicited in guinea pigs (GP) following immunization with Cav-P1/3C R°, while administration of Cav-VP1 R° did not induce a satisfying antibody response in GP or mice. GP were then used as an experimental model for the determination of the protection afforded by the Cav-P1/3C R° vaccine against challenge with the FMDV strain O1 Manisa/Turkey/1969. The Cav-P1/3C R° vaccine protected GP from generalized FMD to a similar extent as a high potency double-oil emulsion O1 Manisa vaccine. The results of the present study show that CAV2-based vector vaccines can express immunogenic FMDV antigens and offer protection against generalized FMD in GP. This suggest that Cav-P1/3C R° FMDV vaccine may protect natural host species from FMD. In combination with an appropriate diagnostic test, the Cav-P1/3C R° FMDV vaccine may also serve as a marker vaccine to differentiate vaccinated from infected animals.
Collapse
Affiliation(s)
- Annebel R De Vleeschauwer
- Vesicular and Exotic Diseases Unit, Veterinary and Agrochemical Research Centre (CODA-CERVA), Groeselenberg 99, 1180 Brussels, Belgium
| | - Xiaocui Zhou
- UMR Virologie, INRA, ANSES, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, F-94700, France; Laboratory of Zoonoses, China Animal Health and Epidemiology Centre, 369 Nanjing Road, Qingdao, China
| | - David J Lefebvre
- Vesicular and Exotic Diseases Unit, Veterinary and Agrochemical Research Centre (CODA-CERVA), Groeselenberg 99, 1180 Brussels, Belgium
| | - Annabelle Garnier
- UMR Virologie, INRA, ANSES, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, F-94700, France
| | - Fleur Watier
- UMR Virologie, INRA, ANSES, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, F-94700, France
| | - Charly Pignon
- Exotics Medicine Service, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, F-94700, France
| | - Sandrine A Lacour
- UMR Virologie, INRA, ANSES, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, F-94700, France
| | - Stephan Zientara
- UMR Virologie, INRA, ANSES, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, F-94700, France
| | - Labib Bakkali-Kassimi
- UMR Virologie, INRA, ANSES, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, F-94700, France
| | - Kris De Clercq
- Vesicular and Exotic Diseases Unit, Veterinary and Agrochemical Research Centre (CODA-CERVA), Groeselenberg 99, 1180 Brussels, Belgium
| | - Bernard Klonjkowski
- UMR Virologie, INRA, ANSES, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, F-94700, France.
| |
Collapse
|
11
|
Werling D, Hope JC, Siddiqui N, Widdison S, Russell C, Sopp P, Coffey TJ. Subset-Specific Expression of Toll-Like Receptors by Bovine Afferent Lymph Dendritic Cells. Front Vet Sci 2017; 4:44. [PMID: 28421187 PMCID: PMC5376590 DOI: 10.3389/fvets.2017.00044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/14/2017] [Indexed: 02/02/2023] Open
Abstract
Within the ruminant system, several possibilities exist to generate dendritic cells migrating out from the tissue into the regional draining lymph nodes as afferent lymph dendritic cells (ALDCs). Here, we analyzed toll-like receptor (TLR) 1-10 mRNA expression by using quantitative real-time PCR in highly purified subsets of bovine ALDC. As TLR expression may be influenced by pathogens or vaccines and their adjuvant, it is necessary to understand what TLRs are expressed in a steady-state system to elucidate specific differences and to potentially optimize targeted vaccines. In this study, we have assessed the TLR expression profiles of the four main bovine ALDC subsets [cDC1 and cDC2 (subsets 2-4)]. We demonstrate differences in TLR expression between the four subsets that may reflect the ability of these cells to respond to different pathogens or to respond to adjuvants.
Collapse
Affiliation(s)
- Dirk Werling
- The Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Jayne C Hope
- Institute for Animal Health, Newbury, Berkshire, UK
| | | | | | | | - Paul Sopp
- Institute for Animal Health, Newbury, Berkshire, UK
| | | |
Collapse
|
12
|
Kumar N, Barua S, Riyesh T, Tripathi BN. Advances in peste des petits ruminants vaccines. Vet Microbiol 2017; 206:91-101. [PMID: 28161212 PMCID: PMC7130925 DOI: 10.1016/j.vetmic.2017.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/13/2016] [Accepted: 01/12/2017] [Indexed: 11/27/2022]
Abstract
Peste des petits ruminants (PPR) is a highly contagious disease of small ruminants that leads to high morbidity and mortality thereby results in devastating economic consequences to the livestock industry. PPR is currently endemic across most parts of Asia and Africa, the two regions with the highest concentration of poor people in the world. Sheep and goats in particularly contribute significantly towards the upliftment of livelihood of the poor and marginal farmers in these regions. In this context, PPR directly affecting the viability of sheep and goat husbandry has emerged as a major hurdle in the development of these regions. The control of PPR in these regions could significantly contribute to poverty alleviation, therefore, the Office International des Epizooties (OIE) and Food and Agricultural Organization (FAO) have targeted the control and eradication of PPR by 2030 a priority. In order to achieve this goal, a potent, safe and efficacious live-attenuated PPR vaccine with long-lasting immunity is available for immunoprophylaxis. However, the live-attenuated PPR vaccine is thermolabile and needs maintenance of an effective cold chain to deliver into the field. In addition, the infected animals cannot be differentiated from vaccinated animals. To overcome these limitations, some recombinant vaccines have been developed. This review comprehensively describes about the latest developments in PPR vaccines.
