1
|
Schäfer TE, Knol LI, Haas FV, Hartley A, Pernickel SCS, Jády A, Finkbeiner MSC, Achberger J, Arelaki S, Modic Ž, Schröer K, Zhang W, Schmidt B, Schuster P, Haferkamp S, Doerner J, Gebauer F, Ackermann M, Kvasnicka HM, Kulkarni A, Bots STF, Kemp V, Hawinkels LJAC, Poetsch AR, Hoeben RC, Ehrhardt A, Marchini A, Ungerechts G, Ball CR, Engeland CE. Biomarker screen for efficacy of oncolytic virotherapy in patient-derived pancreatic cancer cultures. EBioMedicine 2024; 105:105219. [PMID: 38941955 PMCID: PMC11260584 DOI: 10.1016/j.ebiom.2024.105219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a tumour entity with unmet medical need. To assess the therapeutic potential of oncolytic virotherapy (OVT) against PDAC, different oncolytic viruses (OVs) are currently investigated in clinical trials. However, systematic comparisons of these different OVs in terms of efficacy against PDAC and biomarkers predicting therapeutic response are lacking. METHODS We screened fourteen patient-derived PDAC cultures which reflect the intra- and intertumoural heterogeneity of PDAC for their sensitivity to five clinically relevant OVs, namely serotype 5 adenovirus Ad5-hTERT, herpes virus T-VEC, measles vaccine strain MV-NIS, reovirus jin-3, and protoparvovirus H-1PV. Live cell analysis, quantification of viral genome/gene expression, cell viability as well as cytotoxicity assays and titration of viral progeny were conducted. Transcriptome profiling was employed to identify potential predictive biomarkers for response to OV treatment. FINDINGS Patient-derived PDAC cultures showed individual response patterns to OV treatment. Twelve of fourteen cultures were responsive to at least one OV, with no single OV proving superior or inferior across all cultures. Known host factors for distinct viruses were retrieved as potential biomarkers. Compared to the classical molecular subtype, the quasi-mesenchymal or basal-like subtype of PDAC was found to be more sensitive to H-1PV, jin-3, and T-VEC. Generally, expression of viral entry receptors did not correlate with sensitivity to OV treatment, with one exception: Expression of Galectin-1 (LGALS1), a factor involved in H-1PV entry, positively correlated with H-1PV induced cell killing. Rather, cellular pathways controlling immunological, metabolic and proliferative signaling appeared to determine outcome. For instance, high baseline expression of interferon-stimulated genes (ISGs) correlated with relative resistance to oncolytic measles virus, whereas low cyclic GMP-AMP synthase (cGAS) expression was associated with exceptional response. Combination treatment of MV-NIS with a cGAS inhibitor improved tumour cell killing in several PDAC cultures and cells overexpressing cGAS were found to be less sensitive to MV oncolysis. INTERPRETATION Considering the heterogeneity of PDAC and the complexity of biological therapies such as OVs, no single biomarker can explain the spectrum of response patterns. For selection of a particular OV, PDAC molecular subtype, ISG expression as well as activation of distinct signaling and metabolic pathways should be considered. Combination therapies can overcome resistance in specific constellations. Overall, oncolytic virotherapy is a viable treatment option for PDAC, which warrants further development. This study highlights the need for personalised treatment in OVT. By providing all primary data, this study provides a rich source and guidance for ongoing developments. FUNDING German National Science Foundation (Deutsche Forschungsgemeinschaft, DFG), German Cancer Aid (Deutsche Krebshilfe), German National Academic Scholarship Foundation (Studienstiftung des deutschen Volkes), Survival with Pancreatic Cancer Foundation.
Collapse
Affiliation(s)
- Theresa E Schäfer
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Lisanne I Knol
- Department for Translational Medical Oncology, National Center for Tumor Diseases Dresden (NCT/UCC), A Partnership Between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany; Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Ferdinand V Haas
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Anna Hartley
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center (DKFZ), Heidelberg, Germany; DNA Vector Laboratory, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sophie C S Pernickel
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Attila Jády
- Department for Translational Medical Oncology, National Center for Tumor Diseases Dresden (NCT/UCC), A Partnership Between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany; Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Maximiliane S C Finkbeiner
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Johannes Achberger
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany; Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stella Arelaki
- German Cancer Research Center (DKFZ) Heidelberg, Translational Functional Cancer Genomics, Germany
| | - Živa Modic
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katrin Schröer
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Wenli Zhang
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Barbara Schmidt
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany; Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Philipp Schuster
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Sebastian Haferkamp
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Johannes Doerner
- Department of Surgery, Helios University Hospital Wuppertal, Wuppertal, Germany
| | - Florian Gebauer
- Department of Surgery, Helios University Hospital Wuppertal, Wuppertal, Germany
| | - Maximilian Ackermann
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, Witten/Herdecke University, Witten, Germany; Institute of Pathology, RWTH University Clinics University Aachen, Aachen, Germany
| | - Hans-Michael Kvasnicka
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, Witten/Herdecke University, Witten, Germany
| | - Amit Kulkarni
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, Luxembourg
| | - Selas T F Bots
- Virus and Cell Biology Lab, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Vera Kemp
- Virus and Cell Biology Lab, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lukas J A C Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anna R Poetsch
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rob C Hoeben
- Virus and Cell Biology Lab, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, Luxembourg
| | - Guy Ungerechts
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Claudia R Ball
- Department for Translational Medical Oncology, National Center for Tumor Diseases Dresden (NCT/UCC), A Partnership Between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany; Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; German Cancer Research Center (DKFZ) Heidelberg, Translational Functional Cancer Genomics, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, Germany; Faculty of Biology, TUD Dresden University of Technology, Germany
| | - Christine E Engeland
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany; Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany; Experimental Hematology and Immunotherapy, Department of Hematology, Hemostaseology, Cellular Therapy and Infectious Diseases, Faculty of Medicine and Leipzig University Hospital, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany.
| |
Collapse
|
2
|
Khanduja S, Bloom SM, Raman V, Deshpande CP, Hall CL, Forbes NS. Intracellular delivery of oncolytic viruses with engineered Salmonella causes viral replication and cell death. iScience 2024; 27:109813. [PMID: 38799578 PMCID: PMC11126981 DOI: 10.1016/j.isci.2024.109813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
As therapies, oncolytic viruses regress tumors and have the potential to induce antitumor immune responses that clear hard-to-treat and late-stage cancers. Despite this promise, clearance from the blood prevents treatment of internal solid tumors. To address this issue, we developed virus-delivering Salmonella (VDS) to carry oncolytic viruses into cancer cells. The VDS strain contains the PsseJ-lysE delivery circuit and has deletions in four homologous recombination genes (ΔrecB, ΔsbcB, ΔsbcCD, and ΔrecF) to preserve essential hairpins in the viral genome required for replication and infectivity. VDS delivered the genome for minute virus of mice (MVMp) to multiple cancers, including breast, pancreatic, and osteosarcoma. Viral delivery produced functional viral particles that are cytotoxic and infective to neighboring cells. The release of mature virions initiated new rounds of infection and amplified the infection. Using Salmonella for delivery will circumvent the limitations of oncolytic viruses and will provide a new therapy for many cancers.
