1
|
Li X, Miller LM, Chrzanowski M, Tian J, Jarrold MF, Herzog RW, Xiao W, Draper B, Zhang J. Quantitative analysis of preferential utilization of AAV ITR as the packaging terminal signal. Front Bioeng Biotechnol 2023; 11:1327433. [PMID: 38173872 PMCID: PMC10761532 DOI: 10.3389/fbioe.2023.1327433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Genetic engineering advances have led to recombinant adeno-associated virus (rAAV) becoming an invaluable tool for the development of effective gene therapies. The production of rAAV is susceptible to off-target heterogeneous packaging, the effects of which are still being understood. Here, rAAV vectors with four-genome lengths were produced using both adherent and suspension HEK293 cells to understand the 5'ITR termination. AAV8 vectors were produced from the human FVIII plasmid for a full-length cargo of 4,707 nucleotides with specific truncations, creating smaller genomes. Conventionally, rAAV is characterized by differentiating empty capsids from full capsids, but for this work, that description is incomplete. The small genomes in this study were characterized by charge detection-mass spectrometry (CD-MS). Using CD-MS, packaged genomes in the range conventionally attributed to partials were resolved and quantified. In addition, alkaline gels and qPCR were used to assess the identity of the packaged genomes. Together, these results showed a propensity for unit-length genomes to be encapsidated. Packaged genomes occurred as replication intermediates emanating from the 5'ITR, indicating that HEK293 cells prefer unit-length genomes as opposed to the 5'ITR termination and heterogeneous DNA packaging observed previously from Sf9 cell systems. As both manufacturing processes are used and continually assessed to produce clinical material, such an understanding will benefit rAAV design for basic research and gene therapy.
Collapse
Affiliation(s)
- Xin Li
- Herman B Wells Center for Pediatric Research, Indiana University IUSM, Indianapolis, IN, United States
| | | | | | - Jiahe Tian
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| | - Martin F. Jarrold
- Chemistry Department, Indiana University, Bloomington, IN, United States
| | - Roland W. Herzog
- Herman B Wells Center for Pediatric Research, Indiana University IUSM, Indianapolis, IN, United States
| | - Weidong Xiao
- Herman B Wells Center for Pediatric Research, Indiana University IUSM, Indianapolis, IN, United States
| | | | - Junping Zhang
- Herman B Wells Center for Pediatric Research, Indiana University IUSM, Indianapolis, IN, United States
| |
Collapse
|
2
|
Boftsi M, Whittle FB, Wang J, Shepherd P, Burger LR, Kaifer KA, Lorson CL, Joshi T, Pintel DJ, Majumder K. The adeno-associated virus 2 (AAV2) genome and rep 68/78 proteins interact with cellular sites of DNA damage. Hum Mol Genet 2021; 31:985-998. [PMID: 34652429 DOI: 10.1093/hmg/ddab300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/20/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Nuclear DNA viruses simultaneously access cellular factors that aid their life cycle while evading inhibitory factors by localizing to distinct nuclear sites. Adeno-Associated Viruses (AAVs), which are Dependoviruses in the family Parvovirinae, are non-enveloped icosahedral viruses, that have been developed as recombinant AAV vectors (rAAV) to express transgenes. AAV2 expression and replication occur in nuclear viral replication centers (VRCs), which relies on cellular replication machinery as well as coinfection by helper viruses such as adenoviruses or herpesviruses, or exogenous DNA damage to host cells. AAV2 infection induces a complex cellular DNA damage response (DDR), either in response to viral DNA or viral proteins expressed in the host nucleus during infection, where VRCs colocalize with DDR proteins. We have previously developed a modified iteration of a viral chromosome conformation capture (V3C-seq) assay to show that the autonomous parvovirus Minute Virus of Mice (MVM) localizes to cellular sites of DNA damage to establish and amplify its replication. Similar V3C-seq assays to map AAV2 show that the AAV2 genome colocalized with cellular sites of DNA damage under both non-replicating and replicating conditions. The AAV2 non-structural protein Rep 68/78, also localized to cellular DDR sites during both non-replicating and replicating infections, and also when ectopically expressed. Ectopically expressed Rep could be efficiently re-localized to DDR sites induced by micro-irradiation. Recombinant AAV2 gene therapy vector genomes derived from AAV2 localized to sites of cellular DNA damage to a lesser degree, suggesting that the Inverted Terminal Repeat (ITR) origins of replication were insufficient for targeting.