Collapse
Affiliation(s)
- Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.
| | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.
| | - Thachamvally Riyesh
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Bhupendra N Tripathi
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| |
Collapse
|
13
|
Neeland MR, Shi W, Collignon C, Taubenheim N, Meeusen ENT, Didierlaurent AM, de Veer MJ. The Lymphatic Immune Response Induced by the Adjuvant AS01: A Comparison of Intramuscular and Subcutaneous Immunization Routes. THE JOURNAL OF IMMUNOLOGY 2016; 197:2704-14. [PMID: 27549170 DOI: 10.4049/jimmunol.1600817] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/25/2016] [Indexed: 12/27/2022]
Abstract
The liposome-based adjuvant AS01 incorporates two immune stimulants, 3-O-desacyl-4'-monophosphoryl lipid A and the saponin QS-21. AS01 is under investigation for use in several vaccines in clinical development. i.m. injection of AS01 enhances immune cell activation and dendritic cell (DC) Ag presentation in the local muscle-draining lymph node. However, cellular and Ag trafficking in the lymphatic vessels that connect an i.m. injection site with the local lymph node has not been investigated. The objectives of this study were: 1) to quantify the in vivo cellular immune response induced by AS01 in an outbred ovine model, 2) to develop a lymphatic cannulation model that directly collects lymphatic fluid draining the muscle, and 3) to investigate the function of immune cells entering and exiting the lymphatic compartments after s.c. or i.m. vaccination with AS01 administered with hepatitis B surface Ag (HBsAg). We show that HBsAg-AS01 induces a distinct immunogenic cellular signature within the blood and draining lymphatics following both immunization routes. We reveal that MHCII(high) migratory DCs, neutrophils, and monocytes can acquire Ag within muscle and s.c. afferent lymph, and that HBsAg-AS01 uniquely induces the selective migration of Ag-positive neutrophils, monocytes, and an MHCII(high) DC-like cell type out of the lymph node via the efferent lymphatics that may enhance Ag-specific immunity. We report the characterization of the immune response in the lymphatic network after i.m. and s.c. injection of a clinically relevant vaccine, all in real time using a dose and volume comparable with that administered in humans.
Collapse
Affiliation(s)
- Melanie R Neeland
- Biotechnology Research Laboratories, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; and
| | - Wei Shi
- Biotechnology Research Laboratories, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; and
| | | | - Nadine Taubenheim
- Biotechnology Research Laboratories, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; and
| | - Els N T Meeusen
- Biotechnology Research Laboratories, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; and
| | | | - Michael J de Veer
- Biotechnology Research Laboratories, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; and
| |
Collapse
|
14
|
Guzman E, Taylor G, Hope J, Herbert R, Cubillos-Zapata C, Charleston B. Transduction of skin-migrating dendritic cells by human adenovirus 5 occurs via an actin-dependent phagocytic pathway. J Gen Virol 2016; 97:2703-2718. [PMID: 27528389 PMCID: PMC5078831 DOI: 10.1099/jgv.0.000581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dendritic cells (DC) are central to the initiation of immune responses, and various approaches have been used to target vaccines to DC in order to improve immunogenicity. Cannulation of lymphatic vessels allows for the collection of DC that migrate from the skin. These migrating DC are involved in antigen uptake and presentation following vaccination. Human replication-deficient adenovirus (AdV) 5 is a promising vaccine vector for delivery of recombinant antigens. Although the mechanism of AdV attachment and penetration has been extensively studied in permissive cell lines, few studies have addressed the interaction of AdV with DC. In this study, we investigated the interaction of bovine skin-migrating DC and replication-deficient AdV-based vaccine vectors. We found that, despite lack of expression of Coxsackie B–Adenovirus Receptor and other known adenovirus receptors, AdV readily enters skin-draining DC via an actin-dependent endocytosis. Virus exit from endosomes was pH independent, and neutralizing antibodies did not prevent virus entry but did prevent virus translocation to the nucleus. We also show that combining adenovirus with adjuvant increases the absolute number of intracellular virus particles per DC but not the number of DC containing intracellular virus. This results in increased trans-gene expression and antigen presentation. We propose that, in the absence of Coxsackie B–Adenovirus Receptor and other known receptors, AdV5-based vectors enter skin-migrating DC using actin-dependent endocytosis which occurs in skin-migrating DC, and its relevance to vaccination strategies and vaccine vector targeting is discussed.