Collapse
Affiliation(s)
- Shradha Khanduja
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Shoshana M.K. Bloom
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Vishnu Raman
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Chinmay P. Deshpande
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Christopher L. Hall
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Neil S. Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
- Molecular and Cell Biology Program, University of Massachusetts, Amherst, Amherst, MA, USA
- Institute for Applied Life Science, University of Massachusetts, Amherst, Amherst, MA, USA
| |
Collapse
|
3
|
Calvo-López T, Grueso E, Sánchez-Martínez C, Almendral JM. Intracellular virion traffic to the endosome driven by cell type specific sialic acid receptors determines parvovirus tropism. Front Microbiol 2023; 13:1063706. [PMID: 36756201 PMCID: PMC9899843 DOI: 10.3389/fmicb.2022.1063706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Parvoviruses are promising anticancer and gene therapy agents, but a deep knowledge of the entry process is crucial to exploit their therapeutic potential. We addressed this issue while attempting to retarget the oncolytic parvovirus minute virus of mice (MVMp) to the tumor vasculature. Residues at three functional domains of the icosahedral capsid were substituted by rational design with peptides competing with the vascular endothelial growth factor. Most substitutions impaired virus maturation, though some yielded infectious chimeric virions, and substitutions in a dimple at the twofold axis that allocates sialic acid (SIA) receptors altered viral tropism. One dimple-modified chimeric virion was efficiently attached as MVMp to α2-linked SIA moieties, but the infection was impaired by the binding to some inhibitory α2-3,-6,-8 SIA pseudoreceptors, which hampers intracellular virus traffic to the endosome in a cell type-dependent manner. Infectious from nonproductive traffic could be mechanistically discriminated by an endosomal drastic capsid structural transition comprising the cleavage of some VP2-Nt sequences and its associated VP1-Nt exposure. Correspondingly, neuraminidase removal of inhibitory SIA moieties enhanced the infection quantitatively, correlating to the restored virus traffic to the endosome and the extent of VP2-Nt cleavage/VP1-Nt exposure. This study illustrates (i) structural constraints to retarget parvoviruses with evolutionary adopted narrow grooves allocating small SIA receptors, (ii) the possibility to enhance parvovirus oncolysis by relaxing the glycan network on the cancer cell surface, and (iii) the major role played by the attachment to cell type-specific SIAs in the intracellular virus traffic to the endosome, which may determine parvovirus tropism and host range.
Collapse
Affiliation(s)
- Tania Calvo-López
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain,Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Esther Grueso
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain,Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Cristina Sánchez-Martínez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain,Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - José M. Almendral
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain,Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain,*Correspondence: José M. Almendral ✉
| |
Collapse
|
4
|
Ferreira T, Kulkarni A, Bretscher C, Nazarov PV, Hossain JA, Ystaas LAR, Miletic H, Röth R, Niesler B, Marchini A. Oncolytic H-1 Parvovirus Hijacks Galectin-1 to Enter Cancer Cells. Viruses 2022; 14:1018. [PMID: 35632759 PMCID: PMC9146882 DOI: 10.3390/v14051018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022] Open
Abstract
Clinical studies in glioblastoma and pancreatic carcinoma patients strongly support the further development of H-1 protoparvovirus (H-1PV)-based anticancer therapies. The identification of cellular factors involved in the H-1PV life cycle may provide the knowledge to improve H-1PV anticancer potential. Recently, we showed that sialylated laminins mediate H-1PV attachment at the cell membrane. In this study, we revealed that H-1PV also interacts at the cell surface with galectin-1 and uses this glycoprotein to enter cancer cells. Indeed, knockdown/out of LGALS1, the gene encoding galectin-1, strongly decreases the ability of H-1PV to infect and kill cancer cells. This ability is rescued by the re-introduction of LGALS1 into cancer cells. Pre-treatment with lactose, which is able to bind to galectins and modulate their cellular functions, decreased H-1PV infectivity in a dose dependent manner. In silico analysis reveals that LGALS1 is overexpressed in various tumours including glioblastoma and pancreatic carcinoma. We show by immunohistochemistry analysis of 122 glioblastoma biopsies that galectin-1 protein levels vary between tumours, with levels in recurrent glioblastoma higher than those in primary tumours or normal tissues. We also find a direct correlation between LGALS1 transcript levels and H-1PV oncolytic activity in 53 cancer cell lines from different tumour origins. Strikingly, the addition of purified galectin-1 sensitises poorly susceptible GBM cell lines to H-1PV killing activity by rescuing cell entry. Together, these findings demonstrate that galectin-1 is a crucial determinant of the H-1PV life cycle.
Collapse
Affiliation(s)
- Tiago Ferreira
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Centre, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; (T.F.); (C.B.)
| | - Amit Kulkarni
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, 84 Val Fleuri, L-1526 Luxembourg, Luxembourg;
| | - Clemens Bretscher
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Centre, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; (T.F.); (C.B.)
| | - Petr V. Nazarov
- Bioinformatics Platform and Multiomics Data Science Research Group, Department of Cancer Research, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg;
| | - Jubayer A. Hossain
- Department of Biomedicine, University of Bergen, 5007 Bergen, Norway; (J.A.H.); (L.A.R.Y.); (H.M.)
| | - Lars A. R. Ystaas
- Department of Biomedicine, University of Bergen, 5007 Bergen, Norway; (J.A.H.); (L.A.R.Y.); (H.M.)
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, 5007 Bergen, Norway; (J.A.H.); (L.A.R.Y.); (H.M.)
- Department of Pathology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Ralph Röth
- nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Germany; (R.R.); (B.N.)
- Department of Human Molecular Genetics, University of Heidelberg, 69120 Heidelberg, Germany
| | - Beate Niesler
- nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Germany; (R.R.); (B.N.)
- Department of Human Molecular Genetics, University of Heidelberg, 69120 Heidelberg, Germany
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Centre, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; (T.F.); (C.B.)
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, 84 Val Fleuri, L-1526 Luxembourg, Luxembourg;
| |
Collapse
|
5
|
Zhang T, Ouyang X, Gou S, Zhang Y, Yan N, Chang L, Li B, Zhang F, Liu H, Ni J. Novel Synovial Targeting Peptide-Sinomenine Conjugates as a Potential Strategy for the Treatment of Rheumatoid Arthritis. Int J Pharm 2022; 617:121628. [PMID: 35245636 DOI: 10.1016/j.ijpharm.2022.121628] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/19/2022] [Accepted: 02/27/2022] [Indexed: 10/19/2022]
Abstract
Sinomenine (SIN) is an effective anti-inflammatory agent, but its therapeutic efficacy is limited by its short half-life and the high dosage required. Tissue-specific strategies have the potential to overcome these limitations. The synovial homing peptide (CKSTHDRLC) was identified to have high synovial endothelium targeting affinity. In this work, two peptide-drug conjugates (PDCs), conjugate (L) and conjugate (C), were synthesized, in which SIN was covalently connected to the linear and cyclic synovial homing peptide, respectively, via a 6-aminocaproic acid linker. An evaluation of biostability showed that conjugate (C) was more stable in mouse serum and inflammatory joint homogenate than conjugate (L). The two conjugates gradually released free SIN. Interestingly, conjugate (L) self-cyclized via a disulfide bridge in a biological environment, which significantly impacted its biostability. It had an almost equipotent half-life in serum but faster degradation in the inflammatory joint than conjugate (C). Therefore, conjugate (C) exhibited better therapeutic efficacy and tissue targeting. All the results indicated that PDCs particularly in its cyclic form might be more efficient for targeted deliver and represent a potential strategy for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Tianyue Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xu Ouyang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Sanhu Gou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Na Yan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Linlin Chang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Beibei Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fangyan Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hui Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Jingman Ni
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao 999078, China.
