1
|
Pokorny L, Burden JJ, Albrecht D, Bamford R, Leigh KE, Sridhar P, Knowles TJ, Modis Y, Mercer J. The vaccinia chondroitin sulfate binding protein drives host membrane curvature to facilitate fusion. EMBO Rep 2024; 25:1310-1325. [PMID: 38321165 PMCID: PMC10933376 DOI: 10.1038/s44319-023-00040-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 02/08/2024] Open
Abstract
Cellular attachment of viruses determines their cell tropism and species specificity. For entry, vaccinia, the prototypic poxvirus, relies on four binding proteins and an eleven-protein entry fusion complex. The contribution of the individual virus binding proteins to virion binding orientation and membrane fusion is unclear. Here, we show that virus binding proteins guide side-on virion binding and promote curvature of the host membrane towards the virus fusion machinery to facilitate fusion. Using a membrane-bleb model system together with super-resolution and electron microscopy we find that side-bound vaccinia virions induce membrane invagination in the presence of low pH. Repression or deletion of individual binding proteins reveals that three of four contribute to binding orientation, amongst which the chondroitin sulfate binding protein, D8, is required for host membrane bending. Consistent with low-pH dependent macropinocytic entry of vaccinia, loss of D8 prevents virion-associated macropinosome membrane bending, disrupts fusion pore formation and infection. Our results show that viral binding proteins are active participants in successful virus membrane fusion and illustrate the importance of virus protein architecture for successful infection.
Collapse
Affiliation(s)
- Laura Pokorny
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- MRC-LMCB, University College London, London, WC1E 6BT, UK
| | - Jemima J Burden
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - David Albrecht
- MRC-LMCB, University College London, London, WC1E 6BT, UK
| | - Rebecca Bamford
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- MRC-LMCB, University College London, London, WC1E 6BT, UK
| | - Kendra E Leigh
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK
| | - Pooja Sridhar
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Timothy J Knowles
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Yorgo Modis
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK
| | - Jason Mercer
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
- MRC-LMCB, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
2
|
Kao CF, Liu CY, Hsieh CL, Carillo KJD, Tzou DLM, Wang HC, Chang W. Structural and functional analyses of viral H2 protein of the vaccinia virus entry fusion complex. J Virol 2023; 97:e0134323. [PMID: 37975688 PMCID: PMC10734489 DOI: 10.1128/jvi.01343-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/02/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Vaccinia virus infection requires virus-cell membrane fusion to complete entry during endocytosis; however, it contains a large viral fusion protein complex of 11 viral proteins that share no structure or sequence homology to all the known viral fusion proteins, including type I, II, and III fusion proteins. It is thus very challenging to investigate how the vaccinia fusion complex works to trigger membrane fusion with host cells. In this study, we crystallized the ectodomain of vaccinia H2 protein, one component of the viral fusion complex. Furthermore, we performed a series of mutational, biochemical, and molecular analyses and identified two surface loops containing 170LGYSG174 and 125RRGTGDAW132 as the A28-binding region. We also showed that residues in the N-terminal helical region (amino acids 51-90) are also important for H2 function.
Collapse
Affiliation(s)
- Chi-Fei Kao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chang-Yi Liu
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chia-Lin Hsieh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | | | - Hao-Ching Wang
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wen Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
3
|
Lin S, Yue D, Yang F, Chen Z, He B, Cao Y, Dong H, Li J, Zhao Q, Lu G. Crystal structure of vaccinia virus G3/L5 sub-complex reveals a novel fold with extended inter-molecule interactions conserved among orthopoxviruses. Emerg Microbes Infect 2023; 12:e2160661. [PMID: 36533407 PMCID: PMC9848366 DOI: 10.1080/22221751.2022.2160661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sheng Lin
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Dan Yue
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Fanli Yang
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Zimin Chen
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Bin He
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yu Cao
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People’s Republic of China,Disaster Medicine Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Haohao Dong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Jian Li
- School of Basic Medical Sciences, Chengdu University, Chengdu, People’s Republic of China
| | - Qi Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu, People’s Republic of China
| | - Guangwen Lu
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People’s Republic of China, Guangwen Lu West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan610041, People’s Republic of China
| |
Collapse
|
4
|
Yang F, Lin S, Chen Z, Yue D, Yang M, He B, Cao Y, Dong H, Li J, Zhao Q, Lu G. Structural basis of poxvirus A16/G9 binding for sub-complex formation. Emerg Microbes Infect 2023; 12:2179351. [PMID: 36757688 PMCID: PMC9980159 DOI: 10.1080/22221751.2023.2179351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Fanli Yang
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Sheng Lin
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Zimin Chen
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Dan Yue
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Ming Yang
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Bin He
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yu Cao
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People’s Republic of China,Disaster Medicine Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Haohao Dong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Jian Li
- School of Basic Medical Sciences, Chengdu University, Chengdu, People’s Republic of China
| | - Qi Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu, People’s Republic of China
| | - Guangwen Lu
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People’s Republic of China, Guangwen Lu West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan610041, People’s Republic of China
| |
Collapse
|
5
|
Kao CF, Tsai MH, Carillo KJ, Tzou DL, Chang W. Structural and functional analysis of vaccinia viral fusion complex component protein A28 through NMR and molecular dynamic simulations. PLoS Pathog 2023; 19:e1011500. [PMID: 37948471 PMCID: PMC10664964 DOI: 10.1371/journal.ppat.1011500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/22/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Host cell entry of vaccinia virus (a poxvirus) proceeds through multiple steps that involve many viral proteins to mediate cell infection. Upon binding to cells, vaccinia virus membrane fuses with host membranes via a viral entry fusion protein complex comprising 11 proteins: A16, A21, A28, F9, G3, G9, H2, J5, L1, L5 and O3. Despite vaccinia virus having two infectious forms, mature and enveloped, that have different membrane layers, both forms require an identical viral entry fusion complex for membrane fusion. Components of the poxvirus entry fusion complex that have been structurally assessed to date share no known homology with all other type I, II and III viral fusion proteins, and the large number of fusion protein components renders it a unique system to investigate poxvirus-mediated membrane fusion. Here, we determined the NMR structure of a truncated version of vaccinia A28 protein. We also expressed a soluble H2 protein and showed that A28 interacts with H2 protein at a 1:1 ratio in vitro. Furthermore, we performed extensive in vitro alanine mutagenesis to identify A28 protein residues that are critical for H2 binding, entry fusion complex formation, and virus-mediated membrane fusion. Finally, we used molecular dynamic simulations to model full-length A28-H2 subcomplex in membranes. In summary, we characterized vaccinia virus A28 protein and determined residues important in its interaction with H2 protein and membrane components. We also provide a structural model of the A28-H2 protein interaction to illustrate how it forms a 1:1 subcomplex on a modeled membrane.