Collapse
Affiliation(s)
- Maria Boftsi
- Pathobiology Area Graduate Program.,Christopher S. Bond Life Sciences Center
| | | | - Juexin Wang
- Christopher S. Bond Life Sciences Center.,Department of Electrical Engineering and Computer Science
| | | | | | - Kevin A Kaifer
- Christopher S. Bond Life Sciences Center.,Department of Veterinary Pathobiology, College of Veterinary Medicine
| | - Christian L Lorson
- Christopher S. Bond Life Sciences Center.,Department of Veterinary Pathobiology, College of Veterinary Medicine
| | - Trupti Joshi
- Christopher S. Bond Life Sciences Center.,Department of Electrical Engineering and Computer Science.,MU Informatics Institute.,Department of Health Management and Informatics
| | - David J Pintel
- Christopher S. Bond Life Sciences Center.,Molecular Microbiology and Immunology, University of Missouri-Columbia, School of Medicine, Columbia, MO USA 65211
| | - Kinjal Majumder
- Institute for Molecular Virology.,McArdle Laboratory for Cancer Research.,University of Wisconsin-Carbone Cancer Center
| |
Collapse
|
3
|
Mietzsch M, Eddington C, Jose A, Hsi J, Chipman P, Henley T, Choudhry M, McKenna R, Agbandje-McKenna M. Improved Genome Packaging Efficiency of Adeno-associated Virus Vectors Using Rep Hybrids. J Virol 2021; 95:e0077321. [PMID: 34287038 PMCID: PMC8428402 DOI: 10.1128/jvi.00773-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/03/2021] [Indexed: 01/11/2023] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) are one of the most commonly used vectors for a variety of gene therapy applications. In the last 2 decades, research focused primarily on the characterization and isolation of new cap, genes resulting in hundreds of natural and engineered AAV capsid variants, while the rep gene, the other major AAV open reading frame, has been less studied. This is due to the fact that the rep gene from AAV serotype 2 (AAV2) enables the single-stranded DNA packaging of recombinant genomes into most AAV serotype and engineered capsids. However, a major by-product of all vector productions is empty AAV capsids, lacking the encapsidated vector genome, especially for non-AAV2 vectors. Despite the packaging process being considered the rate-limiting step for rAAV production, none of the rep genes from the other AAV serotypes have been characterized for their packaging efficiency. Thus, in this study AAV2 rep was replaced with the rep gene of a select number of AAV serotypes. However, this led to a lowering of capsid protein expression, relative to the standard AAV2-rep system. In further experiments the 3' end of the AAV2 rep gene was reintroduced to promote increased capsid expression and a series of chimeras between the different AAV Rep proteins were generated and characterized for their vector genome packaging ability. The utilization of these novel Rep hybrids increased the percentage of genome containing (full) capsids approximately 2- to -4-fold for all of the non-AAV2 serotypes tested. Thus, these Rep chimeras could revolutionize rAAV production. IMPORTANCE A major by-product of all adeno-associated virus (AAV) vector production systems are "empty" capsids, void of the desired therapeutic gene, and thus do not provide any curative benefit for the treatment of the targeted disease. In fact, empty capsids can potentially elicit additional immune responses in vivo gene therapies if not removed by additional purification steps. Thus, there is a need to increase the genome packaging efficiency and reduce the number of empty capsids from AAV biologics. The novel Rep hybrids from different AAV serotypes described in this study are capable of reducing the percentage of empty capsids in all tested AAV serotypes and improve overall yields of genome-containing AAV capsids at the same time. They can likely be integrated easily into existing AAV manufacturing protocols to optimize the production of the generated AAV gene therapy products.
Collapse
Affiliation(s)
- Mario Mietzsch
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Courtnee Eddington
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Ariana Jose
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jane Hsi
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Paul Chipman
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Tom Henley
- Intima Bioscience, New York, New York, USA
| | | | - Robert McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Bennett A, Mietzsch M, Agbandje-McKenna M. Understanding capsid assembly and genome packaging for adeno-associated viruses. Future Virol 2017; 12:283-297. [PMID: 36776482 PMCID: PMC9910337 DOI: 10.2217/fvl-2017-0011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/15/2017] [Indexed: 01/18/2023]
Abstract
Adeno-associated viruses (AAVs) are promising therapeutic viral vectors. Their capsid is assembled from viral proteins VP1, VP2 and VP3, aided by an assembly-activating protein, followed by replication protein mediated packaging of their 4.7-kb genome with inverted terminal repeats as packaging signals. To aid improvement of AAV vectors, knowledge of viral determinants of successful capsid assembly and genome packaging is important. We review the current knowledge of these two processes and efforts to overcome limited DNA packaging capacity and limit the packaging of unwanted foreign DNA in vector development. Residues involved in essential capsid assembly and genome packaging interactions cannot be manipulated in vector engineering. This information thus aids strategies to improve vector production and to increase AAV packaging capacity toward improved efficacy of this vector system.