| |
Collapse
|
6
|
Kulkarni A, Ferreira T, Bretscher C, Grewenig A, El-Andaloussi N, Bonifati S, Marttila T, Palissot V, Hossain JA, Azuaje F, Miletic H, Ystaas LAR, Golebiewska A, Niclou SP, Roeth R, Niesler B, Weiss A, Brino L, Marchini A. Oncolytic H-1 parvovirus binds to sialic acid on laminins for cell attachment and entry. Nat Commun 2021; 12:3834. [PMID: 34158478 PMCID: PMC8219832 DOI: 10.1038/s41467-021-24034-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
H-1 parvovirus (H-1PV) is a promising anticancer therapy. However, in-depth understanding of its life cycle, including the host cell factors needed for infectivity and oncolysis, is lacking. This understanding may guide the rational design of combination strategies, aid development of more effective viruses, and help identify biomarkers of susceptibility to H-1PV treatment. To identify the host cell factors involved, we carry out siRNA library screening using a druggable genome library. We identify one crucial modulator of H-1PV infection: laminin γ1 (LAMC1). Using loss- and gain-of-function studies, competition experiments, and ELISA, we validate LAMC1 and laminin family members as being essential to H-1PV cell attachment and entry. H-1PV binding to laminins is dependent on their sialic acid moieties and is inhibited by heparin. We show that laminins are differentially expressed in various tumour entities, including glioblastoma. We confirm the expression pattern of laminin γ1 in glioblastoma biopsies by immunohistochemistry. We also provide evidence of a direct correlation between LAMC1 expression levels and H-1PV oncolytic activity in 59 cancer cell lines and in 3D organotypic spheroid cultures with different sensitivities to H-1PV infection. These results support the idea that tumours with elevated levels of γ1 containing laminins are more susceptible to H-1PV-based therapies.
Collapse
Affiliation(s)
- Amit Kulkarni
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Tiago Ferreira
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany
| | - Clemens Bretscher
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany
| | - Annabel Grewenig
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany
| | - Nazim El-Andaloussi
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany
- Lonza Cologne GmbH, Köln, Germany
| | - Serena Bonifati
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Tiina Marttila
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Valérie Palissot
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Jubayer A Hossain
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Francisco Azuaje
- Quantitative Biology Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Genomics England, London, United Kingdom
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Lars A R Ystaas
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Anna Golebiewska
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Simone P Niclou
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Ralf Roeth
- nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
- Department of Human Molecular Genetics, University of Heidelberg, Heidelberg, Germany
| | - Beate Niesler
- nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
- Department of Human Molecular Genetics, University of Heidelberg, Heidelberg, Germany
| | - Amélie Weiss
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Laurent Brino
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany.
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, Luxembourg, Luxembourg.
| |
Collapse
|
7
|
Ferreira T, Kulkarni A, Bretscher C, Richter K, Ehrlich M, Marchini A. Oncolytic H-1 Parvovirus Enters Cancer Cells through Clathrin-Mediated Endocytosis. Viruses 2020; 12:v12101199. [PMID: 33096814 PMCID: PMC7594094 DOI: 10.3390/v12101199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
H-1 protoparvovirus (H-1PV) is a self-propagating virus that is non-pathogenic in humans and has oncolytic and oncosuppressive activities. H-1PV is the first member of the Parvoviridae family to undergo clinical testing as an anticancer agent. Results from clinical trials in patients with glioblastoma or pancreatic carcinoma show that virus treatment is safe, well-tolerated and associated with first signs of efficacy. Characterisation of the H-1PV life cycle may help to improve its efficacy and clinical outcome. In this study, we investigated the entry route of H-1PV in cervical carcinoma HeLa and glioma NCH125 cell lines. Using electron and confocal microscopy, we detected H-1PV particles within clathrin-coated pits and vesicles, providing evidence that the virus uses clathrin-mediated endocytosis for cell entry. In agreement with these results, we found that blocking clathrin-mediated endocytosis using specific inhibitors or small interfering RNA-mediated knockdown of its key regulator, AP2M1, markedly reduced H-1PV entry. By contrast, we found no evidence of viral entry through caveolae-mediated endocytosis. We also show that H-1PV entry is dependent on dynamin, while viral trafficking occurs from early to late endosomes, with acidic pH necessary for a productive infection. This is the first study that characterises the cell entry pathways of oncolytic H-1PV.
Collapse
Affiliation(s)
- Tiago Ferreira
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Centre, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; (T.F.); (C.B.)
| | - Amit Kulkarni
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, 84 Val Fleuri, L-1526 Luxembourg, Luxembourg;
| | - Clemens Bretscher
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Centre, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; (T.F.); (C.B.)
| | - Karsten Richter
- Core Facility Electron Microscopy, German Cancer Research Centre, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
| | - Marcelo Ehrlich
- Laboratory of Signal Transduction and Membrane Biology, The Shumins School for Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel;
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Centre, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; (T.F.); (C.B.)
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, 84 Val Fleuri, L-1526 Luxembourg, Luxembourg;
- Correspondence: or ; Tel.: +49-6221-424969 or +352-26-970-856
| |
Collapse
|
8
|
Hartley A, Kavishwar G, Salvato I, Marchini A. A Roadmap for the Success of Oncolytic Parvovirus-Based Anticancer Therapies. Annu Rev Virol 2020; 7:537-557. [PMID: 32600158 DOI: 10.1146/annurev-virology-012220-023606] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autonomous rodent protoparvoviruses (PVs) are promising anticancer agents due to their excellent safety profile, natural oncotropism, and oncosuppressive activities. Viral infection can trigger immunogenic cell death, activating the immune system against the tumor. However, the efficacy of this treatment in recent clinical trials is moderate compared with results seen in preclinical work. Various strategies have been employed to improve the anticancer activities of oncolytic PVs, including development of second-generation parvoviruses with enhanced oncolytic and immunostimulatory activities and rational combination of PVs with other therapies. Understanding the cellular factors involved in the PV life cycle is another important area of investigation. Indeed, these studies may lead to the identification of biomarkers that would allow a more personalized use of PV-based therapies. This review focuses on this work and the challenges that still need to be overcome to move PVs forward into clinical practice as an effective therapeutic option for cancer patients.