Collapse
Affiliation(s)
- Chi-Fei Kao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Min-Hsin Tsai
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | | | - Der-Lii Tzou
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Wen Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
6
|
Tang X, Xie Y, Li G, Niyazbekova Z, Li S, Chang J, Chen D, Ma W. ORFV entry into host cells via clathrin-mediated endocytosis and macropinocytosis. Vet Microbiol 2023; 284:109831. [PMID: 37480660 DOI: 10.1016/j.vetmic.2023.109831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Orf virus (ORFV), also known as infectious pustular virus, leads to an acute contagious zoonotic infectious disease. ORFV can directly contact and infect epithelial cells of skin and mucosa, causing damage to tissue cells. So far, the pathway of ORFV entry into cells is unclear. Therefore, finding the internalization pathway of ORFV will help to elucidate the cellular and molecular mechanisms of ORFV infection and invasion, which in turn will provide a certain reference for the prevention and treatment of ORFV. In the present study, chemical inhibitors were used to analyze the mechanism of ORFV entry into target cells. The results showed that the inhibitor of clathrin-mediated endocytosis could inhibit ORFV entry into cells. However, the inhibitor of caveolae-mediated endocytosis cannot inhibit ORFV entry into cells. In addition, inhibition of macropinocytosis pathway also significantly reduced ORFV internalization. Furthermore, the inhibitors of acidification and dynamin also prevented ORFV entry. However, results demonstrated that inhibitors inhibited ORFV entry but did not inhibit ORFV binding. Notably, extracellular trypsin promoted ORFV entry into cells directly, even when the endocytic pathway was inhibited. In conclusion, ORFV enters into its target cells by clathrin-mediated endocytosis and macropinocytosis, while caveolae-dependent endocytosis has little effects on this process. In addition, the entry into target cells by ORFV required an acid environment and the effect of dynamin. Meanwhile, we emphasize that broad-spectrum antiviral inhibitors and extracellular enzyme inhibitors are likely to be effective strategies for the prevention and treatment of ORFV infection.
Collapse
Affiliation(s)
- Xidian Tang
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China
| | - Yanfei Xie
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China
| | - Guanhua Li
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China
| | - Zhannur Niyazbekova
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China
| | - Shaofei Li
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China
| | - Jianjun Chang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai Province, China; College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, Qinghai Province, China
| | - Dekun Chen
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China.
| | - Wentao Ma
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China.
| |
Collapse
|
7
|
Widespread Distribution and Evolution of Poxviral Entry-Fusion Complex Proteins in Giant Viruses. Microbiol Spectr 2023:e0494422. [PMID: 36912656 PMCID: PMC10100723 DOI: 10.1128/spectrum.04944-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Poxviruses are known to encode a set of proteins that form an entry-fusion complex (EFC) to mediate virus entry. However, the diversity, evolution, and origin of these EFC proteins remain poorly understood. Here, we identify the EFC protein homologs in poxviruses and other giant viruses of the phylum Nucleocytoviricota. The 11 EFC genes are present in almost all poxviruses, with the two smallest, G3 and O3, being absent in Entomopoxvirinae and basal lineages of Chordopoxvirinae. Five of the EFC genes are further grouped into two families, A16/G9/J5 and F9/L1, which are widely distributed across other major lineages of Nucleocytoviricota, including metagenome-assembled genomes, but are generally absent in viruses infecting algae or nonamoebozoan heterotrophic protists. The A16/G9/J5 and F9/L1 families cooccur, mostly as single copies, in 93% of the non-Poxviridae giant viruses that have at least one of them. Distribution and phylogenetic patterns suggest that both families originated in the ancestor of Nucleocytoviricota. In addition to the Poxviridae genes, homologs from each of the other Nucleocytoviricota families are largely clustered together, suggesting their ancient presence and vertical inheritance. Despite deep sequence divergences, we observed noticeable conservation of cysteine residues and predicted structures between EFC proteins of Poxviridae and other families. Overall, our study reveals widespread distribution of these EFC protein homologs beyond poxviruses, implies the existence of a conserved membrane fusion mechanism, and sheds light on host range and ancient evolution of Nucleocytoviricota. IMPORTANCE Fusion between virus and host membranes is critical for viruses to release genetic materials and to initiate infection. Whereas most viruses use a single protein for membrane fusion, poxviruses employ a multiprotein entry-fusion complex (EFC). We report that two major families of the EFC proteins are widely distributed within the virus phylum Nucleocytoviricota, which includes poxviruses and other double-stranded (dsDNA) giant viruses that infect animals, amoebozoans, algae, and various microbial eukaryotes. Each of these two protein families is structurally conserved, traces its origin to the root of Nucleocytoviricota, was passed down to the major subclades of Nucleocytoviricota, and is retained in most giant viruses known to infect animals and amoebozoans. The EFC proteins therefore represent a potential mechanism for virus entry in diverse giant viruses. We hypothesize that they may have facilitated the infection of an animal/amoebozoan-like host by the last Nucleocytoviricota common ancestor.