Collapse
Affiliation(s)
- Efrain Guzman
- The Pirbright Institute, Ash Road, Woking, Surrey GU240NF, UK
| | | | - Jayne Hope
- The Roslin Institute University of Edinburgh, Easter Bush, Midlothian EH259RG, UK
| | - Rebecca Herbert
- The Pirbright Institute, Ash Road, Woking, Surrey GU240NF, UK
| | | | | |
Collapse
|
15
|
Robinson L, Knight-Jones TJD, Charleston B, Rodriguez LL, Gay CG, Sumption KJ, Vosloo W. Global Foot-and-Mouth Disease Research Update and Gap Analysis: 6 - Immunology. Transbound Emerg Dis 2016; 63 Suppl 1:56-62. [DOI: 10.1111/tbed.12518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2016] [Indexed: 01/26/2023]
Affiliation(s)
| | | | | | - L. L. Rodriguez
- Plum Island Animal Disease Center; ARS; USDA; Greenport NY USA
| | - C. G. Gay
- Agricultural Research Service; USDA; National Program 103-Animal Health; Beltsville MD USA
| | - K. J. Sumption
- European Commission for the Control of FMD (EuFMD); FAO; Rome Italy
| | - W. Vosloo
- Australian Animal Health Laboratory; CSIRO-Biosecurity Flagship; Geelong VIC Australia
| |
Collapse
|
16
|
Dunston CR, Herbert R, Griffiths HR. Improving T cell-induced response to subunit vaccines: opportunities for a proteomic systems approach. ACTA ACUST UNITED AC 2015; 67:290-9. [PMID: 25708693 DOI: 10.1111/jphp.12383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 11/23/2014] [Indexed: 11/30/2022]
Abstract
UNLABELLED Prophylactic vaccines are an effective strategy to prevent development of many infectious diseases. With new and re-emerging infections posing increasing risks to food stocks and the health of the population in general, there is a need to improve the rationale of vaccine development. One key challenge lies in development of an effective T cell-induced response to subunit vaccines at specific sites and in different populations. OBJECTIVES In this review, we consider how a proteomic systems-based approach can be used to identify putative novel vaccine targets, may be adopted to characterise subunit vaccines and adjuvants fully. KEY FINDINGS Despite the extensive potential for proteomics to aid our understanding of subunit vaccine nature, little work has been reported on identifying MHC 1-binding peptides for subunit vaccines generating T cell responses in the literature to date. SUMMARY In combination with predictive and structural biology approaches to mapping antigen presentation, proteomics offers a powerful and as yet un-tapped addition to the armoury of vaccine discovery to predict T-cell subset responses and improve vaccine design strategies.
Collapse
Affiliation(s)
- Christopher R Dunston
- Life & Health Sciences, Aston University, Birmingham, West Midlands, UK; Mologic, Bedford Technology Park, Thurleigh, Bedfordshire, MK44 2YP
| | | | | |
Collapse
|
17
|
Summerfield A, Auray G, Ricklin M. Comparative Dendritic Cell Biology of Veterinary Mammals. Annu Rev Anim Biosci 2015; 3:533-57. [DOI: 10.1146/annurev-animal-022114-111009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Artur Summerfield
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland;
| | - Gael Auray
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland;
| | - Meret Ricklin
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland;
| |
Collapse
|
18
|
Dicks MDJ, Guzman E, Spencer AJ, Gilbert SC, Charleston B, Hill AVS, Cottingham MG. The relative magnitude of transgene-specific adaptive immune responses induced by human and chimpanzee adenovirus vectors differs between laboratory animals and a target species. Vaccine 2015; 33:1121-8. [PMID: 25629523 PMCID: PMC4331283 DOI: 10.1016/j.vaccine.2015.01.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/07/2015] [Accepted: 01/14/2015] [Indexed: 12/02/2022]
Abstract
HAdV-5 (HAdV-C) vectors are more immunogenic than AdC68 or ChAdOx1 (HAdV-E) vectors in mice. In mice, CD8+ T cell responses peak later, and are more durable after HAdV-5 vaccination. In cattle, ChAdOx1 is at least as immunogenic as HAdV-5.