Collapse
Affiliation(s)
- Anna Hartley
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Gayatri Kavishwar
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Ilaria Salvato
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg;
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, 69120 Heidelberg, Germany; .,Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg;
| |
Collapse
|
9
|
Mietzsch M, McKenna R, Väisänen E, Yu JC, Ilyas M, Hull JA, Kurian J, Smith JK, Chipman P, Lasanajak Y, Smith D, Söderlund-Venermo M, Agbandje-McKenna M. Structural Characterization of Cuta- and Tusavirus: Insight into Protoparvoviruses Capsid Morphology. Viruses 2020; 12:E653. [PMID: 32560452 PMCID: PMC7354515 DOI: 10.3390/v12060653] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022] Open
Abstract
Several members of the Protoparvovirus genus, capable of infecting humans, have been recently discovered, including cutavirus (CuV) and tusavirus (TuV). To begin the characterization of these viruses, we have used cryo-electron microscopy and image reconstruction to determine their capsid structures to ~2.9 Å resolution, and glycan array and cell-based assays to identify glycans utilized for cellular entry. Structural comparisons show that the CuV and TuV capsids share common features with other parvoviruses, including an eight-stranded anti-parallel β-barrel, depressions at the icosahedral 2-fold and surrounding the 5-fold axes, and a channel at the 5-fold axes. However, the viruses exhibit significant topological differences in their viral protein surface loops. These result in three separated 3-fold protrusions, similar to the bufaviruses also infecting humans, suggesting a host-driven structure evolution. The surface loops contain residues involved in receptor binding, cellular trafficking, and antigenic reactivity in other parvoviruses. In addition, terminal sialic acid was identified as the glycan potentially utilized by both CuV and TuV for cellular entry, with TuV showing additional recognition of poly-sialic acid and sialylated Lewis X (sLeXLeXLeX) motifs reported to be upregulated in neurotropic and cancer cells, respectively. These structures provide a platform for annotating the cellular interactions of these human pathogens.
Collapse
Affiliation(s)
- Mario Mietzsch
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.M.); (R.M.); (J.C.Y.); (M.I.); (J.A.H.); (J.K.); (J.K.S.); (P.C.)
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.M.); (R.M.); (J.C.Y.); (M.I.); (J.A.H.); (J.K.); (J.K.S.); (P.C.)
| | - Elina Väisänen
- Department of Virology, University of Helsinki, 00014 Helsinki, Finland; (E.V.); (M.S.-V.)
| | - Jennifer C. Yu
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.M.); (R.M.); (J.C.Y.); (M.I.); (J.A.H.); (J.K.); (J.K.S.); (P.C.)
| | - Maria Ilyas
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.M.); (R.M.); (J.C.Y.); (M.I.); (J.A.H.); (J.K.); (J.K.S.); (P.C.)
| | - Joshua A. Hull
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.M.); (R.M.); (J.C.Y.); (M.I.); (J.A.H.); (J.K.); (J.K.S.); (P.C.)
| | - Justin Kurian
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.M.); (R.M.); (J.C.Y.); (M.I.); (J.A.H.); (J.K.); (J.K.S.); (P.C.)
| | - J. Kennon Smith
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.M.); (R.M.); (J.C.Y.); (M.I.); (J.A.H.); (J.K.); (J.K.S.); (P.C.)
| | - Paul Chipman
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.M.); (R.M.); (J.C.Y.); (M.I.); (J.A.H.); (J.K.); (J.K.S.); (P.C.)
| | - Yi Lasanajak
- Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA 30322, USA; (Y.L.); (D.S.)
| | - David Smith
- Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA 30322, USA; (Y.L.); (D.S.)
| | | | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (M.M.); (R.M.); (J.C.Y.); (M.I.); (J.A.H.); (J.K.); (J.K.S.); (P.C.)
| |
Collapse
|
10
|
Jayawardena N, Burga LN, Poirier JT, Bostina M. Virus-Receptor Interactions: Structural Insights For Oncolytic Virus Development. Oncolytic Virother 2019; 8:39-56. [PMID: 31754615 PMCID: PMC6825474 DOI: 10.2147/ov.s218494] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022] Open
Abstract
Recent advancements in oncolytic virotherapy commend a special attention to developing new strategies for targeting cancer cells with oncolytic viruses (OVs). Modifications of the viral envelope or coat proteins serve as a logical mean of repurposing viruses for cancer treatment. In this review, we discuss how detailed structural knowledge of the interactions between OVs and their natural receptors provide valuable insights into tumor specificity of some viruses and re-targeting of alternate receptors for broad tumor tropism or improved tumor selectivity.
Collapse
Affiliation(s)
- Nadishka Jayawardena
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Laura N Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - John T Poirier
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Otago Micro and Nano Imaging, University of Otago, Dunedin, New Zealand
| |
Collapse
|
11
|
Bretscher C, Marchini A. H-1 Parvovirus as a Cancer-Killing Agent: Past, Present, and Future. Viruses 2019; 11:v11060562. [PMID: 31216641 PMCID: PMC6630270 DOI: 10.3390/v11060562] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
The rat protoparvovirus H-1PV is nonpathogenic in humans, replicates preferentially in cancer cells, and has natural oncolytic and oncosuppressive activities. The virus is able to kill cancer cells by activating several cell death pathways. H-1PV-mediated cancer cell death is often immunogenic and triggers anticancer immune responses. The safety and tolerability of H-1PV treatment has been demonstrated in early clinical studies in glioma and pancreatic carcinoma patients. Virus treatment was associated with surrogate signs of efficacy including immune conversion of tumor microenvironment, effective virus distribution into the tumor bed even after systemic administration, and improved patient overall survival compared with historical control. However, monotherapeutic use of the virus was unable to eradicate tumors. Thus, further studies are needed to improve H-1PV's anticancer profile. In this review, we describe H-1PV's anticancer properties and discuss recent efforts to improve the efficacy of H-1PV and, thereby, the clinical outcome of H-1PV-based therapies.
Collapse
Affiliation(s)
- Clemens Bretscher
- Laboratory of Oncolytic Virus Immuno-Therapeutics, F011, German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics, F011, German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, 84 Val Fleuri, L-1526 Luxembourg, Luxembourg.
| |
Collapse
|
12
|
Ungerechts G, Engeland CE, Buchholz CJ, Eberle J, Fechner H, Geletneky K, Holm PS, Kreppel F, Kühnel F, Lang KS, Leber MF, Marchini A, Moehler M, Mühlebach MD, Rommelaere J, Springfeld C, Lauer UM, Nettelbeck DM. Virotherapy Research in Germany: From Engineering to Translation. Hum Gene Ther 2018; 28:800-819. [PMID: 28870120 DOI: 10.1089/hum.2017.138] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Virotherapy is a unique modality for the treatment of cancer with oncolytic viruses (OVs) that selectively infect and lyse tumor cells, spread within tumors, and activate anti-tumor immunity. Various viruses are being developed as OVs preclinically and clinically, several of them engineered to encode therapeutic proteins for tumor-targeted gene therapy. Scientists and clinicians in German academia have made significant contributions to OV research and development, which are highlighted in this review paper. Innovative strategies for "shielding," entry or postentry targeting, and "arming" of OVs have been established, focusing on adenovirus, measles virus, parvovirus, and vaccinia virus platforms. Thereby, new-generation virotherapeutics have been derived. Moreover, immunotherapeutic properties of OVs and combination therapies with pharmacotherapy, radiotherapy, and especially immunotherapy have been investigated and optimized. German investigators are increasingly assessing their OV innovations in investigator-initiated and sponsored clinical trials. As a prototype, parvovirus has been tested as an OV from preclinical proof-of-concept up to first-in-human clinical studies. The approval of the first OV in the Western world, T-VEC (Imlygic), has further spurred the involvement of investigators in Germany in international multicenter studies. With the encouraging developments in funding, commercialization, and regulatory procedures, more German engineering will be translated into OV clinical trials in the near future.