Collapse
|
8
|
Matía A, Lorenzo MM, Romero-Estremera YC, Sánchez-Puig JM, Zaballos A, Blasco R. Identification of β2 microglobulin, the product of B2M gene, as a Host Factor for Vaccinia Virus Infection by Genome-Wide CRISPR genetic screens. PLoS Pathog 2022; 18:e1010800. [PMID: 36574441 PMCID: PMC9829182 DOI: 10.1371/journal.ppat.1010800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/09/2023] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Genome-wide genetic screens are powerful tools to identify genes that act as host factors of viruses. We have applied this technique to analyze the infection of HeLa cells by Vaccinia virus, in an attempt to find genes necessary for infection. Infection of cell populations harboring single gene inactivations resulted in no surviving cells, suggesting that no single gene knock-out was able to provide complete resistance to Vaccinia virus and thus allow cells to survive infection. In the absence of an absolute infection blockage, we explored if some gene inactivations could provide partial protection leading to a reduced probability of infection. Multiple experiments using modified screening procedures involving replication restricted viruses led to the identification of multiple genes whose inactivation potentially increase resistance to infection and therefore cell survival. As expected, significant gene hits were related to proteins known to act in virus entry, such as ITGB1 and AXL as well as genes belonging to their downstream related pathways. Additionally, we consistently found β2-microglobulin, encoded by the B2M gene, among the screening top hits, a novel finding that was further explored. Inactivation of B2M resulted in 54% and 91% reduced VV infection efficiency in HeLa and HAP1 cell lines respectively. In the absence of B2M, while virus binding to the cells was unaffected, virus internalization and early gene expression were significantly diminished. These results point to β2-microglobulin as a relevant factor in the Vaccinia virus entry process.
Collapse
Affiliation(s)
- Alejandro Matía
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria–Consejo Superior de Investigaciones Científicas (INIA–CSIC), Madrid, Spain
| | - Maria M. Lorenzo
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria–Consejo Superior de Investigaciones Científicas (INIA–CSIC), Madrid, Spain
| | - Yolimar C. Romero-Estremera
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria–Consejo Superior de Investigaciones Científicas (INIA–CSIC), Madrid, Spain
| | - Juana M. Sánchez-Puig
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria–Consejo Superior de Investigaciones Científicas (INIA–CSIC), Madrid, Spain
| | - Angel Zaballos
- Unidad de Genómica, Centro Nacional de Microbiología-ISCIII, Madrid, Spain
| | - Rafael Blasco
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria–Consejo Superior de Investigaciones Científicas (INIA–CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
9
|
Gong Q, Wang C, Chuai X, Chiu S. Monkeypox virus: a re-emergent threat to humans. Virol Sin 2022; 37:477-482. [PMID: 35820590 PMCID: PMC9437600 DOI: 10.1016/j.virs.2022.07.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/05/2022] [Indexed: 12/17/2022] Open
Abstract
Human monkeypox (MPX) is a rare zoonotic infection characterized by smallpox-like signs and symptoms. It is caused by monkeypox virus (MPXV), a double stranded DNA virus belonging to the genus Orthopoxvirus. MPX was first identified in 1970 and mostly prevailed in the rural rainforests of Central and West Africa in the past. Outside Africa, MPX was reported in the United Kingdom, the USA, Israel, and Singapore. In 2022, the resurgence of MPX in Europe and elsewhere posed a potential threat to humans. MPXV was transmitted by the animals-human or human-human pathway, and the symptoms of MPXV infection are similar to that of smallpox, but in a milder form and with lower mortality (1%-10%). Although the smallpox vaccination has been shown to provide 85% protection against MPXV infection, and two anti-smallpox virus drugs have been approved to treat MPXV, there are still no specific vaccines and drugs against MPXV infection. Therefore it is urgent to take active measures including the adoption of novel anti-MPXV strategies to control the spread of MPXV and prevent MPX epidemic. In this review, we summarize the biological features, epidemiology, pathogenicity, laboratory diagnosis, and prevention and treatment strategies on MPXV. This review provides the basic knowledge for prevention and control of future outbreaks of this emerging infection.
Collapse
Affiliation(s)
- Qizan Gong
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Changle Wang
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Xia Chuai
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
10
|
Insights into the Organization of the Poxvirus Multicomponent Entry-Fusion Complex from Proximity Analyses in Living Infected Cells. J Virol 2021; 95:e0085221. [PMID: 34076488 DOI: 10.1128/jvi.00852-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poxviruses are exceptional in having a complex entry-fusion complex (EFC) that is comprised of 11 conserved proteins embedded in the membrane of mature virions. However, the detailed architecture is unknown and only a few bimolecular protein interactions have been demonstrated by coimmunoprecipitation from detergent-treated lysates and by cross-linking. Here, we adapted the tripartite split green fluorescent protein (GFP) complementation system in order to analyze EFC protein contacts within living cells. This system employs a detector fragment called GFP1-9 comprised of nine GFP β-strands. To achieve fluorescence, two additional 20-amino-acid fragments called GFP10 and GFP11 attached to interacting proteins are needed, providing the basis for identification of the latter. We constructed a novel recombinant vaccinia virus (VACV-GFP1-9) expressing GFP1-9 under a viral early/late promoter and plasmids with VACV late promoters regulating each of the EFC proteins with GFP10 or GFP11 attached to their ectodomains. GFP fluorescence was detected by confocal microscopy at sites of virion assembly in cells infected with VACV-GFP1-9 and cotransfected with plasmids expressing one EFC-GFP10 and one EFC-GFP11 interacting protein. Flow cytometry provided a quantitative way to determine the interaction of each EFC-GFP10 protein with every other EFC-GFP11 protein in the context of a normal infection in which all viral proteins are synthesized and assembled. Previous EFC protein interactions were confirmed, and new ones were discovered and corroborated by additional methods. Most remarkable was the finding that the small, hydrophobic O3 protein interacted with each of the other EFC proteins. IMPORTANCE Poxviruses are enveloped viruses with a DNA-containing core that enters cells following fusion of viral and host membranes. This essential step is a target for vaccines and therapeutics. The entry-fusion complex (EFC) of poxviruses is unusually complex and comprised of 11 conserved viral proteins. Determination of the structure of the EFC is a prerequisite for understanding the fusion mechanism. Here, we used a tripartite split green fluorescent protein assay to determine the proximity of individual EFC proteins in living cells. A network connecting components of the EFC was derived.
