1
|
Sánchez-Hernández S, Gutierrez-Guerrero A, Martín-Guerra R, Cortijo-Gutierrez M, Tristán-Manzano M, Rodriguez-Perales S, Sanchez L, Garcia-Perez JL, Chato-Astrain J, Fernandez-Valades R, Carrillo-Galvez AB, Anderson P, Montes R, Real PJ, Martin F, Benabdellah K. The IS2 Element Improves Transcription Efficiency of Integration-Deficient Lentiviral Vector Episomes. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:16-28. [PMID: 30227274 PMCID: PMC6141704 DOI: 10.1016/j.omtn.2018.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 07/02/2018] [Accepted: 08/14/2018] [Indexed: 02/06/2023]
Abstract
Integration-defective lentiviral vectors (IDLVs) have become an important alternative tool for gene therapy applications and basic research. Unfortunately, IDLVs show lower transgene expression as compared to their integrating counterparts. In this study, we aimed to improve the expression levels of IDLVs by inserting the IS2 element, which harbors SARs and HS4 sequences, into their LTRs (SE-IS2-IDLVs). Contrary to our expectations, the presence of the IS2 element did not abrogate epigenetic silencing by histone deacetylases. In addition, the IS2 element reduced episome levels in IDLV-transduced cells. Interestingly, despite these negative effects, SE-IS2-IDLVs outperformed SE-IDLVs in terms of percentage and expression levels of the transgene in several cell lines, including neurons, neuronal progenitor cells, and induced pluripotent stem cells. We estimated that the IS2 element enhances the transcriptional activity of IDLV LTR circles 6- to 7-fold. The final effect the IS2 element in IDLVs will greatly depend on the target cell and the balance between the negative versus the positive effects of the IS2 element in each cell type. The better performance of SE-IS2-IDLVs was not due to improved stability or differences in the proportions of 1-LTR versus 2-LTR circles but probably to a re-positioning of IS2-episomes into transcriptionally active regions.
Collapse
Affiliation(s)
- Sabina Sánchez-Hernández
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - Alejandra Gutierrez-Guerrero
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - Rocío Martín-Guerra
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - Marina Cortijo-Gutierrez
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - María Tristán-Manzano
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Department, CNIO, Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Laura Sanchez
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - Jose Luis Garcia-Perez
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - Jesus Chato-Astrain
- Department of Histology, Tissue Engineering Group, University of Granada, Granada, Spain
| | - Ricardo Fernandez-Valades
- Pediatric Surgery Department, University Hospital "Virgen de las Nieves," Avda. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Ana Belén Carrillo-Galvez
- Oncology Department, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - Per Anderson
- LentiStem Biotech, GENYO, Avda. de la Ilustración 114, 18016 PTS Granada, Spain; Oncology Department, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - Rosa Montes
- Oncology Department, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - Pedro J Real
- Oncology Department, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; Departament of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| | - Francisco Martin
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; LentiStem Biotech, GENYO, Avda. de la Ilustración 114, 18016 PTS Granada, Spain.
| | - Karim Benabdellah
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; LentiStem Biotech, GENYO, Avda. de la Ilustración 114, 18016 PTS Granada, Spain.
| |
Collapse
|
2
|
Pentland I, Campos-León K, Cotic M, Davies KJ, Wood CD, Groves IJ, Burley M, Coleman N, Stockton JD, Noyvert B, Beggs AD, West MJ, Roberts S, Parish JL. Disruption of CTCF-YY1-dependent looping of the human papillomavirus genome activates differentiation-induced viral oncogene transcription. PLoS Biol 2018; 16:e2005752. [PMID: 30359362 PMCID: PMC6219814 DOI: 10.1371/journal.pbio.2005752] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 11/06/2018] [Accepted: 10/12/2018] [Indexed: 11/19/2022] Open
Abstract
The complex life cycle of oncogenic human papillomavirus (HPV) initiates in undifferentiated basal epithelial keratinocytes where expression of the E6 and E7 oncogenes is restricted. Upon epithelial differentiation, E6/E7 transcription is increased through unknown mechanisms to drive cellular proliferation required to support virus replication. We report that the chromatin-organising CCCTC-binding factor (CTCF) promotes the formation of a chromatin loop in the HPV genome that epigenetically represses viral enhancer activity controlling E6/E7 expression. CTCF-dependent looping is dependent on the expression of the CTCF-associated Yin Yang 1 (YY1) transcription factor and polycomb repressor complex (PRC) recruitment, resulting in trimethylation of histone H3 at lysine 27. We show that viral oncogene up-regulation during cellular differentiation results from YY1 down-regulation, disruption of viral genome looping, and a loss of epigenetic repression of viral enhancer activity. Our data therefore reveal a key role for CTCF-YY1-dependent looping in the HPV life cycle and identify a regulatory mechanism that could be disrupted in HPV carcinogenesis.
