1
|
Afzal S, Ali L, Batool A, Afzal M, Kanwal N, Hassan M, Safdar M, Ahmad A, Yang J. Hantavirus: an overview and advancements in therapeutic approaches for infection. Front Microbiol 2023; 14:1233433. [PMID: 37901807 PMCID: PMC10601933 DOI: 10.3389/fmicb.2023.1233433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Hantaviruses are a significant and emerging global public health threat, impacting more than 200,000 individuals worldwide each year. The single-stranded RNA viruses belong to the Hantaviridae family and are responsible for causing two acute febrile diseases in humans: Hantavirus pulmonary syndrome (HPS) and hemorrhagic fever with renal syndrome (HFRS). Currently, there are no licensed treatments or vaccines available globally for HTNV infection. Various candidate drugs have shown efficacy in increasing survival rates during the early stages of HTNV infection. Some of these drugs include lactoferrin, ribavirin, ETAR, favipiravir and vandetanib. Immunotherapy utilizing neutralizing antibodies (NAbs) generated from Hantavirus convalescent patients show efficacy against HTNV. Monoclonal antibodies such as MIB22 and JL16 have demonstrated effectiveness in protecting against HTNV infection. The development of vaccines and antivirals, used independently and/or in combination, is critical for elucidating hantaviral infections and the impact on public health. RNA interference (RNAi) arised as an emerging antiviral therapy, is a highly specific degrades RNA, with post-transcriptional mechanism using eukaryotic cells platform. That has demonstrated efficacy against a wide range of viruses, both in vitro and in vivo. Recent antiviral methods involve using small interfering RNA (siRNA) and other, immune-based therapies to target specific gene segments (S, M, or L) of the Hantavirus. This therapeutic approach enhances viral RNA clearance through the RNA interference process in Vero E6 cells or human lung microvascular endothelial cells. However, the use of siRNAs faces challenges due to their low biological stability and limited in vivo targeting ability. Despite their successful inhibition of Hantavirus replication in host cells, their antiviral efficacy may be hindered. In the current review, we focus on advances in therapeutic strategies, as antiviral medications, immune-based therapies and vaccine candidates aimed at enhancing the body's ability to control the progression of Hantavirus infections, with the potential to reduce the risk of severe disease.
Collapse
Affiliation(s)
- Samia Afzal
- CEMB, University of the Punjab, Lahore, Pakistan
| | - Liaqat Ali
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Anum Batool
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Momina Afzal
- CEMB, University of the Punjab, Lahore, Pakistan
| | - Nida Kanwal
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | | | | | - Atif Ahmad
- CEMB, University of the Punjab, Lahore, Pakistan
| | - Jing Yang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| |
Collapse
|
2
|
Acidic pH-Induced Conformational Changes in Chikungunya Virus Fusion Protein E1: a Spring-Twisted Region in the Domain I-III Linker Acts as a Hinge Point for Swiveling Motion of Domains. J Virol 2020; 94:JVI.01561-20. [PMID: 32938768 DOI: 10.1128/jvi.01561-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/09/2020] [Indexed: 11/20/2022] Open
Abstract