Collapse
|
11
|
Wu D, Lou YC, Chang W, Tzou DLM. NMR assignments of vaccinia virus protein A28: an entry-fusion complex component. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:117-120. [PMID: 33398629 DOI: 10.1007/s12104-020-09993-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Vaccinia virus (VACV) belonging to the poxvirus family enters the host cell via two different entry pathways; either endocytosis or virus/host cell membrane fusion. With respect to the virus/host cell membrane fusion, there are eleven viral membrane proteins forming a complicated entry-fusion complex (EFC), including A28, A21, A16, F9, G9, G3, H2, J5, L5, L1 and O3, to conduct the fusion function. These EFC components are highly conserved in all poxviruses and each of them is essential and necessary for the fusion activity. So far, with the exceptions of L1 and F9 whose crystal structures were reported, the structural information about other EFC components remains largely unclear. We aim to conduct a structural and functional investigation of VACV virus-entry membrane protein A28. In this work, we expressed and purified a truncated form of A28 (14 kDa; residues 38-146, abbreviated as tA28 hereinafter), with deletion of its transmembrane domain (residues 1-22) and a hydrophobic segment (residues 23-37). And the assignments of its backbone and side chain 1H, 13C and 15N chemical shifts of tA28 are reported. The secondary structure propensity from TALOS+ indicates that tA28 does contain three α-helices, six β-strands and connecting loops. Aside from this, we demonstrated that tA28 does interact with fusion suppressor viral protein A26 (residues 351-500) by the 1H-15N HSQC spectrum. We interpret that A28 binding to A26 deactivates EFC fusion activity. The current study provides a valuable framework towards further structural analyses of this protein and for better understanding virus/host cell membrane fusion mechanism in association with virus entry.
Collapse
Affiliation(s)
- Danni Wu
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, 11529, Taiwan, ROC
| | - Yuan-Chao Lou
- Biomedical Translation Research Center, Academia Sinica, Nankang, Taipei, 11529, Taiwan, ROC
| | - Wen Chang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan, ROC
| | - Der-Lii M Tzou
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, 11529, Taiwan, ROC.
- Biomedical Translation Research Center, Academia Sinica, Nankang, Taipei, 11529, Taiwan, ROC.
| |
Collapse
|
12
|
Mutations Near the N Terminus of Vaccinia Virus G9 Protein Overcome Restrictions on Cell Entry and Syncytium Formation Imposed by the A56/K2 Fusion Regulatory Complex. J Virol 2020; 94:JVI.00077-20. [PMID: 32132239 DOI: 10.1128/jvi.00077-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/25/2020] [Indexed: 11/20/2022] Open
Abstract
The entry/fusion complex (EFC) consists of 11 conserved proteins embedded in the membrane envelope of mature poxvirus particles. Poxviruses also encode proteins that localize in cell membranes and negatively regulate superinfection and syncytium formation. The vaccinia virus (VACV) A56/K2 fusion regulatory complex associates with the G9/A16 EFC subcomplex, but functional support for the importance of this interaction was lacking. Here, we describe serially passaging VACV in nonpermissive cells expressing A56/K2 as an unbiased approach to isolate and analyze escape mutants. Viruses forming large plaques in A56/K2 cells increased in successive rounds of infection, indicating the occurrence and enrichment of adaptive mutations. Sequencing of genomes of passaged and cloned viruses revealed mutations near the N terminus of the G9 open reading frame but none in A16 or other genes. The most frequent mutation was His to Tyr at amino acid 44; additional escape mutants had a His-to-Arg mutation at amino acid 44 or a duplication of amino acids 26 to 39. An adaptive Tyr-to-Cys substitution at amino acid 42 was discovered using error-prone PCR to generate additional mutations. Myristoylation of G9 was unaffected by the near-N-terminal mutations. The roles of the G9 mutations in enhancing plaque size were validated by homologous recombination. The mutants exhibited enhanced entry and spread in A56/K2 cells and induced syncytia at neutral pH in HeLa cells despite the expression of A56/K2. The data suggest that the mutations perturb the interaction of G9 with A56/K2, although some association was still detected in detergent-treated infected cell lysates.IMPORTANCE The entry of enveloped viruses is achieved by the fusion of viral and cellular membranes, a critical step in infection that determines host range and provides targets for vaccines and therapeutics. Poxviruses encode an exceptionally large number of proteins comprising the entry/fusion complex (EFC), which enables infection of diverse cells. Vaccinia virus (VACV), the prototype member of the poxvirus family, also encodes the fusion regulatory proteins A56 and K2, which are displayed on the plasma membrane and may be beneficial by preventing reinfection and cell-cell fusion. Previous studies showed that A56/K2 interacts with the G9/A16 EFC subcomplex in detergent-treated cell extracts. Functional evidence for the importance of this interaction was obtained by serially passaging wild-type VACV in cells that are nonpermissive because of A56/K2 expression. VACV mutants with amino acid substitutions or duplications near the N terminus of G9 were enriched because of their ability to overcome the block to entry imposed by A56/K2.