Adenovirus vaccine vectors generated from new viral serotypes are routinely screened in pre-clinical laboratory animal models to identify the most immunogenic and efficacious candidates for further evaluation in clinical human and veterinary settings. Here, we show that studies in a laboratory species do not necessarily predict the hierarchy of vector performance in other mammals. In mice, after intramuscular immunization, HAdV-5 (Human adenovirus C) based vectors elicited cellular and humoral adaptive responses of higher magnitudes compared to the chimpanzee adenovirus vectors ChAdOx1 and AdC68 from species Human adenovirus E. After HAdV-5 vaccination, transgene specific IFN-γ+ CD8+ T cell responses reached peak magnitude later than after ChAdOx1 and AdC68 vaccination, and exhibited a slower contraction to a memory phenotype. In cattle, cellular and humoral immune responses were at least equivalent, if not higher, in magnitude after ChAdOx1 vaccination compared to HAdV-5. Though we have not tested protective efficacy in a disease model, these findings have important implications for the selection of candidate vectors for further evaluation. We propose that vaccines based on ChAdOx1 or other Human adenovirus E serotypes could be at least as immunogenic as current licensed bovine vaccines based on HAdV-5.
Collapse
Affiliation(s)
- Matthew D J Dicks
- The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK.
| | - Efrain Guzman
- The Pirbright Institute, Pirbright Laboratory, Pirbright, Surrey GU24 0NF, UK
| | - Alexandra J Spencer
- The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Sarah C Gilbert
- The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Bryan Charleston
- The Pirbright Institute, Pirbright Laboratory, Pirbright, Surrey GU24 0NF, UK
| | - Adrian V S Hill
- The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Matthew G Cottingham
- The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
19
|
Goyvaerts C, Kurt DG, Van Lint S, Heirman C, Van Ginderachter JA, De Baetselier P, Raes G, Thielemans K, Breckpot K. Immunogenicity of targeted lentivectors. Oncotarget 2015; 5:704-15. [PMID: 24519916 PMCID: PMC3996667 DOI: 10.18632/oncotarget.1680] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To increase the safety and possibly efficacy of HIV-1 derived lentivectors (LVs) as an anti-cancer vaccine, we recently developed the Nanobody (Nb) display technology to target LVs to antigen presenting cells (APCs). In this study, we extend these data with exclusive targeting of LVs to conventional dendritic cells (DCs), which are believed to be the main cross-presenting APCs for the induction of a TH1-conducted antitumor immune response. The immunogenicity of these DC-subtype targeted LVs was compared to that of broad tropism, general APC-targeted and non-infectious LVs. Intranodal immunization with ovalbumin encoding LVs induced proliferation of antigen specific CD4+ T cells, irrespective of the LVs' targeting ability. However, the cytokine secretion profile of the restimulated CD4+ T cells demonstrated that general APC targeting induced a similar TH1-profile as the broad tropism LVs while transduction of conventional DCs alone induced a similar and less potent TH1 profile as the non-infectious LVs. This observation contradicts the hypothesis that conventional DCs are the most important APCs and suggests that the activation of other APCs is also meaningful. Despite these differences, all targeted LVs were able to stimulate cytotoxic T lymphocytes, be it to a lesser extent than broad tropism LVs. Furthermore this induction was shown to be dependent on type I interferon for the targeted and non-infectious LVs, but not for broad tropism LVs. Finally we demonstrated that the APC-targeted LVs were as potent in therapy as broad tropism LVs and as such deliver on their promise as safer and efficacious LV-based vaccines.
Collapse
Affiliation(s)
- Cleo Goyvaerts
- Laboratory of Molecular and Cellular Therapy, Department of Immunology-Physiology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Guzman E, Taylor G. Immunology of bovine respiratory syncytial virus in calves. Mol Immunol 2014; 66:48-56. [PMID: 25553595 DOI: 10.1016/j.molimm.2014.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/28/2014] [Accepted: 12/07/2014] [Indexed: 12/31/2022]
Abstract
Bovine respiratory syncytial virus (BRSV) is an important cause of respiratory disease in young calves. The virus is genetically and antigenically closely related to human (H)RSV, which is a major cause of respiratory disease in young infants. As a natural pathogen of calves, BRSV infection recapitulates the pathogenesis of respiratory disease in man more faithfully than semi-permissive, animal models of HRSV infection. With the increasing availability of immunological reagents, the calf can be used to dissect the pathogenesis of and mechanisms of immunity to RSV infection, to analyse the ways in which the virus proteins interact with components of the innate response, and to evaluate RSV vaccine strategies. Passively transferred, neutralising bovine monoclonal antibodies, which recognise the same epitopes in the HRSV and BRSV fusion (F) protein, can protect calves against BRSV infection, and depletion of different T cells subsets in calves has highlighted the importance of CD8(+) T cells in viral clearance. Calves can be used to model maternal-antibody mediated suppression of RSV vaccine efficacy, and to increase understanding of the mechanisms responsible for RSV vaccine-enhanced respiratory disease.