Collapse
Affiliation(s)
- Ieisha Pentland
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Karen Campos-León
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Marius Cotic
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Kelli-Jo Davies
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - C. David Wood
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Ian J. Groves
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Megan Burley
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Joanne D. Stockton
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Boris Noyvert
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrew D. Beggs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Michelle J. West
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Sally Roberts
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Joanna L. Parish
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
3
|
Stavrou EF, Lazaris VM, Giannakopoulos A, Papapetrou E, Spyridonidis A, Zoumbos NC, Gkountis A, Athanassiadou A. The β-globin Replicator greatly enhances the potential of S/MAR based episomal vectors for gene transfer into human haematopoietic progenitor cells. Sci Rep 2017; 7:40673. [PMID: 28106085 PMCID: PMC5247744 DOI: 10.1038/srep40673] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/09/2016] [Indexed: 11/08/2022] Open
Abstract
Specific human chromosomal elements enhance the performance of episomal gene-transfer vectors. S/MAR-based episomal vector pEPI-eGFP transfects CD34+ haematopoietic cells, but only transiently. To address this issue we reinforced (1) transgene transcription by replacing the CMV promoter driving eGFP with the EF1/HTLV or SFFV promoters to produce vectors pEPI-EF1/HTLV and pEPI-SFFV, respectively; and (2) plasmid replication by inserting the replication-Initiation Region (IR) from the β-globin locus into vector pEPI-SFFV to produce vector pEP-IR. All vectors supported stable transfections in K562 cells. Transfections of CD34+ cells from peripheral blood of healthy donors reached 30% efficiency. Upon evaluation of CD34+/eGFP+ cells in colony-forming cell (CFC) assays, vector pEP-IR showed superior performance after 14 days, by fluorescent microscopy: 100% eGFP+-colonies against 0% for pEPI-eGFP, 56.9% for pEPI-SFFV and 49.8% for pEPI-EF1/HTLV; 50% more plasmid copies per cell and 3-fold eGFP expression compared to the latter two constructs, by quantitative (q)PCR and RT-qPCR, respectively. Importantly, the establishment rate in CFC assays was 15% for pEP-IR against 5.5% for pEPI-SFFV and 5% for pEPI-EF1/HTLV. Vector pEP-IR shows extremely low delivery rate but supports eGFP expression in thalassaemic mouse haematopoietic progenitor cells. The IR is a novel human control element for improved episomal gene transfer into progenitor cells.
Collapse
Affiliation(s)
- Eleana F. Stavrou
- Department of General Biology, School of Medicine, University of Patras, Greece
| | | | | | - Eirini Papapetrou
- Department of General Biology, School of Medicine, University of Patras, Greece
| | - Alexandros Spyridonidis
- Haematology Unit Department of Internal Medicine, School of Medicine, University of Patras, Greece
| | - Nikolas C. Zoumbos
- Haematology Unit Department of Internal Medicine, School of Medicine, University of Patras, Greece
| | - Antonis Gkountis
- Gene and Cell Therapy Center, Haematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | | |
Collapse
|
4
|
Minarovits J, Demcsák A, Banati F, Niller HH. Epigenetic Dysregulation in Virus-Associated Neoplasms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 879:71-90. [DOI: 10.1007/978-3-319-24738-0_4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
5
|
Pentland I, Parish JL. Targeting CTCF to Control Virus Gene Expression: A Common Theme amongst Diverse DNA Viruses. Viruses 2015; 7:3574-85. [PMID: 26154016 PMCID: PMC4517120 DOI: 10.3390/v7072791] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 12/27/2022] Open
Abstract
All viruses target host cell factors for successful life cycle completion. Transcriptional control of DNA viruses by host cell factors is important in the temporal and spatial regulation of virus gene expression. Many of these factors are recruited to enhance virus gene expression and thereby increase virus production, but host cell factors can also restrict virus gene expression and productivity of infection. CCCTC binding factor (CTCF) is a host cell DNA binding protein important for the regulation of genomic chromatin boundaries, transcriptional control and enhancer element usage. CTCF also functions in RNA polymerase II regulation and in doing so can influence co-transcriptional splicing events. Several DNA viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV) and human papillomavirus (HPV) utilize CTCF to control virus gene expression and many studies have highlighted a role for CTCF in the persistence of these diverse oncogenic viruses. CTCF can both enhance and repress virus gene expression and in some cases CTCF increases the complexity of alternatively spliced transcripts. This review article will discuss the function of CTCF in the life cycle of DNA viruses in the context of known host cell CTCF functions.