Collapse
|
13
|
Experimental Evolution To Isolate Vaccinia Virus Adaptive G9 Mutants That Overcome Membrane Fusion Inhibition via the Vaccinia Virus A56/K2 Protein Complex. J Virol 2020; 94:JVI.00093-20. [PMID: 32132237 DOI: 10.1128/jvi.00093-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/28/2020] [Indexed: 11/20/2022] Open
Abstract
For cell entry, vaccinia virus requires fusion with the host membrane via a viral fusion complex of 11 proteins, but the mechanism remains unclear. It was shown previously that the viral proteins A56 and K2 are expressed on infected cells to prevent superinfection by extracellular vaccinia virus through binding to two components of the viral fusion complex (G9 and A16), thereby inhibiting membrane fusion. To investigate how the A56/K2 complex inhibits membrane fusion, we performed experimental evolutionary analyses by repeatedly passaging vaccinia virus in HeLa cells overexpressing the A56 and K2 proteins to isolate adaptive mutant viruses. Genome sequencing of adaptive mutants revealed that they had accumulated a unique G9R open reading frame (ORF) mutation, resulting in a single His44Tyr amino acid change. We engineered a recombinant vaccinia virus to express the G9H44Y mutant protein, and it readily infected HeLa-A56/K2 cells. Moreover, similar to the ΔA56 virus, the G9H44Y mutant virus on HeLa cells had a cell fusion phenotype, indicating that G9H44Y-mediated membrane fusion was less prone to inhibition by A56/K2. Coimmunoprecipitation experiments demonstrated that the G9H44Y protein bound to A56/K2 at neutral pH, suggesting that the H44Y mutation did not eliminate the binding of G9 to A56/K2. Interestingly, upon acid treatment to inactivate A56/K2-mediated fusion inhibition, the G9H44Y mutant virus induced robust cell-cell fusion at pH 6, unlike the pH 4.7 required for control and revertant vaccinia viruses. Thus, A56/K2 fusion suppression mainly targets the G9 protein. Moreover, the G9H44Y mutant protein escapes A56/K2-mediated membrane fusion inhibition most likely because it mimics an acid-induced intermediate conformation more prone to membrane fusion.IMPORTANCE It remains unclear how the multiprotein entry fusion complex of vaccinia virus mediates membrane fusion. Moreover, vaccinia virus contains fusion suppressor proteins to prevent the aberrant activation of this multiprotein complex. Here, we used experimental evolution to identify adaptive mutant viruses that overcome membrane fusion inhibition mediated by the A56/K2 protein complex. We show that the H44Y mutation of the G9 protein is sufficient to overcome A56/K2-mediated membrane fusion inhibition. Treatment of virus-infected cells at different pHs indicated that the H44Y mutation lowers the threshold of fusion inhibition by A56/K2. Our study provides evidence that A56/K2 inhibits the viral fusion complex via the latter's G9 subcomponent. Although the G9H44Y mutant protein still binds to A56/K2 at neutral pH, it is less dependent on low pH for fusion activation, implying that it may adopt a subtle conformational change that mimics a structural intermediate induced by low pH.
Collapse
|
14
|
Chang HW, Yang CH, Luo YC, Su BG, Cheng HY, Tung SY, Carillo KJD, Liao YT, Tzou DLM, Wang HC, Chang W. Vaccinia viral A26 protein is a fusion suppressor of mature virus and triggers membrane fusion through conformational change at low pH. PLoS Pathog 2019; 15:e1007826. [PMID: 31220181 PMCID: PMC6605681 DOI: 10.1371/journal.ppat.1007826] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/02/2019] [Accepted: 05/07/2019] [Indexed: 11/24/2022] Open
Abstract
Vaccinia mature virus requires A26 envelope protein to mediate acid-dependent endocytosis into HeLa cells in which we hypothesized that A26 protein functions as an acid-sensitive membrane fusion suppressor. Here, we provide evidence showing that N-terminal domain (aa1-75) of A26 protein is an acid-sensitive region that regulates membrane fusion. Crystal structure of A26 protein revealed that His48 and His53 are in close contact with Lys47, Arg57, His314 and Arg312, suggesting that at low pH these His-cation pairs could initiate conformational changes through protonation of His48 and His53 and subsequent electrostatic repulsion. All the A26 mutant mature viruses that interrupted His-cation pair interactions of His48 and His 53 indeed have lost virion infectivity. Isolation of revertant viruses revealed that second site mutations caused frame shifts and premature termination of A26 protein such that reverent viruses regained cell entry through plasma membrane fusion. Together, we conclude that viral A26 protein functions as an acid-sensitive fusion suppressor during vaccinia mature virus endocytosis. Vaccinia virus is a complex large DNA virus with a large number of viral membrane proteins to facilitate cell entry. Although it is well established that vaccinia mature virus uses endocytosis to enter cells, it remains unclear how it triggers membrane fusion in the acidic environment of endosomes. Recently, we hypothesized that A26 protein in vaccinia mature virus functions as an acid-sensitive membrane fusion suppressor, which suggests a novel viral regulation not present in other enveloped viruses. We postulated that conformational changes of A26 protein at low pH result in de-repression of viral fusion complex activity to trigger viral and endosomal membrane fusion. Here, we provide structural, biochemical and biological evidence demonstrating that vaccinia A26 protein does indeed function as an acid-sensitive fusion suppressor protein to regulate vaccinia mature virus membrane fusion during endocytosis. Our data reveal an important and unique “checkpoint” for vaccinia mature virus endocytosis that has not been described for other viruses. Furthermore, by isolating adaptive vaccinia mutants that escaped endocytic blockage, we discovered that mutations within the A26L gene serve as an effective strategy for switching the viral infection route from endocytosis to plasma membrane fusion, expanding viral host range.
Collapse
Affiliation(s)
- Hung-Wei Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Cheng-Han Yang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chun Luo
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Bo-Gang Su
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Huei-Yin Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Yun Tung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Kathleen Joyce D. Carillo
- Sustainable Chemical Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Yi-Ting Liao
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taiwan
| | - Der-Lii M. Tzou
- Sustainable Chemical Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Applied Chemistry, National Chia-Yi University, Chia-Yi, Taiwan
| | - Hao-Ching Wang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taiwan
- * E-mail: (HCW); (WC)
| | - Wen Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- * E-mail: (HCW); (WC)
| |
Collapse
|
15
|
Mirzakhanyan Y, Gershon P. The Vaccinia virion: Filling the gap between atomic and ultrastructure. PLoS Pathog 2019; 15:e1007508. [PMID: 30615658 PMCID: PMC6336343 DOI: 10.1371/journal.ppat.1007508] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/17/2019] [Accepted: 12/06/2018] [Indexed: 01/19/2023] Open
Abstract
We have investigated the molecular-level structure of the Vaccinia virion in situ by protein-protein chemical crosslinking, identifying 4609 unique-mass crosslink ions at an effective FDR of 0.33%, covering 2534 unique pairs of crosslinked protein positions, 625 of which were inter-protein. The data were statistically non-random and rational in the context of known structures, and showed biological rationality. Crosslink density strongly tracked the individual proteolytic maturation products of p4a and p4b, the two major virion structural proteins, and supported the prediction of transmembrane domains within membrane proteins. A clear sub-network of four virion structural proteins provided structural insights into the virion core wall, and proteins VP8 and A12 formed a strongly-detected crosslinked pair with an apparent structural role. A strongly-detected sub-network of membrane proteins A17, H3, A27 and A26 represented an apparent interface of the early-forming virion envelope with structures added later during virion morphogenesis. Protein H3 seemed to be the central hub not only for this sub-network but also for an 'attachment protein' sub-network comprising membrane proteins H3, ATI, CAHH(D8), A26, A27 and G9. Crosslinking data lent support to a number of known interactions and interactions within known complexes. Evidence is provided for the membrane targeting of genome telomeres. In covering several orders of magnitude in protein abundance, this study may have come close to the bottom of the protein-protein crosslinkome of an intact organism, namely a complex animal virus.
