1
|
Wang L, Yan H, Zeng B, Hu Z. Research Progress on Cordycepin Synthesis and Methods for Enhancement of Cordycepin Production in Cordyceps militaris. Bioengineering (Basel) 2022; 9:bioengineering9020069. [PMID: 35200422 PMCID: PMC8869658 DOI: 10.3390/bioengineering9020069] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/17/2022] [Accepted: 02/09/2022] [Indexed: 12/04/2022] Open
Abstract
C. militaris is an insect-born fungus that belongs to Ascomycota and Cordyceps. It has a variety of biological activities that can be applied in medicine, health-care products, cosmeceuticals and other fields. Cordycepin (COR) is one of the major bioactive components identified from C. militaris. Thus, C. militaris and COR have attracted extensive attention. In this study, chemical synthetic methods and the biosynthesis pathway of COR were reviewed. As commercially COR was mainly isolated from C. militaris fermentation, the optimizations for liquid and solid fermentation and genetic modifications of C. militaris to increase COR content were also summarized. Moreover, the research progress of genetic modifications of C. militaris and methods for separation and purification COR were introduced. Finally, the existing problems and future research direction of C. militaris were discussed. This study provides a reference for the production of COR in the future.
Collapse
Affiliation(s)
- Li Wang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (L.W.); (H.Y.)
| | - Huanhuan Yan
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (L.W.); (H.Y.)
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (L.W.); (H.Y.)
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
- Correspondence: (B.Z.); (Z.H.); Tel.: +86-13755679856 (B.Z.); +86-15797865372 (Z.H.)
| | - Zhihong Hu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (L.W.); (H.Y.)
- Correspondence: (B.Z.); (Z.H.); Tel.: +86-13755679856 (B.Z.); +86-15797865372 (Z.H.)
| |
Collapse
|
2
|
Rabie AM. Potent Inhibitory Activities of the Adenosine Analogue Cordycepin on SARS-CoV-2 Replication. ACS OMEGA 2022; 7:2960-2969. [PMID: 35071937 PMCID: PMC8767658 DOI: 10.1021/acsomega.1c05998] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/14/2021] [Indexed: 01/18/2023]
Abstract
![]()
Nucleoside analogues
are among the most successful bioactive classes
of druglike compounds in pharmaceutical chemistry as they are well-known
for their numerous effective bioactivities in humans, especially as
antiviral and anticancer agents. Coronavirus disease 2019 (COVID-19)
is still untreatable, with its causing virus, the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), continuing to wreak havoc on
the ground everywhere. This complicated international situation urged
all concerned scientists, including medicinal chemists and drug discoverers,
to search for a potent anti-COVID-19 drug. Cordycepin (3′-deoxyadenosine)
is a known natural adenosine analogue of fungal origin, which could
also be synthetically produced. This bioactive phytochemical compound
is characterized by several proven strong pharmacological actions
that may effectively contribute to the comprehensive treatment of
COVID-19, with the antiviral activities being the leading ones. Some
new studies predicted the possible inhibitory affinities of cordycepin
against the principal SARS-CoV-2 protein targets (e.g., SARS-CoV-2 spike (S) protein, main protease (Mpro) enzyme,
and RNA-dependent RNA polymerase (RdRp) enzyme) based on the computational
approach. Interestingly, the current research showed, for the first
time, that cordycepin is able to potently inhibit the multiplication
of the new resistant strains of SARS-CoV-2 with a very minute in vitro anti-SARS-CoV-2 EC50 of about 2 μM,
edging over both remdesivir and its active metabolite GS-441524. The
ideal pharmacophoric features of the cordycepin molecule render it
a typical inhibitor of SARS-CoV-2 replication, with its flexible structure
open for most types of derivatization in the future. Briefly, the
current findings further support and suggest the repurposing possibility
of cordycepin against COVID-19 and greatly encourage us to confidently
and rapidly begin its preclinical/clinical evaluations for the comprehensive
treatment of COVID-19.
Collapse
Affiliation(s)
- Amgad M. Rabie
- Dr. Amgad Rabie’s Research Lab. for Drug Discovery (DARLD), Mansoura 35511, Egypt
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
3
|
Bibi S, Hasan MM, Wang YB, Papadakos SP, Yu H. Cordycepin as a Promising Inhibitor of SARS-CoV-2 RNA dependent RNA polymerase (RdRp). Curr Med Chem 2021; 29:152-162. [PMID: 34420502 DOI: 10.2174/0929867328666210820114025] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND SARS-CoV-2, which emerged in Wuhan, China, is a new global threat that has killed millions of people and continues to do so. This pandemic has not only threatened human life but has also triggered economic downturns across the world. Researchers have made significant strides in discovering molecular insights into SARS-CoV-2 pathogenesis and developing vaccines, but there is still no successful cure for SARS-CoV-2 infected patients. OBJECTIVE The present study has proposed a drug-repositioning pipeline for the design and discovery of an effective fungal-derived bioactive metabolite as a drug candidate against SARS-CoV-2. METHODS Fungal derivative "Cordycepin" was selected for this study to investigate the inhibitory properties against RNA-dependent RNA polymerase (RdRp) (PDB ID: 6M71) of SARS-CoV-2. The pharmacological profile, intermolecular interactions, binding energy, and stability of the compound were determined utilizing cheminformatic approaches. Subsequently, molecular dynamic simulation was performed to better understand the binding mechanism of cordycepin to RdRp. RESULTS The pharmacological data and retrieved molecular dynamics simulations trajectories suggest excellent drug-likeliness and greater structural stability of cordycepin, while the catalytic residues (Asp760, Asp761), as well as other active site residues (Trp617, Asp618, Tyr619, Trp800, Glu811) of RdRp, showed better stability during the overall simulation span. CONCLUSION Promising results of pharmacological investigation along with molecular simulations revealed that cordycepin exhibited strong inhibitory potential against SARS-CoV-2 polymerase enzyme (RdRp). Hence, cordycepin should be highly recommended to test in a laboratory to confirm its inhibitory potential against the SARS-CoV-2 polymerase enzyme (RdRp).