Collapse
Affiliation(s)
- Ieisha Pentland
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Joanna L Parish
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
6
|
Imajoh M, Fujioka H, Furusawa K, Tamura K, Yamasaki K, Kurihara S, Yamane J, Kawai K, Oshima S. Establishment of a new cell line susceptible to Cyprinid herpesvirus 3 (CyHV-3) and possible latency of CyHV-3 by temperature shift in the cells. JOURNAL OF FISH DISEASES 2015; 38:507-514. [PMID: 24820532 DOI: 10.1111/jfd.12252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/24/2014] [Accepted: 03/24/2014] [Indexed: 06/03/2023]
Abstract
A new cell line named CCF-K104 predominantly consisting of fibroblastic cells showed optimal growth at temperatures from 25 °C to 30 °C. Serial morphological changes in the cells induced by Cyprinid herpesvirus 3 (CyHV-3) included cytoplasmic vacuolar formation, cell rounding and detachment. Mature virions were purified from CyHV-3-infected CCF-K104 cells by sucrose gradient ultracentrifugation and had a typical herpesvirus structure on electron microscopy. Infectious CyHV-3 was produced stably in CCF-K104 cells over 30 viral passages. Our findings showed that CCF-K104 is a useful cell line for isolation and productive replication of CyHV-3. A temperature shift from 25 °C to 15 °C or 35 °C did not allow serial morphological changes as observed at 25 °C for 14 days. Under the same conditions, real-time PCR showed that CyHV-3 was present with low viral DNA loads, suggesting that CyHV-3 may establish latent infection in CCF-K104 cells. Amplification of the left and right terminal repeat sequences of the CyHV-3 genome arranged in a head-to-tail manner was detected by nested PCR following an upshift in temperature from 25 °C to 35 °C. The PCR results suggested that the circular genome may represent a latent form of CyHV-3.
Collapse
Affiliation(s)
- M Imajoh
- Laboratory of Fish Disease, Faculty of Agriculture, Kochi University, Nankoku, Kochi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Fujioka H, Yamasaki K, Furusawa K, Tamura K, Oguro K, Kurihara S, Seki S, Oshima SI, Imajoh M. Prevalence and characteristics of Cyprinid herpesvirus 3 (CyHV-3) infection in common carp (Cyprinus carpio L.) inhabiting three rivers in Kochi Prefecture, Japan. Vet Microbiol 2014; 175:362-8. [PMID: 25554244 DOI: 10.1016/j.vetmic.2014.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/28/2014] [Accepted: 12/02/2014] [Indexed: 12/11/2022]
Abstract
Cyprinid herpesvirus 3 (CyHV-3) causes lethal disease in common and koi carp. Mortality by CyHV-3 disease has not been reported since 2011 in Kochi Prefecture, Japan. Here, we detected and quantified CyHV-3 in common carp inhabiting three rivers in the prefecture to examine if the carp are carriers of CyHV-3 as a source of infection. CyHV-3 DNA was detected in 16.7% (12/72) of brain samples in Kagami River, 3.9% (3/76) of brain and 3.9% (3/76) of gill samples in Monobe River, and 5.1% (4/79) of brain and 1.3% (1/79) of gill samples in Wajiki River. CyHV-3 genotypes identified in the 23 samples were classified as the J genotype A1 that has been found in Japan. The CyHV-3 DNA load did not differ statistically between sampling months, indicating that CyHV-3 has been silent in common carp, unlike Lake Biwa where the annual reactivation occurs in spring. Taken together, our results represented definitive evidence that seasonal changes in water temperature do not affect CyHV-3 activity in carp. Considering that infectious virus was not isolated from CyHV-3 DNA-positive samples, it was suggested that CyHV-3 establishes a latent infection in carp populations inhabiting Kagami River, Monobe River and Wajiki River. Further, the presence of circular or concatameric CyHV-3 DNA was detected in five of 23 CyHV-3 DNA-positive samples. Common carp inhabiting Lake Biwa were reported previously to harbor linear but not circular CyHV-3 DNA. This difference suggested that the CyHV-3 genome may be circularized for long-term maintenance without active viral replication.