Collapse
Affiliation(s)
- Yeva Mirzakhanyan
- Department of Molecular Biology & Biochemistry, UC-Irvine, Irvine, California, United States of America
| | - Paul Gershon
- Department of Molecular Biology & Biochemistry, UC-Irvine, Irvine, California, United States of America
| |
Collapse
|
16
|
Sobhy H. A comparative review of viral entry and attachment during large and giant dsDNA virus infections. Arch Virol 2017; 162:3567-3585. [PMID: 28866775 PMCID: PMC5671522 DOI: 10.1007/s00705-017-3497-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022]
Abstract
Viruses enter host cells via several mechanisms, including endocytosis, macropinocytosis, and phagocytosis. They can also fuse at the plasma membrane and can spread within the host via cell-to-cell fusion or syncytia. The mechanism used by a given viral strain depends on its external topology and proteome and the type of cell being entered. This comparative review discusses the cellular attachment receptors and entry pathways of dsDNA viruses belonging to the families Adenoviridae, Baculoviridae, Herpesviridae and nucleocytoplasmic large DNA viruses (NCLDVs) belonging to the families Ascoviridae, Asfarviridae, Iridoviridae, Phycodnaviridae, and Poxviridae, and giant viruses belonging to the families Mimiviridae and Marseilleviridae as well as the proposed families Pandoraviridae and Pithoviridae. Although these viruses have several common features (e.g., topology, replication and protein sequence similarities) they utilize different entry pathways to infect wide-range of hosts, including humans, other mammals, invertebrates, fish, protozoa and algae. Similarities and differences between the entry methods used by these virus families are highlighted, with particular emphasis on viral topology and proteins that mediate viral attachment and entry. Cell types that are frequently used to study viral entry are also reviewed, along with other factors that affect virus-host cell interactions.
Collapse
Affiliation(s)
- Haitham Sobhy
- Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
17
|
Differential Innate Immune Signaling in Macrophages by Wild-Type Vaccinia Mature Virus and a Mutant Virus with a Deletion of the A26 Protein. J Virol 2017; 91:JVI.00767-17. [PMID: 28659486 DOI: 10.1128/jvi.00767-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/23/2017] [Indexed: 12/13/2022] Open
Abstract
The Western Reserve (WR) strain of mature vaccinia virus contains an A26 envelope protein that mediates virus binding to cell surface laminin and subsequent endocytic entry into HeLa cells. Removal of the A26 protein from the WR strain mature virus generates a mutant, WRΔA26, that enters HeLa cells through plasma membrane fusion. Here, we infected murine bone marrow-derived macrophages (BMDM) with wild-type strain WR and the WRΔA26 mutant and analyzed viral gene expression and cellular innate immune signaling. In contrast to previous studies, in which both HeLa cells infected with WR and HeLa cells infected with WRΔA26 expressed abundant viral late proteins, we found that WR expressed much less viral late protein than WRΔA26 in BMDM. Microarray analysis of the cellular transcripts in BMDM induced by virus infection revealed that WR preferentially activated type 1 interferon receptor (IFNAR)-dependent signaling but WRΔA26 did not. We consistently detected a higher level of soluble beta interferon secretion and phosphorylation of the STAT1 protein in BMDM infected with WR than in BMDM infected with WRΔA26. When IFNAR-knockout BMDM were infected with WR, late viral protein expression increased, confirming that IFNAR-dependent signaling was differentially induced by WR and, in turn, restricted viral late gene expression. Finally, wild-type C57BL/6 mice were more susceptible to mortality from WRΔA26 infection than to that from WR infection, whereas IFNAR-knockout mice were equally susceptible to WR and WRΔA26 infection, demonstrating that the ability of WRΔA26 to evade IFNAR signaling has an important influence on viral pathogenesis in vivoIMPORTANCE The vaccinia virus A26 protein was previously shown to mediate virus attachment and to regulate viral endocytosis. Here, we show that infection with strain WR induces a robust innate immune response that activates type 1 interferon receptor (IFNAR)-dependent cellular genes in BMDM, whereas infection with the WRΔA26 mutant does not. We further demonstrated that the differential activation of IFNAR-dependent cellular signaling between WR and WRΔA26 not only is important for differential host restriction in BMDM but also is important for viral virulence in vivo Our study reveals a new property of WRΔA26, which is in regulating host antiviral innate immunity in vitro and in vivo.
Collapse
|
18
|
Moss B. Membrane fusion during poxvirus entry. Semin Cell Dev Biol 2016; 60:89-96. [PMID: 27423915 DOI: 10.1016/j.semcdb.2016.07.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 12/23/2022]
Abstract
Poxviruses comprise a large family of enveloped DNA viruses that infect vertebrates and invertebrates. Poxviruses, unlike most DNA viruses, replicate in the cytoplasm and encode enzymes and other proteins that enable entry, gene expression, genome replication, virion assembly and resistance to host defenses. Entry of vaccinia virus, the prototype member of the family, can occur at the plasma membrane or following endocytosis. Whereas many viruses encode one or two proteins for attachment and membrane fusion, vaccinia virus encodes four proteins for attachment and eleven more for membrane fusion and core entry. The entry-fusion proteins are conserved in all poxviruses and form a complex, known as the Entry Fusion Complex (EFC), which is embedded in the membrane of the mature virion. An additional membrane that encloses the mature virion and is discarded prior to entry is present on an extracellular form of the virus. The EFC is held together by multiple interactions that depend on nine of the eleven proteins. The entry process can be divided into attachment, hemifusion and core entry. All eleven EFC proteins are required for core entry and at least eight for hemifusion. To mediate fusion the virus particle is activated by low pH, which removes one or more fusion repressors that interact with EFC components. Additional EFC-interacting fusion repressors insert into cell membranes and prevent secondary infection. The absence of detailed structural information, except for two attachment proteins and one EFC protein, is delaying efforts to determine the fusion mechanism.