Chikungunya virus (CHIKV), a mosquito-transmitted alphavirus, enters a cell through endocytosis, followed by viral and cell membrane fusion. The fusion protein, E1, undergoes an acid pH-induced pre- to postfusion conformation change during membrane fusion. As part of the conformation change, E1 dissociates from the receptor-binding protein, E2, and swivels its domains I and II over domain III to form an extended intermediate and then eventually to form a postfusion hairpin homotrimer. In this study, we tested if the domain I-III linker acts as a "hinge" for the swiveling motion of E1 domains. We found a conserved spring-twisted structure in the linker, stabilized by a salt bridge between a conserved arginine-aspartic acid pair, as a "hinge point" for domain swiveling. Molecular dynamics (MD) simulation of the CHIKV E1 or E2-E1 structure predicted that the spring-twisted region untwists at pH 5.5. Corroborating the prediction, introduction of a "cystine staple" at the hinge point, replacing the conserved arginine-aspartic acid pair with cysteine residues, resulted in loss of fusion activity of E1. MD simulation also predicted domain I-III swiveling at acidic pH. We tested if breaking the His 331-Lys 16 H bond between domains I and III, seen only in the prefusion conformation, is important for domain swiveling. When domains I and III are "stapled" by introducing a disulfide bond in between, E1 showed loss of fusion activity, implying that domain I and III dissociation is a critical acid pH-induced step in membrane fusion. However, replacement of His 331 with an acidic residue did not affect the pH threshold for fusion, suggesting His 331 is not an acid-sensing residue.IMPORTANCE Aedes mosquito-transmitted viruses such as the Zika, dengue, and chikungunya viruses have spread globally. CHIKV, similar to many other enveloped viruses, enters cells in sequential steps: step 1 involves receptor binding followed by endocytosis, and step 2 involves viral-cell membrane fusion in the endocytic vesicle. The viral envelope surface protein, E1, performs membrane fusion. E1 is triggered to undergo conformational changes by acidic pH of the maturing endosome. Different domains of E1 rearrange during the pre- to postfusion conformation change. Using in silico analysis of the E1 structure and different biochemical experiments, we explained a structural mechanism of key conformational changes in E1 triggered by acidic pH. We noted two important structural changes in E1 at acidic pH. In the first, a spring-twisted region in a loop connecting two domains (I and III) untwists, bringing a swiveling motion of domains on each other. In the second, breaking of interactions between domains I and III and domain separation are required for membrane fusion. This knowledge will help devise new therapeutic strategies to block conformation changes in E1 and thus viral entry.
Collapse
|
3
|
Abstract
Alphaviruses cause severe human illnesses including persistent arthritis and fatal encephalitis. As alphavirus entry into target cells is the first step in infection, intensive research efforts have focused on elucidating aspects of this pathway, including attachment, internalization, and fusion. Herein, we review recent developments in the molecular understanding of alphavirus entry both in vitro and in vivo and how these advances might enable the design of therapeutics targeting this critical step in the alphavirus life cycle.
Collapse
|
4
|
Abou-Hamdan A, Belot L, Albertini A, Gaudin Y. Monomeric Intermediates Formed by Vesiculovirus Glycoprotein during Its Low-pH-induced Structural Transition. J Mol Biol 2018; 430:1685-1695. [PMID: 29678555 PMCID: PMC7126088 DOI: 10.1016/j.jmb.2018.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/06/2018] [Accepted: 04/10/2018] [Indexed: 01/26/2023]
Abstract
•Vesiculovirus G is the prototype of class III viral fusion glycoproteins. •The structures of both G pre- and post-fusion conformation have been determined. •The structure of monomeric intermediates reveals the pathway of the transition. •A fusion-loop-exposing antiparallel dimer may initiate the fusion process. •Those data challenge the current model proposed for viral membrane fusion.
Collapse
Affiliation(s)
- Abbas Abou-Hamdan
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Laura Belot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Aurélie Albertini
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Yves Gaudin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France.