Collapse
Affiliation(s)
- Efrain Guzman
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Geraldine Taylor
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK.
| |
Collapse
|
21
|
Kumar N, Maherchandani S, Kashyap SK, Singh SV, Sharma S, Chaubey KK, Ly H. Peste des petits ruminants virus infection of small ruminants: a comprehensive review. Viruses 2014; 6:2287-327. [PMID: 24915458 PMCID: PMC4074929 DOI: 10.3390/v6062287] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 12/14/2022] Open
Abstract
Peste des petits ruminants (PPR) is caused by a Morbillivirus that belongs to the family Paramyxoviridae. PPR is an acute, highly contagious and fatal disease primarily affecting goats and sheep, whereas cattle undergo sub-clinical infection. With morbidity and mortality rates that can be as high as 90%, PPR is classified as an OIE (Office International des Epizooties)-listed disease. Considering the importance of sheep and goats in the livelihood of the poor and marginal farmers in Africa and South Asia, PPR is an important concern for food security and poverty alleviation. PPR virus (PPRV) and rinderpest virus (RPV) are closely related Morbilliviruses. Rinderpest has been globally eradicated by mass vaccination. Though a live attenuated vaccine is available against PPR for immunoprophylaxis, due to its instability in subtropical climate (thermo-sensitivity), unavailability of required doses and insufficient coverage (herd immunity), the disease control program has not been a great success. Further, emerging evidence of poor cross neutralization between vaccine strain and PPRV strains currently circulating in the field has raised concerns about the protective efficacy of the existing PPR vaccines. This review summarizes the recent advancement in PPRV replication, its pathogenesis, immune response to vaccine and disease control. Attempts have also been made to highlight the current trends in understanding the host susceptibility and resistance to PPR.
Collapse
Affiliation(s)
- Naveen Kumar
- Virology Laboratory, Division of Animal Health, Central Institute for Research on Goats, Makhdoom, P.O. Farah, Mathura, UP 281122, India.
| | - Sunil Maherchandani
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India.
| | - Sudhir Kumar Kashyap
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India.
| | - Shoor Vir Singh
- Virology Laboratory, Division of Animal Health, Central Institute for Research on Goats, Makhdoom, P.O. Farah, Mathura, UP 281122, India.
| | - Shalini Sharma
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125004, India.
| | - Kundan Kumar Chaubey
- Virology Laboratory, Division of Animal Health, Central Institute for Research on Goats, Makhdoom, P.O. Farah, Mathura, UP 281122, India.
| | - Hinh Ly
- Veterinary and Biomedical Sciences Department, University of Minnesota, 1988 Fitch Ave., Ste 295, Saint Paul, MN 55108, USA.
| |
Collapse
|
22
|
Guzman E, Hope J, Taylor G, Smith AL, Cubillos-Zapata C, Charleston B. Bovine γδ T cells are a major regulatory T cell subset. THE JOURNAL OF IMMUNOLOGY 2014; 193:208-22. [PMID: 24890724 PMCID: PMC4065783 DOI: 10.4049/jimmunol.1303398] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In humans and mice, γδ T cells represent <5% of the total circulating lymphocytes. In contrast, the γδ T cell compartment in ruminants accounts for 15–60% of the total circulating mononuclear lymphocytes. Despite the existence of CD4+CD25high Foxp3+ T cells in the bovine system, these are neither anergic nor suppressive. We present evidence showing that bovine γδ T cells are the major regulatory T cell subset in peripheral blood. These γδ T cells spontaneously secrete IL-10 and proliferate in response to IL-10, TGF-β, and contact with APCs. IL-10–expressing γδ T cells inhibit Ag-specific and nonspecific proliferation of CD4+ and CD8+ T cells in vitro. APC subsets expressing IL-10 and TFG-β regulate proliferation of γδ T cells producing IL-10. We propose that γδ T cells are a major regulatory T cell population in the bovine system.
