1
|
Wen Y, Guo W, Meng C, Yang J, Xu S, Chen H, Gan J, Wu B. Structural insights into the biosynthetic mechanism of Nα-GlyT and 5-NmdU hypermodifications of DNA. Nucleic Acids Res 2024; 52:11083-11097. [PMID: 39268585 PMCID: PMC11472151 DOI: 10.1093/nar/gkae784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024] Open
Abstract
DNA hypermodifications are effective weapons for phages to cope with the defense system of bacteria. The biogenesis of DNA hypermodification in phages involves multiple steps, from the modified deoxynucleotide monophosphates to the final hypermodification on the DNA chains. PseudomonasPaMx11 gp46 and gp47 encode the enzymes for sequentially converting 5-phosphomethyl-2'-deoxyuridine to 5-Nα-glycinylthymidine and 5-aminomethyl-2'-deoxyuridine. Here, we have determined the crystal structures of gp46 and gp47 in their apo and double-stranded DNA (dsDNA)-bound forms. We uncovered their dsDNA recognition properties and identified the critical residues for the catalytic reactions. Combined with in vitro biochemical studies, we proposed a plausible reaction scheme for gp46 and gp47 in converting these DNA hypermodifications. Our studies will provide the structural basis for future bioengineering of the synthetic pathway of hypermodification and identifying new modifications in mammals by enzyme-assisted sequencing methods.
Collapse
Affiliation(s)
- Yan Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong–Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - Wenting Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong–Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - Chunyan Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong–Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - Jie Yang
- Shanghai Sci-Tech Inno Center for Infection & Immunity, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Sha Xu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Haitao Chen
- School of Public Health (Shenzhen), Sun Yat-Sen University, 66 Gongchang Road, Shenzhen 518107, China
| | - Jianhua Gan
- Shanghai Sci-Tech Inno Center for Infection & Immunity, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Baixing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong–Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| |
Collapse
|
2
|
Nie P, Bai Y, Mei H. Synthetic Life with Alternative Nucleic Acids as Genetic Materials. Molecules 2020; 25:E3483. [PMID: 32751873 PMCID: PMC7435384 DOI: 10.3390/molecules25153483] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
DNA, the fundamental genetic polymer of all living organisms on Earth, can be chemically modified to embrace novel functions that do not exist in nature. The key chemical and structural parameters for genetic information storage, heredity, and evolution have been elucidated, and many xenobiotic nucleic acids (XNAs) with non-canonical structures are developed as alternative genetic materials in vitro. However, it is still particularly challenging to replace DNAs with XNAs in living cells. This review outlines some recent studies in which the storage and propagation of genetic information are achieved in vivo by expanding genetic systems with XNAs.
Collapse
Affiliation(s)
| | | | - Hui Mei
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (P.N.); (Y.B.)
| |
Collapse
|
3
|
Genomic Characterization of Cyanophage vB_AphaS-CL131 Infecting Filamentous Diazotrophic Cyanobacterium Aphanizomenon flos-aquae Reveals Novel Insights into Virus-Bacterium Interactions. Appl Environ Microbiol 2018; 85:AEM.01311-18. [PMID: 30367000 PMCID: PMC6293099 DOI: 10.1128/aem.01311-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 10/07/2018] [Indexed: 12/29/2022] Open
Abstract
While filamentous cyanobacteria play a crucial role in food web dynamics and biogeochemical cycling of many aquatic ecosystems around the globe, the knowledge regarding the phages infecting them is limited. Here, we describe the complete genome of the virulent cyanophage vB_AphaS-CL131 (here, CL 131), a Siphoviridae phage that infects the filamentous diazotrophic bloom-forming cyanobacterium Aphanizomenon flos-aquae in the brackish Baltic Sea. CL 131 features a 112,793-bp double-stranded DNA (dsDNA) genome encompassing 149 putative open reading frames (ORFs), of which the majority (86%) lack sequence homology to genes with known functions in other bacteriophages or bacteria. Phylogenetic analysis revealed that CL 131 possibly represents a new evolutionary lineage within the group of cyanophages infecting filamentous cyanobacteria, which form a separate cluster from phages infecting unicellular cyanobacteria. CL 131 encodes a putative type V-U2 CRISPR-Cas system with one spacer (out of 10) targeting a DNA primase pseudogene in a cyanobacterium and a putative type II toxin-antitoxin system, consisting of a GNAT family N-acetyltransferase and a protein of unknown function containing the PRK09726 domain (characteristic of HipB antitoxins). Comparison of CL 131 proteins to reads from Baltic Sea and other available fresh- and brackish-water metagenomes and analysis of CRISPR-Cas arrays in publicly available A. flos-aquae genomes demonstrated that phages similar to CL 131 are present and dynamic in the Baltic Sea and share a common history with their hosts dating back at least several decades. In addition, different CRISPR-Cas systems within individual A. flos-aquae genomes targeted several sequences in the CL 131 genome, including genes related to virion structure and morphogenesis. Altogether, these findings revealed new genomic information for exploring viral diversity and provide a model system for investigation of virus-host interactions in filamentous cyanobacteria.IMPORTANCE The genomic characterization of novel cyanophage vB_AphaS-CL131 and the analysis of its genomic features in the context of other viruses, metagenomic data, and host CRISPR-Cas systems contribute toward a better understanding of aquatic viral diversity and distribution in general and of brackish-water cyanophages infecting filamentous diazotrophic cyanobacteria in the Baltic Sea in particular. The results of this study revealed previously undescribed features of cyanophage genomes (e.g., self-excising intein-containing putative dCTP deaminase and putative cyanophage-encoded CRISPR-Cas and toxin-antitoxin systems) and can therefore be used to predict potential interactions between bloom-forming cyanobacteria and their cyanophages.