Collapse
Affiliation(s)
- Guy Ungerechts
- 1 Department of Medical Oncology, National Center for Tumor Diseases and Heidelberg University Hospital , Heidelberg, Germany .,2 Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany .,3 Centre for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada
| | - Christine E Engeland
- 1 Department of Medical Oncology, National Center for Tumor Diseases and Heidelberg University Hospital , Heidelberg, Germany .,2 Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian J Buchholz
- 4 Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut , Langen, Germany .,5 German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), partner site Heidelberg, Germany
| | - Jürgen Eberle
- 6 Charité -Universitätsmedizin Berlin, Department of Dermatology, Skin Cancer Centre Charité , Berlin, Germany
| | - Henry Fechner
- 7 Technische Universität Berlin, Institute of Biotechnology , Department of Applied Biochemistry, Berlin, Germany
| | - Karsten Geletneky
- 8 Department of Neurosurgery, Klinikum Darmstadt , Darmstadt, Germany
| | - Per Sonne Holm
- 9 Department of Urology, Klinikum rechts der Isar, Technical University Munich , Munich, Germany
| | - Florian Kreppel
- 10 Chair of Biochemistry and Molecular Medicine, Center for Biomedical Research and Education (ZBAF), Faculty of Health, University Witten/Herdecke (UW/H), Witten, Germany
| | - Florian Kühnel
- 11 Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Karl Sebastian Lang
- 12 Institute of Immunology, Medical Faculty, University of Duisburg-Essen , Essen, Germany
| | - Mathias F Leber
- 1 Department of Medical Oncology, National Center for Tumor Diseases and Heidelberg University Hospital , Heidelberg, Germany .,2 Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antonio Marchini
- 13 Department of Tumor Virology, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany .,14 Laboratory of Oncolytic Virus Immuno-Therapeutics (LOVIT), Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Markus Moehler
- 15 University Medical Center Mainz , I. Dept. of Internal Medicine, Mainz, Germany
| | - Michael D Mühlebach
- 16 Product Testing of Immunological Veterinary Medicinal Products, Paul-Ehrlich-Institut , Langen, Germany
| | - Jean Rommelaere
- 13 Department of Tumor Virology, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph Springfeld
- 1 Department of Medical Oncology, National Center for Tumor Diseases and Heidelberg University Hospital , Heidelberg, Germany
| | - Ulrich M Lauer
- 17 Department of Clinical Tumor Biology, Medical University Hospital , Tübingen, Germany .,18 German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), partner site Tübingen, Germany
| | | |
Collapse
|
13
|
Atomic Resolution Structure of the Oncolytic Parvovirus LuIII by Electron Microscopy and 3D Image Reconstruction. Viruses 2017; 9:v9110321. [PMID: 29084163 PMCID: PMC5707528 DOI: 10.3390/v9110321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 01/23/2023] Open
Abstract
LuIII, a protoparvovirus pathogenic to rodents, replicates in human mitotic cells, making it applicable for use to kill cancer cells. This virus group includes H-1 parvovirus (H-1PV) and minute virus of mice (MVM). However, LuIII displays enhanced oncolysis compared to H-1PV and MVM, a phenotype mapped to the major capsid viral protein 2 (VP2). This suggests that within LuIII VP2 are determinants for improved tumor lysis. To investigate this, the structure of the LuIII virus-like-particle was determined using single particle cryo-electron microscopy and image reconstruction to 3.17 Å resolution, and compared to the H-1PV and MVM structures. The LuIII VP2 structure, ordered from residue 37 to 587 (C-terminal), had the conserved VP topology and capsid morphology previously reported for other protoparvoviruses. This includes a core β-barrel and α-helix A, a depression at the icosahedral 2-fold and surrounding the 5-fold axes, and a single protrusion at the 3-fold axes. Comparative analysis identified surface loop differences among LuIII, H-1PV, and MVM at or close to the capsid 2- and 5-fold symmetry axes, and the shoulder of the 3-fold protrusions. The 2-fold differences cluster near the previously identified MVM sialic acid receptor binding pocket, and revealed potential determinants of protoparvovirus tumor tropism.
Collapse
|
14
|
Ros C, Bayat N, Wolfisberg R, Almendral JM. Protoparvovirus Cell Entry. Viruses 2017; 9:v9110313. [PMID: 29072600 PMCID: PMC5707520 DOI: 10.3390/v9110313] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/21/2017] [Accepted: 10/23/2017] [Indexed: 01/25/2023] Open
Abstract
The Protoparvovirus (PtPV) genus of the Parvoviridae family of viruses includes important animal pathogens and reference molecular models for the entire family. Some virus members of the PtPV genus have arisen as promising tools to treat tumoral processes, as they exhibit marked oncotropism and oncolytic activities while being nonpathogenic for humans. The PtPVs invade and replicate within the nucleus making extensive use of the transport, transcription and replication machineries of the host cells. In order to reach the nucleus, PtPVs need to cross over several intracellular barriers and traffic through different cell compartments, which limit their infection efficiency. In this review we summarize molecular interactions, capsid structural transitions and hijacking of cellular processes, by which the PtPVs enter and deliver their single-stranded DNA genome into the host cell nucleus. Understanding mechanisms that govern the complex PtPV entry will be instrumental in developing approaches to boost their anticancer therapeutic potential and improving their safety profile.
Collapse
Affiliation(s)
- Carlos Ros
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland.
| | - Nooshin Bayat
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | - Raphael Wolfisberg
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark.