| |
Collapse
|
5
|
Barriga GP, Villalón-Letelier F, Márquez CL, Bignon EA, Acuña R, Ross BH, Monasterio O, Mardones GA, Vidal SE, Tischler ND. Inhibition of the Hantavirus Fusion Process by Predicted Domain III and Stem Peptides from Glycoprotein Gc. PLoS Negl Trop Dis 2016; 10:e0004799. [PMID: 27414047 PMCID: PMC4945073 DOI: 10.1371/journal.pntd.0004799] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/02/2016] [Indexed: 12/17/2022] Open
Abstract
Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three domains connected by a stem region to a transmembrane anchor in the viral envelope. These fusion proteins can be inhibited through exogenous fusion protein fragments spanning domain III (DIII) and the stem region. Such fragments are thought to interact with the core of the fusion protein trimer during the transition from its pre-fusion to its post-fusion conformation. Based on our previous homology model structure for Gc from Andes hantavirus (ANDV), here we predicted and generated recombinant DIII and stem peptides to test whether these fragments inhibit hantavirus membrane fusion and cell entry. Recombinant ANDV DIII was soluble, presented disulfide bridges and beta-sheet secondary structure, supporting the in silico model. Using DIII and the C-terminal part of the stem region, the infection of cells by ANDV was blocked up to 60% when fusion of ANDV occurred within the endosomal route, and up to 95% when fusion occurred with the plasma membrane. Furthermore, the fragments impaired ANDV glycoprotein-mediated cell-cell fusion, and cross-inhibited the fusion mediated by the glycoproteins from Puumala virus (PUUV). The Gc fragments interfered in ANDV cell entry by preventing membrane hemifusion and pore formation, retaining Gc in a non-resistant homotrimer stage, as described for DIII and stem peptide inhibitors of class II fusion proteins. Collectively, our results demonstrate that hantavirus Gc shares not only structural, but also mechanistic similarity with class II viral fusion proteins, and will hopefully help in developing novel therapeutic strategies against hantaviruses. The infection of cells by enveloped viruses involves the fusion of membranes between viruses and cells. This process is mediated by viral fusion proteins that have been grouped into at least three structural classes. Membrane-enveloped hantaviruses are worldwide spread pathogens that can cause human disease with mortality rates reaching up to 50%, however, neither a therapeutic drug nor preventive measures are currently available. Here we show that the entrance of Andes hantavirus into target cells can be blocked by fragments derived from the Gc fusion protein that are analogous to inhibitory fragments of class II fusion proteins. The Gc fragments acted directly over the viral fusion process, preventing its late stages. Together, our data demonstrate that the hantavirus Gc protein shares not only structural, but also mechanistic similarity with class II fusion proteins, suggesting its evolution from a common or related ancestral fusion protein. Furthermore, the results outline novel approaches for therapeutic intervention.
Collapse
Affiliation(s)
- Gonzalo P. Barriga
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | | | - Chantal L. Márquez
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | - Eduardo A. Bignon
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | - Rodrigo Acuña
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | - Breyan H. Ross
- Laboratory of Structural Cell Biology, Department of Physiology, and Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Octavio Monasterio
- Laboratorio de Biología Estructural y Molecular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Gonzalo A. Mardones
- Laboratory of Structural Cell Biology, Department of Physiology, and Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Simon E. Vidal
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | - Nicole D. Tischler
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
- * E-mail:
| |
Collapse
|
6
|
Residue-level resolution of alphavirus envelope protein interactions in pH-dependent fusion. Proc Natl Acad Sci U S A 2015; 112:2034-9. [PMID: 25646410 DOI: 10.1073/pnas.1414190112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Alphavirus envelope proteins, organized as trimers of E2-E1 heterodimers on the surface of the pathogenic alphavirus, mediate the low pH-triggered fusion of viral and endosomal membranes in human cells. The lack of specific treatment for alphaviral infections motivates our exploration of potential antiviral approaches by inhibiting one or more fusion steps in the common endocytic viral entry pathway. In this work, we performed constant pH molecular dynamics based on an atomic model of the alphavirus envelope with icosahedral symmetry. We have identified pH-sensitive residues that cause the largest shifts in thermodynamic driving forces under neutral and acidic pH conditions for various fusion steps. A series of conserved interdomain His residues is identified to be responsible for the pH-dependent conformational changes in the fusion process, and ligand binding sites in their vicinity are anticipated to be potential drug targets aimed at inhibiting viral infections.