Collapse
|
4
|
Weigele P, Raleigh EA. Biosynthesis and Function of Modified Bases in Bacteria and Their Viruses. Chem Rev 2016; 116:12655-12687. [PMID: 27319741 DOI: 10.1021/acs.chemrev.6b00114] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Naturally occurring modification of the canonical A, G, C, and T bases can be found in the DNA of cellular organisms and viruses from all domains of life. Bacterial viruses (bacteriophages) are a particularly rich but still underexploited source of such modified variant nucleotides. The modifications conserve the coding and base-pairing functions of DNA, but add regulatory and protective functions. In prokaryotes, modified bases appear primarily to be part of an arms race between bacteriophages (and other genomic parasites) and their hosts, although, as in eukaryotes, some modifications have been adapted to convey epigenetic information. The first half of this review catalogs the identification and diversity of DNA modifications found in bacteria and bacteriophages. What is known about the biogenesis, context, and function of these modifications are also described. The second part of the review places these DNA modifications in the context of the arms race between bacteria and bacteriophages. It focuses particularly on the defense and counter-defense strategies that turn on direct recognition of the presence of a modified base. Where modification has been shown to affect other DNA transactions, such as expression and chromosome segregation, that is summarized, with reference to recent reviews.
Collapse
Affiliation(s)
- Peter Weigele
- Chemical Biology, New England Biolabs , Ipswich, Massachusetts 01938, United States
| | | |
Collapse
|
5
|
Trading in cooperativity for specificity to maintain uracil-free DNA. Sci Rep 2016; 6:24219. [PMID: 27063406 PMCID: PMC4827122 DOI: 10.1038/srep24219] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/22/2016] [Indexed: 11/21/2022] Open
Abstract
Members of the dUTPase superfamily play an important role in the maintenance of the pyrimidine nucleotide balance and of genome integrity. dCTP deaminases and the bifunctional dCTP deaminase-dUTPases are cooperatively regulated by dTTP. However, the manifestation of allosteric behavior within the same trimeric protein architecture of dUTPases, the third member of the superfamily, has been a question of debate for decades. Therefore, we designed hybrid dUTPase trimers to access conformational states potentially mimicking the ones observed in the cooperative relatives. We studied how the interruption of different steps of the enzyme cycle affects the active site cross talk. We found that subunits work independently in dUTPase. The experimental results combined with a comparative structural analysis of dUTPase superfamily enzymes revealed that subtile structural differences within the allosteric loop and the central channel in these enzymes give rise to their dramatically different cooperative behavior. We demonstrate that the lack of allosteric regulation in dUTPase is related to the functional adaptation to more efficient dUTP hydrolysis which is advantageous in uracil-DNA prevention.
Collapse
|
6
|
Møllgaard H, Neuhard J. Deoxycytidylate deaminase from Bacillus subtilis. Purification, characterization, and physiological function. J Biol Chem 1978. [DOI: 10.1016/s0021-9258(17)34834-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
7
|
Katz GE, Price AR, Pomerantz MJ. Bacteriophage PBS2-induced inhibition of uracil-containing DNA degradation. J Virol 1976; 20:535-8. [PMID: 824463 PMCID: PMC355022 DOI: 10.1128/jvi.20.2.535-538.1976] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Degradation of uracil-containing DNA by Bacillus subtilis extracts and its inhibition after infection by the uracil-containing DNA phage PBS2 have been investigated to resolve differences between the published reports of Tomita and Takahashi (1975) and Friedberg et al. (1975, 1976). The product of hydrolysis of PBS2 DNA, tritium labeled in its uracil and cytosine residues, is solely uracil and not deoxyuridine. The degrading activity is completely inhibited within 7 min after PBS2 infection, before any other known PBS2-induced protein is detectable. The production of the PBS2 inhibitor (a small, heat-stable protein) continues until 10 to 20 min postinfection.
Collapse
|
8
|
Price AR, Frato J. Bacillus subtilis deoxyuridinetriphosphatase and its bacteriophage PBS2-induced inhibitor. J Biol Chem 1975. [DOI: 10.1016/s0021-9258(19)40744-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
9
|
Abstract
Phleomycin is an effective inhibitor of the replication of Bacillus subtilis bacteriophage PBS2, whose DNA contains uracil instead of thymine. Phleomycin does not affect the induction of the known phage enzymes involved in deoxyribonucleotide metabolism. But phage DNA synthesis is severely inhibited by phleomycin, and late virion protein synthesis is eliminated. These effects appear to result from a phleomycin-induced degradation of the parental phage DNA. Similar inhibitory and degradative effects on DNA are seen in phleomyinc-treated, uninfected cells. This system is unaffected by the related antibiotic, bleomycin.
Collapse
|