Collapse
Affiliation(s)
- Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
Jefferson A, Cadet VE, Hielscher A. The mechanisms of genetically modified vaccinia viruses for the treatment of cancer. Crit Rev Oncol Hematol 2015; 95:407-16. [PMID: 25900073 DOI: 10.1016/j.critrevonc.2015.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/18/2014] [Accepted: 04/02/2015] [Indexed: 02/06/2023] Open
Abstract
The use of oncolytic viruses for the treatment of cancer is an emerging field of cancer research and therapy. Oncolytic viruses are designed to induce tumor specific immunity while replicating selectively within cancer cells to cause lysis of the tumor cells. While there are several forms of oncolytic viruses, the use of vaccinia viruses for oncolysis may be more beneficial than other forms of oncolytic viruses. For example, vaccinia viruses have been shown to exert their anti-tumor effects through genetic engineering strategies which enhance their therapeutic efficacy. This paper will address some of the most common forms of genetically modified vaccinia viruses and will explore the mechanisms whereby they selectively target, enter and destroy cancer cells. Furthermore, this review will highlight how vaccinia viruses activate host immune responses against cancer cells and will address clinical trials evaluating the tumor-directed and killing efficacy of these viruses against solid tumors.
Collapse
Affiliation(s)
- Artrish Jefferson
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, United States
| | - Valerie E Cadet
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, United States
| | - Abigail Hielscher
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, United States.
| |
Collapse
|
20
|
Liu L, Cooper T, Howley PM, Hayball JD. From crescent to mature virion: vaccinia virus assembly and maturation. Viruses 2014; 6:3787-808. [PMID: 25296112 PMCID: PMC4213562 DOI: 10.3390/v6103787] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/29/2014] [Accepted: 10/02/2014] [Indexed: 01/22/2023] Open
Abstract
Vaccinia virus (VACV) has achieved unprecedented success as a live viral vaccine for smallpox which mitigated eradication of the disease. Vaccinia virus has a complex virion morphology and recent advances have been made to answer some of the key outstanding questions, in particular, the origin and biogenesis of the virion membrane, the transformation from immature virion (IV) to mature virus (MV), and the role of several novel genes, which were previously uncharacterized, but have now been shown to be essential for VACV virion formation. This new knowledge will undoubtedly contribute to the rational design of safe, immunogenic vaccine candidates, or effective antivirals in the future. This review endeavors to provide an update on our current knowledge of the VACV maturation processes with a specific focus on the initiation of VACV replication through to the formation of mature virions.
Collapse
Affiliation(s)
- Liang Liu
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute, Adelaide, 5000, SA, Australia.
| | - Tamara Cooper
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute, Adelaide, 5000, SA, Australia.
| | - Paul M Howley
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute, Adelaide, 5000, SA, Australia.
| | - John D Hayball
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute, Adelaide, 5000, SA, Australia.
| |
Collapse
|
21
|
Kastenmayer RJ, Maruri-Avidal L, Americo JL, Earl PL, Weisberg AS, Moss B. Elimination of A-type inclusion formation enhances cowpox virus replication in mice: implications for orthopoxvirus evolution. Virology 2014; 452-453:59-66. [PMID: 24606683 PMCID: PMC3962674 DOI: 10.1016/j.virol.2013.12.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/04/2013] [Accepted: 12/23/2013] [Indexed: 11/17/2022]
Abstract
Some orthopoxviruses including cowpox virus embed virus particles in dense bodies, comprised of the A-type inclusion (ATI) protein, which may provide long-term environmental protection. This strategy could be beneficial if the host population is sparse or spread is inefficient or indirect. However, the formation of ATI may be neutral or disadvantageous for orthopoxviruses that rely on direct respiratory spread. Disrupted ATI open reading frames in orthopoxviruses such as variola virus, the agent of smallpox, and monkeypox virus suggests that loss of this feature provided positive selection. To test this hypothesis, we constructed cowpox virus mutants with deletion of the ATI gene or another gene required for embedding virions. The ATI deletion mutant caused greater weight loss and higher replication in the respiratory tract than control viruses, supporting our hypothesis. Deletion of the gene for embedding virions had a lesser effect, possibly due to known additional functions of the encoded protein.
Collapse
Affiliation(s)
- Robin J Kastenmayer
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, MSC 3210, Bethesda, MD 20892-3210, USA
| | - Liliana Maruri-Avidal
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, MSC 3210, Bethesda, MD 20892-3210, USA
| | - Jeffrey L Americo
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, MSC 3210, Bethesda, MD 20892-3210, USA
| | - Patricia L Earl
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, MSC 3210, Bethesda, MD 20892-3210, USA
| | - Andrea S Weisberg
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, MSC 3210, Bethesda, MD 20892-3210, USA
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, MSC 3210, Bethesda, MD 20892-3210, USA.
| |
Collapse
|
22
|
Wang DR, Hsiao JC, Wong CH, Li GC, Lin SC, Yu SSF, Chen W, Chang W, Tzou DLM. Vaccinia viral protein A27 is anchored to the viral membrane via a cooperative interaction with viral membrane protein A17. J Biol Chem 2014; 289:6639-6655. [PMID: 24451374 DOI: 10.1074/jbc.m114.547372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The vaccinia viral protein A27 in mature viruses specifically interacts with heparan sulfate for cell surface attachment. In addition, A27 associates with the viral membrane protein A17 to anchor to the viral membrane; however, the specific interaction between A27 and A17 remains largely unclear. To uncover the active binding sites and the underlying binding mechanism, we expressed and purified the N-terminal (18-50 residues) and C-terminal (162-203 residues) fragments of A17, which are denoted A17-N and A17-C. Through surface plasmon resonance, the binding affinity of A27/A17-N (KA = 3.40 × 10(8) m(-1)) was determined to be approximately 3 orders of magnitude stronger than that of A27/A17-C (KA = 3.40 × 10(5) m(-1)), indicating that A27 prefers to interact with A17-N rather than A17-C. Despite the disordered nature of A17-N, the A27-A17 interaction is mediated by a specific and cooperative binding mechanism that includes two active binding sites, namely (32)SFMPK(36) (denoted as F1 binding) and (20)LDKDLFTEEQ(29) (F2). Further analysis showed that F1 has stronger binding affinity and is more resistant to acidic conditions than is F2. Furthermore, A27 mutant proteins that retained partial activity to interact with the F1 and F2 sites of the A17 protein were packaged into mature virus particles at a reduced level, demonstrating that the F1/F2 interaction plays a critical role in vivo. Using these results in combination with site-directed mutagenesis data, we established a computer model to explain the specific A27-A17 binding mechanism.