Collapse
|
7
|
Structural differences observed in arboviruses of the alphavirus and flavivirus genera. Adv Virol 2014; 2014:259382. [PMID: 25309597 PMCID: PMC4182009 DOI: 10.1155/2014/259382] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/28/2014] [Accepted: 08/18/2014] [Indexed: 12/22/2022] Open
Abstract
Arthropod borne viruses have developed a complex life cycle adapted to alternate between insect and vertebrate hosts. These arthropod-borne viruses belong mainly to the families Togaviridae, Flaviviridae, and Bunyaviridae. This group of viruses contains many pathogens that cause febrile, hemorrhagic, and encephalitic disease or arthritic symptoms which can be persistent. It has been appreciated for many years that these viruses were evolutionarily adapted to function in the highly divergent cellular environments of both insect and mammalian phyla. These viruses are hybrid in nature, containing viral-encoded RNA and proteins which are glycosylated by the host and encapsulate viral nucleocapsids in the context of a host-derived membrane. From a structural perspective, these virus particles are macromolecular machines adapted in design to assemble into a packaging and delivery system for the virus genome and, only when associated with the conditions appropriate for a productive infection, to disassemble and deliver the RNA cargo. It was initially assumed that the structures of the virus from both hosts were equivalent. New evidence that alphaviruses and flaviviruses can exist in more than one conformation postenvelopment will be discussed in this review. The data are limited but should refocus the field of structural biology on the metastable nature of these viruses.
Collapse
|
8
|
Abstract
Enveloped viruses infect host cells by a membrane fusion reaction that takes place at the cell surface or in intracellular compartments following virus uptake. Fusion is mediated by the membrane interactions and conformational changes of specialized virus envelope proteins termed membrane fusion proteins. This article discusses the structures and refolding reactions of specific fusion proteins and the methods for their study and highlights outstanding questions in the field.
Collapse
Affiliation(s)
- Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461;
| |
Collapse
|
9
|
Hantavirus Gn and Gc envelope glycoproteins: key structural units for virus cell entry and virus assembly. Viruses 2014; 6:1801-22. [PMID: 24755564 PMCID: PMC4014721 DOI: 10.3390/v6041801] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/20/2014] [Accepted: 03/31/2014] [Indexed: 01/24/2023] Open
Abstract
In recent years, ultrastructural studies of viral surface spikes from three different genera within the Bunyaviridae family have revealed a remarkable diversity in their spike organization. Despite this structural heterogeneity, in every case the spikes seem to be composed of heterodimers formed by Gn and Gc envelope glycoproteins. In this review, current knowledge of the Gn and Gc structures and their functions in virus cell entry and exit is summarized. During virus cell entry, the role of Gn and Gc in receptor binding has not yet been determined. Nevertheless, biochemical studies suggest that the subsequent virus-membrane fusion activity is accomplished by Gc. Further, a class II fusion protein conformation has been predicted for Gc of hantaviruses, and novel crystallographic data confirmed such a fold for the Rift Valley fever virus (RVFV) Gc protein. During virus cell exit, the assembly of different viral components seems to be established by interaction of Gn and Gc cytoplasmic tails (CT) with internal viral ribonucleocapsids. Moreover, recent findings show that hantavirus glycoproteins accomplish important roles during virus budding since they self-assemble into virus-like particles. Collectively, these novel insights provide essential information for gaining a more detailed understanding of Gn and Gc functions in the early and late steps of the hantavirus infection cycle.