Collapse
Affiliation(s)
- Efrain Guzman
- The Pirbright Institute, Surrey GU24 0NF, United Kingdom;
| | - Jayne Hope
- The Roslin Institute University of Edinburgh, Midlothian EH259RG, United Kingdom; and
| | | | - Adrian L Smith
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | | | | |
Collapse
|
23
|
Neeland MR, Meeusen EN, de Veer MJ. Afferent lymphatic cannulation as a model system to study innate immune responses to infection and vaccination. Vet Immunol Immunopathol 2014; 158:86-97. [DOI: 10.1016/j.vetimm.2013.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 12/28/2022]
|
24
|
Herbert R, Baron J, Batten C, Baron M, Taylor G. Recombinant adenovirus expressing the haemagglutinin of Peste des petits ruminants virus (PPRV) protects goats against challenge with pathogenic virus; a DIVA vaccine for PPR. Vet Res 2014; 45:24. [PMID: 24568545 PMCID: PMC3941483 DOI: 10.1186/1297-9716-45-24] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/17/2014] [Indexed: 12/27/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) is a morbillivirus that can cause severe disease in sheep and goats, characterised by pyrexia, pneumo-enteritis, and gastritis. The socio-economic burden of the disease is increasing in underdeveloped countries, with poor livestock keepers being affected the most. Current vaccines consist of cell-culture attenuated strains of PPRV, which induce a similar antibody profile to that induced by natural infection. Generation of a vaccine that enables differentiation of infected from vaccinated animals (DIVA) would benefit PPR control and eradication programmes, particularly in the later stages of an eradication campaign and for countries where the disease is not endemic. In order to create a vaccine that would enable infected animals to be distinguished from vaccinated ones (DIVA vaccine), we have evaluated the immunogenicity of recombinant fowlpox (FP) and replication-defective recombinant human adenovirus 5 (Ad), expressing PPRV F and H proteins, in goats. The Ad constructs induced higher levels of virus-specific and neutralising antibodies, and primed greater numbers of CD8+ T cells than the FP-vectored vaccines. Importantly, a single dose of Ad-H, with or without the addition of Ad expressing ovine granulocyte macrophage colony-stimulating factor and/or ovine interleukin-2, not only induced strong antibody and cell-mediated immunity but also completely protected goats against challenge with virulent PPRV, 4 months after vaccination. Replication-defective Ad-H therefore offers the possibility of an effective DIVA vaccine.
Collapse
Affiliation(s)
| | | | | | | | - Geraldine Taylor
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, United Kingdom.
| |
Collapse
|
25
|
de Cassan SC, Draper SJ. Recent advances in antibody-inducing poxviral and adenoviral vectored vaccine delivery platforms for difficult disease targets. Expert Rev Vaccines 2014; 12:365-78. [DOI: 10.1586/erv.13.11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Gómez CE, Perdiguero B, García-Arriaza J, Esteban M. Clinical applications of attenuated MVA poxvirus strain. Expert Rev Vaccines 2013; 12:1395-416. [PMID: 24168097 DOI: 10.1586/14760584.2013.845531] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The highly attenuated poxvirus strain modified vaccinia virus Ankara (MVA) has reached maturity as a vector delivery system and as a vaccine candidate against a broad spectrum of diseases. This has been largely recognized from research on virus-host cell interactions and immunological studies in pre-clinical and clinical trials. This review addresses the studies of MVA vectors used in phase I/II clinical trials, with the aim to provide the main findings obtained on their behavior when tested against relevant human diseases and cancer and also highlights the strategies currently implemented to improve the MVA immunogenicity. The authors assess that MVA vectors are progressing as strong vaccine candidates either alone or when administered in combination with other vectors.
Collapse
Affiliation(s)
- Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | | | | |
Collapse
|
27
|
Alvarez B, Poderoso T, Alonso F, Ezquerra A, Domínguez J, Revilla C. Antigen targeting to APC: from mice to veterinary species. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:153-163. [PMID: 23648645 DOI: 10.1016/j.dci.2013.04.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/24/2013] [Accepted: 04/25/2013] [Indexed: 06/02/2023]
Abstract
Antigen delivery to receptors expressed on antigen presenting cells (APC) has shown to improve immunogenicity of vaccines in mice. An enhancement of cytotoxic T lymphocyte (CTL), helper T cell or humoral responses was obtained depending on the type of APC and the surface molecule targeted. Although this strategy is being also evaluated in livestock animals with promising results, some discrepancies have been found between species and pathogens. The genetic diversity of livestock animals, the different pattern of expression of some receptors among species, the use of different markers to characterize APC in large animals and sometimes the lack of reagents make difficult to compare results obtained in different species. In this review, we summarize the data available regarding antigen targeting to APC receptors in cattle, sheep and pig and discuss the results found in these animals in the context of what has been obtained in mice.