| | - José M Almendral
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
15
|
Hölscher C, Sonntag F, Henrich K, Chen Q, Beneke J, Matula P, Rohr K, Kaderali L, Beil N, Erfle H, Kleinschmidt JA, Müller M. The SUMOylation Pathway Restricts Gene Transduction by Adeno-Associated Viruses. PLoS Pathog 2015; 11:e1005281. [PMID: 26625259 PMCID: PMC4666624 DOI: 10.1371/journal.ppat.1005281] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/25/2015] [Indexed: 12/21/2022] Open
Abstract
Adeno-associated viruses are members of the genus dependoviruses of the parvoviridae family. AAV vectors are considered promising vectors for gene therapy and genetic vaccination as they can be easily produced, are highly stable and non-pathogenic. Nevertheless, transduction of cells in vitro and in vivo by AAV in the absence of a helper virus is comparatively inefficient requiring high multiplicity of infection. Several bottlenecks for AAV transduction have previously been described, including release from endosomes, nuclear transport and conversion of the single stranded DNA into a double stranded molecule. We hypothesized that the bottlenecks in AAV transduction are, in part, due to the presence of host cell restriction factors acting directly or indirectly on the AAV-mediated gene transduction. In order to identify such factors we performed a whole genome siRNA screen which identified a number of putative genes interfering with AAV gene transduction. A number of factors, yielding the highest scores, were identified as members of the SUMOylation pathway. We identified Ubc9, the E2 conjugating enzyme as well as Sae1 and Sae2, enzymes responsible for activating E1, as factors involved in restricting AAV. The restriction effect, mediated by these factors, was validated and reproduced independently. Our data indicate that SUMOylation targets entry of AAV capsids and not downstream processes of uncoating, including DNA single strand conversion or DNA damage signaling. We suggest that transiently targeting SUMOylation will enhance application of AAV in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | - Qingxin Chen
- German Cancer Research Center, Heidelberg, Germany
| | - Jürgen Beneke
- VIROQUANT-CellNetworks RNAi Screening Facility, BIOQUANT Center University Heidelberg, Heidelberg, Germany
| | - Petr Matula
- Biomedical Computer Vision Group, Dept. Bioinformatics and Functional Genomics, University of Heidelberg, BIOQUANT, IPMB, and German Cancer Research Center, Heidelberg, Germany
| | - Karl Rohr
- Biomedical Computer Vision Group, Dept. Bioinformatics and Functional Genomics, University of Heidelberg, BIOQUANT, IPMB, and German Cancer Research Center, Heidelberg, Germany
| | - Lars Kaderali
- University Medicine Greifswald, Institute for Bioinformatics, Greifswald, Germany
| | - Nina Beil
- VIROQUANT-CellNetworks RNAi Screening Facility, BIOQUANT Center University Heidelberg, Heidelberg, Germany
| | - Holger Erfle
- VIROQUANT-CellNetworks RNAi Screening Facility, BIOQUANT Center University Heidelberg, Heidelberg, Germany
| | | | - Martin Müller
- German Cancer Research Center, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
16
|
Affiliation(s)
- Shweta Kailasan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Colin R. Parrish
- Baker Institute for Animal Health and Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853;
| |
Collapse
|
17
|
Garcin PO, Nabi IR, Panté N. Galectin-3 plays a role in minute virus of mice infection. Virology 2015; 481:63-72. [DOI: 10.1016/j.virol.2015.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/07/2015] [Accepted: 02/13/2015] [Indexed: 12/19/2022]
|
18
|
Angelova AL, Geletneky K, Nüesch JPF, Rommelaere J. Tumor Selectivity of Oncolytic Parvoviruses: From in vitro and Animal Models to Cancer Patients. Front Bioeng Biotechnol 2015; 3:55. [PMID: 25954743 PMCID: PMC4406089 DOI: 10.3389/fbioe.2015.00055] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/05/2015] [Indexed: 11/23/2022] Open
Abstract
Oncolytic virotherapy of cancer is among the innovative modalities being under development and especially promising for targeting tumors, which are resistant to conventional treatments. Presently, at least a dozen of viruses, belonging to nine different virus families, are being tested within the frames of various clinical studies in cancer patients. Continuously growing preclinical evidence showing that the autonomous rat parvovirus H-1 (H-1PV) is able to kill tumor cells that resist conventional treatments and to achieve a complete cure of various human tumors in animal models argues for its inclusion in the arsenal of oncolytic viruses with an especially promising bench to bedside translation potential. Oncolytic parvovirus safe administration to humans relies on the intrinsic preference of these agents for quickly proliferating, metabolically, and biochemically disturbed tumor versus normal cells (tumor selectivity or oncotropism). The present review summarizes and discusses (i) preclinical evidence of H-1PV innocuousness for normal cells and healthy tissues in vitro and in animals, respectively, (ii) toxicological assessments of H-1PV mono- or combined therapy in tumor-bearing virus-permissive animal models, as well as (iii) historical results of experimental infection of human cancer patients with H-1PV. Altogether, these data argue against a risk of H-1PV inducing significant toxic effects in human patients. This highly favorable safety profile allowed the translation of H-1PV preclinical research into a Phase I/IIa clinical trial being currently in progress.
Collapse
Affiliation(s)
- Assia L Angelova
- Infection and Cancer Program, Division of Tumor Virology, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Karsten Geletneky
- Infection and Cancer Program, Division of Tumor Virology, German Cancer Research Center (DKFZ) , Heidelberg , Germany ; Department of Neurosurgery, University of Heidelberg , Heidelberg , Germany
| | - Jürg P F Nüesch
- Infection and Cancer Program, Division of Tumor Virology, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Jean Rommelaere
- Infection and Cancer Program, Division of Tumor Virology, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| |
Collapse
|
19
|
Lezhnin YN, Kravchenko YE, Frolova EI, Chumakov PM, Chumakov SP. Oncotoxic proteins in cancer therapy: Mechanisms of action. Mol Biol 2015. [DOI: 10.1134/s0026893315020077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Geletneky K, Nüesch JP, Angelova A, Kiprianova I, Rommelaere J. Double-faceted mechanism of parvoviral oncosuppression. Curr Opin Virol 2015; 13:17-24. [PMID: 25841215 DOI: 10.1016/j.coviro.2015.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/02/2015] [Accepted: 03/16/2015] [Indexed: 11/17/2022]
Abstract
The H-1 parvovirus (H-1PV) exerts oncosuppressive action that has two components: oncotoxicity and immunostimulation. While many human tumor cells, including conventional drug-resistant ones, can be killed by H-1PV, some fail to support progeny virus production, necessary for infection propagation in neoplastic tissues. This limitation can be overcome through forced selection of H-1PV variants capable of enhanced multiplication and spreading in human tumor cells. In the context of further developing H-1PV for use in cancer therapy, arming it with immunostimulatory CpG motifs under conditions preserving replication and oncolysis enhances its action as an anticancer vaccine adjuvant. A first clinical study of H-1PV treatment in glioma patients has yielded evidence of intratumoral synthesis of the viral oncotoxic protein NS1 and immune cell infiltration.
Collapse
Affiliation(s)
- Karsten Geletneky
- German Cancer Research Center, Infection and Cancer Program, Division of Tumor Virology, 69120 Heidelberg, Germany; Department of Neurosurgery, University Hospital, 69120 Heidelberg, Germany
| | - Jürg Pf Nüesch
- German Cancer Research Center, Infection and Cancer Program, Division of Tumor Virology, 69120 Heidelberg, Germany
| | - Assia Angelova
- German Cancer Research Center, Infection and Cancer Program, Division of Tumor Virology, 69120 Heidelberg, Germany
| | - Irina Kiprianova
- German Cancer Research Center, Infection and Cancer Program, Division of Tumor Virology, 69120 Heidelberg, Germany
| | - Jean Rommelaere
- German Cancer Research Center, Infection and Cancer Program, Division of Tumor Virology, 69120 Heidelberg, Germany.
| |
Collapse
|
21
|
Marchini A, Bonifati S, Scott EM, Angelova AL, Rommelaere J. Oncolytic parvoviruses: from basic virology to clinical applications. Virol J 2015; 12:6. [PMID: 25630937 PMCID: PMC4323056 DOI: 10.1186/s12985-014-0223-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/03/2014] [Indexed: 12/28/2022] Open
Abstract
Accumulated evidence gathered over recent decades demonstrated that some members of the Parvoviridae family, in particular the rodent protoparvoviruses H-1PV, the minute virus of mice and LuIII have natural anticancer activity while being nonpathogenic to humans. These studies have laid the foundations for the launch of a first phase I/IIa clinical trial, in which the rat H-1 parvovirus is presently undergoing evaluation for its safety and first signs of efficacy in patients with glioblastoma multiforme. After a brief overview of the biology of parvoviruses, this review focuses on the studies which unraveled the antineoplastic properties of these agents and supported their clinical use as anticancer therapeutics. Furthermore, the development of novel parvovirus-based anticancer strategies with enhanced specificity and efficacy is discussed, in particular the development of second and third generation vectors and the combination of parvoviruses with other anticancer agents. Lastly, we address the key challenges that remain towards a more rational and efficient use of oncolytic parvoviruses in clinical settings, and discuss how a better understanding of the virus life-cycle and of the cellular factors involved in virus infection, replication and cytotoxicity may promote the further development of parvovirus-based anticancer therapies, open new prospects for treatment and hopefully improve clinical outcome.