Collapse
|
10
|
Cross-inhibition of chikungunya virus fusion and infection by alphavirus E1 domain III proteins. J Virol 2013; 87:7680-7. [PMID: 23637415 DOI: 10.1128/jvi.00814-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alphaviruses are small enveloped RNA viruses that include important emerging human pathogens, such as chikungunya virus (CHIKV). These viruses infect cells via a low-pH-triggered membrane fusion reaction, making this step a potential target for antiviral therapies. The E1 fusion protein inserts into the target membrane, trimerizes, and refolds to a hairpin-like conformation in which the combination of E1 domain III (DIII) and the stem region (DIII-stem) pack against a core trimer composed of E1 domains I and II (DI/II). Addition of exogenous DIII proteins from Semliki Forest virus (SFV) has been shown to inhibit E1 hairpin formation and SFV fusion and infection. Here we produced and characterized DIII and DI/II proteins from CHIKV and SFV. Unlike SFV DIII, both core trimer binding and fusion inhibition by CHIKV DIII required the stem region. CHIKV DIII-stem and SFV DIII-stem showed efficient cross-inhibition of SFV, Sindbis virus, and CHIKV infections. We developed a fluorescence anisotropy-based assay for the binding of SFV DIII-stem to the core trimer and used it to demonstrate the relatively high affinity of this interaction (Kd [dissociation constant], ∼85 nM) and the importance of the stem region. Together, our results support the conserved nature of the key contacts of DIII-stem in the alphavirus E1 homotrimer and describe a sensitive and quantitative in vitro assay for this step in fusion protein refolding.
Collapse
|
11
|
Baquero E, Albertini AA, Vachette P, Lepault J, Bressanelli S, Gaudin Y. Intermediate conformations during viral fusion glycoprotein structural transition. Curr Opin Virol 2013; 3:143-50. [PMID: 23562213 PMCID: PMC7172239 DOI: 10.1016/j.coviro.2013.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/26/2013] [Accepted: 03/13/2013] [Indexed: 11/29/2022]
Abstract
Three classes of fusion glycoproteins have been hitherto identified. Structures of their pre-fusion and post-fusion states have revealed a huge conformational change. Intermediate structures during the structural transition have been recently characterized. Published data are consistent with the existence of a ‘pre-hairpin’ intermediate.
Entry of enveloped viruses into cells requires the fusion of viral and cellular membranes, driven by conformational changes in viral glycoproteins. Three different classes of viral fusion proteins have been hitherto identified based on common structural elements. Crystal structures have provided static pictures of pre-fusion and post-fusion conformations of these proteins and have revealed the dramatic reorganization of the molecules, but the transition pathway remains elusive. In this review, we will focus on recent data aiming to characterize intermediate structures during the conformational change. All these data support the existence of a pre-hairpin intermediate, but its oligomeric status is still a matter of debate.
Collapse
Affiliation(s)
- Eduard Baquero
- Centre de Recherche de Gif, Laboratoire de Virologie Moléculaire et Structurale, CNRS (UPR 3296), 91198 Gif sur Yvette Cedex, France
| | | | | | | | | | | |
Collapse
|
12
|
Identification of a specific region in the e1 fusion protein involved in zinc inhibition of semliki forest virus fusion. J Virol 2012; 86:3588-94. [PMID: 22258261 DOI: 10.1128/jvi.07115-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The enveloped alphaviruses infect cells via a low-pH-triggered membrane fusion reaction mediated by the viral transmembrane protein E1. During fusion, E1 inserts into the target membrane and refolds to a hairpin-like postfusion conformation in which domain III (DIII) and the juxtamembrane stem pack against a central core trimer. Although zinc has previously been shown to cause a striking block in alphavirus fusion with liposome target membranes, the mechanism of zinc's effect on the E1 fusion protein is not understood. Here we developed a cell culture system to study zinc inhibition of fusion and infection of the alphavirus Semliki Forest virus (SFV). Inclusion of 2 mM ZnCl(2) in the pH 5.75 fusion buffer caused a decrease of ∼5 logs in SFV fusion at the plasma membrane. Fusion was also inhibited by nickel, a chemically related transition metal. Selection for SFV zinc resistance identified a key histidine residue, H333 on E1 DIII, while other conserved E1 histidine residues were not involved. An H333N mutation conferred resistance to both zinc and nickel, with properties in keeping with the known pH-dependent chelation of these metals by histidine. Biochemical studies demonstrated that zinc strongly inhibits formation of the postfusion E1 trimer in wild-type SFV but not in an H333 mutant. Together our results suggest that zinc acts by blocking the fold-back of DIII via its interaction with H333.
Collapse
|