Collapse
Affiliation(s)
- Hiroya Fujioka
- Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kenichi Yamasaki
- Fish Disease Laboratory, Department of Aquaculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Keiki Furusawa
- Fish Disease Laboratory, Department of Aquaculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kazuki Tamura
- Fish Disease Laboratory, Department of Aquaculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kazuki Oguro
- Fish Disease Laboratory, Department of Aquaculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Sumire Kurihara
- Fish Disease Laboratory, Department of Aquaculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Shingo Seki
- Fish Ecology Laboratory, Department of Aquaculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Syun-ichirou Oshima
- Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Masayuki Imajoh
- Fish Disease Laboratory, Department of Aquaculture, Kochi University, Nankoku, Kochi 783-8502, Japan.
| |
Collapse
|
8
|
|
9
|
A molecular model for the differential activation of STAT3 and STAT6 by the herpesviral oncoprotein tip. PLoS One 2012; 7:e34306. [PMID: 22509288 PMCID: PMC3320567 DOI: 10.1371/journal.pone.0034306] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 02/27/2012] [Indexed: 01/27/2023] Open
Abstract
Constitutive STAT signaling provides growth promoting signals in many forms of malignancy. We performed molecular modeling and molecular dynamics studies of the interaction between the regulatory Src homology 2 (SH2) domains of STAT3 and 6 with phosphorylated peptides of the herpesviral oncoprotein Tip, which facilitates Src kinase mediated STAT-activation and T cell proliferation. The studies give insight into the ligand binding specificity of the STAT SH2 domains and provide the first model for the differential activation of STAT3 or STAT6 by two distinct regions of the viral Tip protein. The biological relevance of the modeled interactions was then confirmed by activation studies using corresponding recombinant oncoproteins, and finally by respective recombinant viruses. The functional data give experimental validation of the molecular dynamics study, and provide evidence for the involvement of STAT6 in the herpesvirus induced T cell proliferation.
Collapse
|
10
|
Full F, Reuter N, Zielke K, Stamminger T, Ensser A. Herpesvirus saimiri antagonizes nuclear domain 10-instituted intrinsic immunity via an ORF3-mediated selective degradation of cellular protein Sp100. J Virol 2012; 86:3541-53. [PMID: 22278248 PMCID: PMC3302493 DOI: 10.1128/jvi.06992-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 01/09/2012] [Indexed: 01/28/2023] Open
Abstract
In recent studies, the nuclear domain 10 (ND10) components PML, Sp100, human Daxx (hDaxx), and ATRX were identified to be cellular restriction factors that are able to inhibit the replication of several herpesviruses. The antiviral function of ND10, however, is antagonized by viral effector proteins by a variety of strategies, including degradation of PML or relocalization of ND10 proteins. In this study, we analyzed the interplay between infection with herpesvirus saimiri (HVS), the prototypic rhadinovirus, and cellular defense by ND10. In contrast to other herpesviruses, we found that HVS specifically degraded the cellular ND10 component Sp100, whereas other factors like PML or hDaxx remained intact. We could further identify the ORF3 tegument protein of HVS, which shares homology with the cellular formylglycinamide ribotide amidotransferase (FGARAT) enzyme, to be the viral factor that induces the proteasomal degradation of Sp100. Interestingly, recent studies showed that the ORF3-homologous proteins ORF75c of murine gammaherpesvirus 68 and BNRF-1 of Epstein-Barr virus modulate the ND10 proteins PML and ATRX, respectively, suggesting that the ND10 targets of viral FGARAT-homologous proteins diversified during evolution. Furthermore, a virus with the ORF3 deletion was efficiently complemented in Sp100-depleted cells, indicating that Sp100 is able to inhibit HVS in the absence of antagonistic mechanisms. In contrast, we observed that PML, which was neither degraded nor redistributed after HVS infection, strongly restricted both wild-type HVS and virus with the ORF3 deletion. Thus, HVS may lack a factor that efficiently counteracts the repressive function of PML, which may foster latency as the outcome of infection.
Collapse
Affiliation(s)
- Florian Full
- Institut für Klinische und Molekulare Virologie, Universitätsklinikum, Friedrich Alexander Universität, Erlangen, Germany
| | | | | | | | | |
Collapse
|