Collapse
Affiliation(s)
- Antonio Marchini
- Infection and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| | - Serena Bonifati
- Infection and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| | - Eleanor M Scott
- Infection and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| | - Assia L Angelova
- Infection and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| | - Jean Rommelaere
- Infection and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| |
Collapse
|
22
|
Identification and mutagenesis of the adeno-associated virus 5 sialic acid binding region. J Virol 2014; 89:1660-72. [PMID: 25410855 DOI: 10.1128/jvi.02503-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED As a genus, the dependoviruses use a diverse group of cell surface carbohydrates for attachment and entry. Despite the fact that a majority of adeno-associated viruses (AAVs) utilize sialic acid (SIA) for binding and transduction, this virus-carbohydrate interaction is poorly understood. Utilizing X-ray crystallography, two SIA binding regions were mapped for AAV5. The first site mapped to the depression in the center of the 3-fold axis of symmetry, while the second site was located under the βHI loop close to the 5-fold axis. Mutagenesis of amino acids 569 and 585 or 587 within the 3-fold depression resulted in elimination or alteration in SIA-dependent transduction, respectively. This change in SIA binding was confirmed using glycan microarrays. Mutagenesis of the second site identified a role in transduction that was SIA independent. Further studies of the mutants at the 3-fold site demonstrated a change in transduction activity and cell tropism in vivo as well as resistance to neutralization by a polyclonal antibody raised against the wild-type virus. IMPORTANCE Despite the fact that a majority of AAVs utilize sialic acid for binding and transduction, this virus-carbohydrate interaction is poorly understood. Utilizing X-ray crystallography, the sialic acid binding regions of AAV5 were identified and studied using a variety of approaches. Mutagenesis of this region resulted in elimination or alteration in sialic acid-dependent transduction in cell lines. This change in sialic acid glycan binding was confirmed using glycan arrays. Further study also demonstrated a change in transduction and activity and cell tropism in vivo as well as resistance to neutralization by antibodies raised against the wild-type virus.
Collapse
|
23
|
Huang LY, Halder S, Agbandje-McKenna M. Parvovirus glycan interactions. Curr Opin Virol 2014; 7:108-18. [PMID: 25047752 DOI: 10.1016/j.coviro.2014.05.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/27/2014] [Indexed: 12/30/2022]
Abstract
Members of the Parvoviridae utilize glycan receptors for cellular attachment and subsequent interactions determine transduction efficiency or pathogenic outcome. This review focuses on the identity of the glycan receptors utilized, their capsid binding footprints, and a discussion of the overlap of these sites with tropism, transduction, and pathogenicity determinants. Despite high sequence diversity between the different genera, most parvoviruses bind to negatively charged glycans, such as sialic acid and heparan sulfate, abundant on cell surface membranes. The capsid structure of these viruses exhibit high structural homology enabling common regions to be utilized for glycan binding. At the same time the sequence diversity at the common footprints allows for binding of different glycans or differential binding of the same glycan.
Collapse
Affiliation(s)
- Lin-Ya Huang
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Sujata Halder
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
24
|
Halder S, Cotmore S, Heimburg-Molinaro J, Smith DF, Cummings RD, Chen X, Trollope AJ, North SJ, Haslam SM, Dell A, Tattersall P, McKenna R, Agbandje-McKenna M. Profiling of glycan receptors for minute virus of mice in permissive cell lines towards understanding the mechanism of cell recognition. PLoS One 2014; 9:e86909. [PMID: 24475195 PMCID: PMC3903596 DOI: 10.1371/journal.pone.0086909] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 12/16/2013] [Indexed: 02/02/2023] Open
Abstract
The recognition of sialic acids by two strains of minute virus of mice (MVM), MVMp (prototype) and MVMi (immunosuppressive), is an essential requirement for successful infection. To understand the potential for recognition of different modifications of sialic acid by MVM, three types of capsids, virus-like particles, wild type empty (no DNA) capsids, and DNA packaged virions, were screened on a sialylated glycan microarray (SGM). Both viruses demonstrated a preference for binding to 9-O-methylated sialic acid derivatives, while MVMp showed additional binding to 9-O-acetylated and 9-O-lactoylated sialic acid derivatives, indicating recognition differences. The glycans recognized contained a type-2 Galβ1-4GlcNAc motif (Neu5Acα2-3Galβ1-4GlcNAc or 3′SIA-LN) and were biantennary complex-type N-glycans with the exception of one. To correlate the recognition of the 3′SIA-LN glycan motif as well as the biantennary structures to their natural expression in cell lines permissive for MVMp, MVMi, or both strains, the N- and O-glycans, and polar glycolipids present in three cell lines used for in vitro studies, A9 fibroblasts, EL4 T lymphocytes, and the SV40 transformed NB324K cells, were analyzed by MALDI-TOF/TOF mass spectrometry. The cells showed an abundance of the sialylated glycan motifs recognized by the viruses in the SGM and previous glycan microarrays supporting their role in cellular recognition by MVM. Significantly, the NB324K showed fucosylation at the non-reducing end of their biantennary glycans, suggesting that recognition of these cells is possibly mediated by the Lewis X motif as in 3′SIA-LeX identified in a previous glycan microarray screen.
Collapse
Affiliation(s)
- Sujata Halder
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States of America
| | - Susan Cotmore
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Jamie Heimburg-Molinaro
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - David F. Smith
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Richard D. Cummings
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Xi Chen
- Department of Chemistry, University of California Davis, Davis, California, United States of America
| | - Alana J. Trollope
- Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| | - Simon J. North
- Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| | - Stuart M. Haslam
- Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| | - Anne Dell
- Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| | - Peter Tattersall
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States of America
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
25
|
Characteristics of oncolytic vesicular stomatitis virus displaying tumor-targeting ligands. J Virol 2013; 87:13543-55. [PMID: 24089573 DOI: 10.1128/jvi.02240-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We sought proof of principle that tumor-targeting ligands can be displayed on the surface of vesicular stomatitis virus (VSV) by engineering its glycoprotein. Here, we successfully rescued VSVs displaying tumor vasculature-targeting ligands. By using a rational approach, we investigated various feasible insertion sites on the G protein of VSV (VSV-G) for display of tumor vasculature-targeting ligands, cyclic RGD (cRGD) and echistatin. We found seven sites on VSV-G that tolerated insertion of the 9-residue cRGD peptide, two of which could tolerate insertion of the 49-amino acid echistatin domain. All of the ligand-displaying viruses replicated as well as the parental virus. In vitro studies demonstrated that the VSV-echistatin viruses specifically bound to targeted integrins. Since the low-density lipoprotein receptor (LDLR) was recently identified as a major receptor for VSV, we investigated the entry of ligand-displaying viruses after masking LDLR. The experiment showed that the modified viruses can enter the cell independently of LDLR, whereas entry of unmodified virus is significantly blocked by a specific monoclonal antibody against LDLR. Both parental and ligand-displaying viruses displayed equal oncolytic efficacies in a syngeneic mouse myeloma model. We further demonstrated that single-chain antibody fragments against tumor-specific antigens can be inserted at the N terminus of the G protein and that corresponding replication-competent VSVs can be rescued efficiently. Overall, we demonstrated that functional tumor-targeting ligands can be displayed on replication-competent VSVs without perturbing viral growth and oncolytic efficacy. This study provides a rational foundation for the future development of fully retargeted oncolytic VSVs.