Collapse
Affiliation(s)
- Antonette Bennett
- Department of Biochemistry & Molecular Biology, Center for Structure Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0245, USA
| | - Mario Mietzsch
- Department of Biochemistry & Molecular Biology, Center for Structure Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0245, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry & Molecular Biology, Center for Structure Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0245, USA
| |
Collapse
|
5
|
Stutika C, Hüser D, Weger S, Rutz N, Heßler M, Heilbronn R. Definition of herpes simplex virus helper functions for the replication of adeno-associated virus type 5. J Gen Virol 2014; 96:840-850. [PMID: 25535322 DOI: 10.1099/vir.0.000034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adeno-associated virus (AAV) type 5 represents the genetically most distant AAV serotype and the only one isolated directly from human tissue. Seroepidemiological evidence suggests herpes simplex virus (HSV) as a helper virus for human AAV5 infections, underlining the in vivo relevance of the AAV-herpesvirus relationship. In this study we analysed, for the first time, HSV helper functions for productive AAV5 replication, and compared these to AAV2. Using a combination of HSV strains and plasmids for individual genes, the previously defined HSV helper functions for AAV2 replication were shown to induce AAV5 gene expression, DNA replication and production of infectious progeny. The helper functions comprise the replication genes for ICP8 (UL29), helicase-primase (UL5/8/52), and DNA polymerase (UL30/42). HSV immediate-early genes for ICP0 and ICP4 further enhanced AAV5 replication, mainly by induction of rep gene expression. In the presence of HSV helper functions, AAV5 Rep co-localized with ICP8 in nuclear replication compartments, and HSV alkaline exonuclease (UL12) enhanced AAV5 replication, similarly to AAV2. UL12, in combination with ICP8, was shown to induce DNA strand exchange on partially double-stranded templates to resolve and repair concatemeric HSV replication intermediates. Similarly, concatemeric AAV replication intermediates appeared to be processed to yield AAV unit-length molecules, ready for AAV packaging. Taken together, our findings show that productive AAV5 replication is promoted by the same combination of HSV helper functions as AAV2.
Collapse
Affiliation(s)
- Catrin Stutika
- Institute of Virology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany
| | - Daniela Hüser
- Institute of Virology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany
| | - Stefan Weger
- Institute of Virology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany
| | - Natalja Rutz
- Institute of Virology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany
| | - Melanie Heßler
- Institute of Virology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany
| | - Regine Heilbronn
- Institute of Virology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany
| |
Collapse
|
6
|
Vogel R, Seyffert M, Pereira BDA, Fraefel C. Viral and Cellular Components of AAV2 Replication Compartments. Open Virol J 2013; 7:98-120. [PMID: 24222808 PMCID: PMC3822785 DOI: 10.2174/1874357901307010098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 02/07/2023] Open
Abstract
Adeno-associated virus 2 (AAV2) is a helpervirus-dependent parvovirus with a bi-phasic life cycle comprising latency in absence and lytic replication in presence of a helpervirus, such as adenovirus (Ad) or herpes simplex virus type 1 (HSV-1). Helpervirus-supported AAV2 replication takes place in replication compartments (RCs) in the cell nucleus where virus DNA replication and transcription occur. RCs consist of a defined set of helper virus-, AAV2-, and cellular proteins. Here we compare the profile of cellular proteins recruited into AAV2 RCs or identified in Rep78-associated complexes when either Ad or HSV-1 is the helpervirus, and we discuss the potential roles of some of these proteins in AAV2 and helpervirus infection.
Collapse
Affiliation(s)
| | | | | | - Cornel Fraefel
- Institute of Virology, University of Zurich, Winterthurerstr. 266a, CH-8057 Zurich, Switzerland
| |
Collapse
|