Collapse
Affiliation(s)
- Da-Rong Wang
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529
| | - Jye-Chian Hsiao
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529
| | - Chien-Hsuan Wong
- Department of Applied Chemistry, National Chia-Yi University, Chia-Yi, 60004, Taiwan, Republic of China
| | - Guo-Chian Li
- Department of Applied Chemistry, National Chia-Yi University, Chia-Yi, 60004, Taiwan, Republic of China
| | - Su-Ching Lin
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529
| | - Steve S-F Yu
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529
| | - Wenlung Chen
- Department of Applied Chemistry, National Chia-Yi University, Chia-Yi, 60004, Taiwan, Republic of China
| | - Wen Chang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529
| | - Der-Lii M Tzou
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529.
| |
Collapse
|
23
|
Crystal structure of vaccinia viral A27 protein reveals a novel structure critical for its function and complex formation with A26 protein. PLoS Pathog 2013; 9:e1003563. [PMID: 23990784 PMCID: PMC3749956 DOI: 10.1371/journal.ppat.1003563] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 07/02/2013] [Indexed: 01/07/2023] Open
Abstract
Vaccinia virus envelope protein A27 has multiple functions and is conserved in the Orthopoxvirus genus of the poxvirus family. A27 protein binds to cell surface heparan sulfate, provides an anchor for A26 protein packaging into mature virions, and is essential for egress of mature virus (MV) from infected cells. Here, we crystallized and determined the structure of a truncated form of A27 containing amino acids 21-84, C71/72A (tA27) at 2.2 Å resolution. tA27 protein uses the N-terminal region interface (NTR) to form an unexpected trimeric assembly as the basic unit, which contains two parallel α-helices and one unusual antiparallel α-helix; in a serpentine way, two trimers stack with each other to form a hexamer using the C-terminal region interface (CTR). Recombinant tA27 protein forms oligomers in a concentration-dependent manner in vitro in gel filtration. Analytical ultracentrifugation and multi-angle light scattering revealed that tA27 dimerized in solution and that Leu47, Leu51, and Leu54 at the NTR and Ile68, Asn75, and Leu82 at the CTR are responsible for tA27 self-assembly in vitro. Finally, we constructed recombinant vaccinia viruses expressing full length mutant A27 protein defective in either NTR, CTR, or both interactions; the results demonstrated that wild type A27 dimer/trimer formation was impaired in NTR and CTR mutant viruses, resulting in small plaques that are defective in MV egress. Furthermore, the ability of A27 protein to form disulfide-linked protein complexes with A26 protein was partially or completely interrupted by NTR and CTR mutations, resulting in mature virion progeny with increased plasma membrane fusion activity upon cell entry. Together, these results demonstrate that A27 protein trimer structure is critical for MV egress and membrane fusion modulation. Because A27 is a neutralizing target, structural information will aid the development of inhibitors to block A27 self-assembly or complex formation against vaccinia virus infection.
Collapse
|
24
|
Bengali Z, Satheshkumar PS, Moss B. Orthopoxvirus species and strain differences in cell entry. Virology 2012; 433:506-12. [PMID: 22999097 PMCID: PMC3470877 DOI: 10.1016/j.virol.2012.08.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 08/22/2012] [Accepted: 08/28/2012] [Indexed: 11/16/2022]
Abstract
Vaccinia virus (VACV) enters cells by a low pH endosomal route or by direct fusion with the plasma membrane. We previously found differences in entry properties of several VACV strains: entry of WR was enhanced by low pH, reduced by bafilomycin A1 and relatively unaffected by heparin, whereas entry of IHD-J, Copenhagen and Elstree were oppositely affected. Since binding and entry modes may have been selected by specific conditions of in vitro propagation, we now examined the properties of three distinct, recently isolated cowpox viruses and a monkeypox virus as well as additional VACV and cowpox virus strains. The recent isolates were more similar to WR than to other VACV strains, underscoring the biological importance of endosomal entry by orthopoxviruses. Sequence comparisons, gene deletions and gene swapping experiments indicated that viral determinants, other than or in addition to the A26 and A25 "fusion-suppressor" proteins, impact entry properties.
Collapse
Affiliation(s)
- Zain Bengali
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3210, USA
| | | | | |
Collapse
|
25
|
Poxvirus cell entry: how many proteins does it take? Viruses 2012; 4:688-707. [PMID: 22754644 PMCID: PMC3386626 DOI: 10.3390/v4050688] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 04/21/2012] [Accepted: 04/23/2012] [Indexed: 11/30/2022] Open
Abstract
For many viruses, one or two proteins enable cell binding, membrane fusion and entry. The large number of proteins employed by poxviruses is unprecedented and may be related to their ability to infect a wide range of cells. There are two main infectious forms of vaccinia virus, the prototype poxvirus: the mature virion (MV), which has a single membrane, and the extracellular enveloped virion (EV), which has an additional outer membrane that is disrupted prior to fusion. Four viral proteins associated with the MV membrane facilitate attachment by binding to glycosaminoglycans or laminin on the cell surface, whereas EV attachment proteins have not yet been identified. Entry can occur at the plasma membrane or in acidified endosomes following macropinocytosis and involves actin dynamics and cell signaling. Regardless of the pathway or whether the MV or EV mediates infection, fusion is dependent on 11 to 12 non-glycosylated, transmembrane proteins ranging in size from 4- to 43-kDa that are associated in a complex. These proteins are conserved in poxviruses making it likely that a common entry mechanism exists. Biochemical studies support a two-step process in which lipid mixing of viral and cellular membranes is followed by pore expansion and core penetration.
Collapse
|