Collapse
Affiliation(s)
- B Alvarez
- Dpto. Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Contreras V, Urien C, Jouneau L, Bourge M, Bouet-Cararo C, Bonneau M, Zientara S, Klonjkowski B, Schwartz-Cornil I. Canine recombinant adenovirus vector induces an immunogenicity-related gene expression profile in skin-migrated CD11b⁺ -type DCs. PLoS One 2012; 7:e52513. [PMID: 23300693 PMCID: PMC3530480 DOI: 10.1371/journal.pone.0052513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/14/2012] [Indexed: 01/29/2023] Open
Abstract
Gene expression profiling of the blood cell response induced early after vaccination has previously been demonstrated to predict the immunogenicity of vaccines. In this study, we evaluated whether the analysis of the gene expression profile of skin-migrated dendritic cells (DCs) could be informative for the in vitro prediction of immunogenicity of vaccine, using canine adenovirus serotype 2 (CAV2) as vaccine vector. CAV2 has been shown to induce immunity to transgenes in several species including sheep and is an interesting alternative to human adenovirus-based vectors, based on the safety records of the parental strain in dogs and the lack of pre-existing immunity in non-host species. Skin-migrated DCs were collected from pseudo-afferent lymph in sheep. Both the CD11b(+) -type and CD103(+) -type skin-migrated DCs were transduced by CAV2. An analysis of the global gene response to CAV2 in the two skin DC subsets showed that the gene response in CD11b(+) -type DCs was far higher and broader than in the CD103(+) -type DCs. A newly released integrative analytic tool from Ingenuity systems revealed that the CAV2-modulated genes in the CD11b(+) -type DCs clustered in several activated immunogenicity-related functions, such as immune response, immune cell trafficking and inflammation. Thus gene profiling in skin-migrated DC in vitro indicates that the CD11b(+) DC type is more responsive to CAV2 than the CD103(+) DC type, and provides valuable information to help in evaluating and possibly improving viral vector vaccine effectiveness.
Collapse
Affiliation(s)
- Vanessa Contreras
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Céline Urien
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Luc Jouneau
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Mickael Bourge
- IMAGIF, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Coraline Bouet-Cararo
- UMR Virologie, Institut National de la Recherche Agronomique and Université Paris-Est and Ecole Nationale Vétérinaire d’Alfort and Agence Nationale de Sécurité Sanitaire de l’alimentation de l’environnement et du travail, Maisons-Alfort, France
| | - Michel Bonneau
- Centre de Recherche en Imagerie Interventionnelle, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Stephan Zientara
- UMR Virologie, Institut National de la Recherche Agronomique and Université Paris-Est and Ecole Nationale Vétérinaire d’Alfort and Agence Nationale de Sécurité Sanitaire de l’alimentation de l’environnement et du travail, Maisons-Alfort, France
| | - Bernard Klonjkowski
- UMR Virologie, Institut National de la Recherche Agronomique and Université Paris-Est and Ecole Nationale Vétérinaire d’Alfort and Agence Nationale de Sécurité Sanitaire de l’alimentation de l’environnement et du travail, Maisons-Alfort, France
| | - Isabelle Schwartz-Cornil
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
29
|
Lambe T. Novel viral vectored vaccines for the prevention of influenza. Mol Med 2012; 18:1153-60. [PMID: 22735755 PMCID: PMC3510293 DOI: 10.2119/molmed.2012.00147] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/19/2012] [Indexed: 01/29/2023] Open
Abstract
Influenza represents a substantial global healthcare burden, with annual epidemics resulting in 3-5 million cases of severe illness with a significant associated mortality. In addition, the risk of a virulent and lethal influenza pandemic has generated widespread and warranted concern. Currently licensed influenza vaccines are limited in their ability to induce efficacious and long-lasting herd immunity. In addition, and as evidenced by the H1N1 pandemic in 2009, there can be a significant delay between the emergence of a pandemic influenza and an effective, antibody-inducing vaccine. There is, therefore, a continued need for new, efficacious vaccines conferring cross-clade protection-obviating the need for biannual reformulation of seasonal influenza vaccines. Development of such a vaccine would yield enormous health benefits to society and also greatly reduce the associated global healthcare burden. There are a number of alternative influenza vaccine technologies being assessed both preclinically and clinically. In this review we discuss viral vectored vaccines, either recombinant live-attenuated or replication-deficient viruses, which are current lead candidates for inducing efficacious and long-lasting immunity toward influenza viruses. These alternate influenza vaccines offer real promise to deliver viable alternatives to currently deployed vaccines and more importantly may confer long-lasting and universal protection against influenza viral infection.