Collapse
|
26
|
Li J, Bonifati S, Hristov G, Marttila T, Valmary-Degano S, Stanzel S, Schnölzer M, Mougin C, Aprahamian M, Grekova SP, Raykov Z, Rommelaere J, Marchini A. Synergistic combination of valproic acid and oncolytic parvovirus H-1PV as a potential therapy against cervical and pancreatic carcinomas. EMBO Mol Med 2013; 5:1537-55. [PMID: 24092664 PMCID: PMC3799578 DOI: 10.1002/emmm.201302796] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 11/24/2022] Open
Abstract
The rat parvovirus H-1PV has oncolytic and tumour-suppressive properties potentially exploitable in cancer therapy. This possibility is being explored and results are encouraging, but it is necessary to improve the oncotoxicity of the virus. Here we show that this can be achieved by co-treating cancer cells with H-1PV and histone deacetylase inhibitors (HDACIs) such as valproic acid (VPA). We demonstrate that these agents act synergistically to kill a range of human cervical carcinoma and pancreatic carcinoma cell lines by inducing oxidative stress, DNA damage and apoptosis. Strikingly, in rat and mouse xenograft models, H-1PV/VPA co-treatment strongly inhibits tumour growth promoting complete tumour remission in all co-treated animals. At the molecular level, we found acetylation of the parvovirus nonstructural protein NS1 at residues K85 and K257 to modulate NS1-mediated transcription and cytotoxicity, both of which are enhanced by VPA treatment. These results warrant clinical evaluation of H-1PV/VPA co-treatment against cervical and pancreatic ductal carcinomas.
Collapse
Affiliation(s)
- Junwei Li
- Infection and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Structural characterization of H-1 parvovirus: comparison of infectious virions to empty capsids. J Virol 2013; 87:5128-40. [PMID: 23449783 DOI: 10.1128/jvi.03416-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure of single-stranded DNA (ssDNA) packaging H-1 parvovirus (H-1PV), which is being developed as an antitumor gene delivery vector, has been determined for wild-type (wt) virions and noninfectious (empty) capsids to 2.7- and 3.2-Å resolution, respectively, using X-ray crystallography. The capsid viral protein (VP) structure consists of an α-helix and an eight-stranded anti-parallel β-barrel with large loop regions between the strands. The β-barrel and loops form the capsid core and surface, respectively. In the wt structure, 600 nucleotides are ordered in an interior DNA binding pocket of the capsid. This accounts for ∼12% of the H-1PV genome. The wt structure is identical to the empty capsid structure, except for side chain conformation variations at the nucleotide binding pocket. Comparison of the H-1PV nucleotides to those observed in canine parvovirus and minute virus of mice, two members of the genus Parvovirus, showed both similarity in structure and analogous interactions. This observation suggests a functional role, such as in capsid stability and/or ssDNA genome recognition for encapsulation. The VP structure differs from those of other parvoviruses in surface loop regions that control receptor binding, tissue tropism, pathogenicity, and antibody recognition, including VP sequences reported to determine tumor cell tropism for oncotropic rodent parvoviruses. These structures of H-1PV provide insight into structural features that dictate capsid stabilization following genome packaging and three-dimensional information applicable for rational design of tumor-targeted recombinant gene delivery vectors.
Collapse
|
28
|
Generation of an adenovirus-parvovirus chimera with enhanced oncolytic potential. J Virol 2012; 86:10418-31. [PMID: 22787235 DOI: 10.1128/jvi.00848-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this study, our goal was to generate a chimeric adenovirus-parvovirus (Ad-PV) vector that combines the high-titer and efficient gene transfer of adenovirus with the anticancer potential of rodent parvovirus. To this end, the entire oncolytic PV genome was inserted into a replication-defective E1- and E3-deleted Ad5 vector genome. As we found that parvoviral NS expression inhibited Ad-PV chimera production, we engineered the parvoviral P4 early promoter, which governs NS expression, by inserting into its sequence tetracycline operator elements. As a result of these modifications, P4-driven expression was blocked in the packaging T-REx-293 cells, which constitutively express the tetracycline repressor, allowing high-yield chimera production. The chimera effectively delivered the PV genome into cancer cells, from which fully infectious replication-competent parvovirus particles were generated. Remarkably, the Ad-PV chimera exerted stronger cytotoxic activities against various cancer cell lines, compared with the PV and Ad parental viruses, while being still innocuous to a panel of tested healthy primary human cells. This Ad-PV chimera represents a novel versatile anticancer agent which can be subjected to further genetic manipulations in order to reinforce its enhanced oncolytic capacity through arming with transgenes or retargeting into tumor cells.
Collapse
|
29
|
Nüesch JPF, Lacroix J, Marchini A, Rommelaere J. Molecular pathways: rodent parvoviruses--mechanisms of oncolysis and prospects for clinical cancer treatment. Clin Cancer Res 2012; 18:3516-23. [PMID: 22566376 DOI: 10.1158/1078-0432.ccr-11-2325] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Rodent parvoviruses (PV) are recognized for their intrinsic oncotropism and oncolytic activity, which contribute to their natural oncosuppressive effects. Although PV uptake occurs in most host cells, some of the subsequent steps leading to expression and amplification of the viral genome and production of progeny particles are upregulated in malignantly transformed cells. By usurping cellular processes such as DNA replication, DNA damage response, and gene expression, and/or by interfering with cellular signaling cascades involved in cytoskeleton dynamics, vesicular integrity, cell survival, and death, PVs can induce cytostasis and cytotoxicity. Although productive PV infections normally culminate in cytolysis, virus spread to neighboring cells and secondary rounds of infection, even abortive infection or the sole expression of the PV nonstructural protein NS1, is sufficient to cause significant tumor cell death, either directly or indirectly (through activation of host immune responses). This review highlights the molecular pathways involved in tumor cell targeting by PVs and in PV-induced cell death. It concludes with a discussion of the relevance of these pathways to the application of PVs in cancer therapy, linking basic knowledge of PV-host cell interactions to preclinical assessment of PV oncosuppression.
Collapse
Affiliation(s)
- Jürg P F Nüesch
- Infection and Cancer Program, Division F010, German Cancer Research Center, Heidelberg, Germany
| | | | | | | |
Collapse
|