Collapse
Affiliation(s)
- Teresa Lambe
- Jenner Institute, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
30
|
Guzman E, Cubillos-Zapata C, Cottingham MG, Gilbert SC, Prentice H, Charleston B, Hope JC. Modified vaccinia virus Ankara-based vaccine vectors induce apoptosis in dendritic cells draining from the skin via both the extrinsic and intrinsic caspase pathways, preventing efficient antigen presentation. J Virol 2012; 86:5452-66. [PMID: 22419811 PMCID: PMC3347273 DOI: 10.1128/jvi.00264-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/05/2012] [Indexed: 02/03/2023] Open
Abstract
Dendritic cells (DC) are potent antigen-presenting cells and central to the induction of immune responses following infection or vaccination. The collection of DC migrating from peripheral tissues by cannulation of the afferent lymphatic vessels provides DC which can be used directly ex vivo without extensive in vitro manipulations. We have previously used bovine migrating DC to show that recombinant human adenovirus 5 vectors efficiently transduce afferent lymph migrating DEC-205(+) CD11c(+) CD8(-) DC (ALDC). We have also shown that recombinant modified vaccinia virus Ankara (MVA) infects ALDC in vitro, causing downregulation of costimulatory molecules, apoptosis, and cell death. We now show that in the bovine system, modified vaccinia virus Ankara-induced apoptosis in DC draining from the skin occurs soon after virus binding via the caspase 8 pathway and is not associated with viral gene expression. We also show that after virus entry, the caspase 9 pathway cascade is initiated. The magnitude of T cell responses to mycobacterial antigen 85A (Ag85A) expressed by recombinant MVA-infected ALDC is increased by blocking caspase-induced apoptosis. Apoptotic bodies generated by recombinant MVA (rMVA)-Ag85A-infected ALDC and containing Ag85A were phagocytosed by noninfected migrating ALDC expressing SIRPα via actin-dependent phagocytosis, and these ALDC in turn presented antigen. However, the addition of fresh ALDC to MVA-infected cultures did not improve on the magnitude of the T cell responses; in contrast, these noninfected DC showed downregulation of major histocompatibility complex class II (MHC-II), CD40, CD80, and CD86. We also observed that MVA-infected ALDC promoted migration of DEC-205(+) SIRPα(+) CD21(+) DC as well as CD4(+) and CD8(+) T cells independently of caspase activation. These in vitro studies show that induction of apoptosis in DC by MVA vectors is detrimental to the subsequent induction of T cell responses.
Collapse
Affiliation(s)
- E Guzman
- Institute for Animal Health, Compton, Newbury, Berkshire, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
31
|
Migratory sub-populations of afferent lymphatic dendritic cells differ in their interactions with Mycobacterium bovis Bacille Calmette Guerin. Vaccine 2012; 30:2357-67. [DOI: 10.1016/j.vaccine.2012.01.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/05/2011] [Accepted: 01/12/2012] [Indexed: 01/12/2023]
|
32
|
Hartman ZC, Wei J, Glass OK, Guo H, Lei G, Yang XY, Osada T, Hobeika A, Delcayre A, Le Pecq JB, Morse MA, Clay TM, Lyerly HK. Increasing vaccine potency through exosome antigen targeting. Vaccine 2011; 29:9361-7. [PMID: 22001882 DOI: 10.1016/j.vaccine.2011.09.133] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 09/22/2011] [Accepted: 09/30/2011] [Indexed: 12/29/2022]
Abstract
While many tumor associated antigens (TAAs) have been identified in human cancers, efforts to develop efficient TAA "cancer vaccines" using classical vaccine approaches have been largely ineffective. Recently, a process to specifically target proteins to exosomes has been established which takes advantage of the ability of the factor V like C1C2 domain of lactadherin to specifically address proteins to exosomes. Using this approach, we hypothesized that TAAs could be targeted to exosomes to potentially increase their immunogenicity, as exosomes have been demonstrated to traffic to antigen presenting cells (APC). To investigate this possibility, we created adenoviral vectors expressing the extracellular domain (ECD) of two non-mutated TAAs often found in tumors of cancer patients, carcinoembryonic antigen (CEA) and HER2, and coupled them to the C1C2 domain of lactadherin. We found that these C1C2 fusion proteins had enhanced expression in exosomes in vitro. We saw significant improvement in antigen specific immune responses to each of these antigens in naïve and tolerant transgenic animal models and could further demonstrate significantly enhanced therapeutic anti-tumor effects in a human HER2+ transgenic animal model. These findings demonstrate that the mode of secretion and trafficking can influence the immunogenicity of different human TAAs, and may explain the lack of immunogenicity of non-mutated TAAs found in cancer patients. They suggest that exosomal targeting could enhance future anti-tumor vaccination protocols. This targeting exosome process could also be adapted for the development of more potent vaccines in some viral and parasitic diseases where the classical vaccine approach has demonstrated limitations.
Collapse
Affiliation(s)
- Zachary C Hartman
- Duke Comprehensive Cancer Center, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|