Collapse
Affiliation(s)
- Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, Yunnan. China
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902. Bangladesh
| | - Yuan-Bing Wang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, Yunnan. China
| | - Stavros P Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens. Greece
| | - Hong Yu
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, Yunnan. China
| |
Collapse
|
4
|
Zhang W, Li X, Ma L, Urrehman U, Bao X, Zhang Y, Zhang CY, Hou D, Zhou Z. Identification of microRNA-like RNAs in Ophiocordyceps sinensis. SCIENCE CHINA-LIFE SCIENCES 2018; 62:349-356. [DOI: 10.1007/s11427-017-9277-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/29/2017] [Indexed: 01/07/2023]
|
5
|
Ryu E, Son M, Lee M, Lee K, Cho JY, Cho S, Lee SK, Lee YM, Cho H, Sung GH, Kang H. Cordycepin is a novel chemical suppressor of Epstein-Barr virus replication. Oncoscience 2014; 1:866-881. [PMID: 25621301 PMCID: PMC4303894 DOI: 10.18632/oncoscience.110] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 12/14/2014] [Indexed: 12/12/2022] Open
Abstract
Cordyceps species are known to produce numerous active components and are used for diverse medicinal purposes because of their varied physiological activities, including their ability to protect the liver from damage as well as their anticancer, antidepressant, anti-inflammatory, hypoglycemic, antimicrobial effects. Cordycepin, an adenosine derivative, differs from adenosine in that its ribose lacks an oxygen atom at the 3′ position. Several research groups have reported that cordycepin has antiviral activity against several viruses including influenza virus, plant viruses, human immunodeficiency virus(HIV), murine leukemia virus, and Epstein-Barr virus (EBV). In this study, we identify the epigenetic mechanisms by which cordycepin exerts its anti-gammaherpesvirus effects. We show that cordycepin possesses antitumor and antiviral activity against gastric carcinoma and EBV, respectively. A comparison of the CD50 values of cordycepin and its analogs showed that the lack of a 2′-hydroxyl group in cordycepin was critical for its relatively potent cytotoxicity. Cordycepin treatment decreased the rate of early apoptosis in SNU719 cells by up to 64%, but increased late apoptosis/necrosis by up to 31%. Interestingly, cordycepin increased BCL7A methylation in SNU719 cells by up to 58% and decreased demethylation by up to 37%. Consistent with these changes in methylation, cordycepin treatment significantly downregulated most EBV genes tested. Under the same conditions, cordycepin significantly decreased the frequency of Q and F promoter usage, and H3K4me3 histone enrichment was significantly reduced at several important EBV genomic loci. Extracellular and intracellular EBV genome copy numbers were reduced by up to 55% and 30%, respectively, in response to 125 μM cordycepin treatment. Finally, cordycepin significantly suppressed the transfer of EBV from LCL-EBV-GFP to AGS cells, indicating that EBV infection of gastric epithelial cells was inhibited. These results suggest that cordycepin has antiviral and antitumor activities against gammaherpesviruses and host cells latently infected with virus.
Collapse
Affiliation(s)
- Eunhyun Ryu
- College of Pharmacy and Institute of microorganisms, Kyungpook National University, Daegu, Republic of Korea
| | - Myoungki Son
- College of Pharmacy and Institute of microorganisms, Kyungpook National University, Daegu, Republic of Korea
| | - Minjung Lee
- College of Pharmacy and Institute of microorganisms, Kyungpook National University, Daegu, Republic of Korea
| | - Kanghyo Lee
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sungchan Cho
- Targeted Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon, Chungbuk, Republic of Korea
| | - Suk Kyeong Lee
- Research Institute of Immunobiology, Department of Biomedical Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - You Mie Lee
- College of Pharmacy and Institute of microorganisms, Kyungpook National University, Daegu, Republic of Korea
| | - Hyosun Cho
- College of Pharmacy, Duksung Women's University, Seoul, Republic of Korea
| | - Gi-Ho Sung
- Institute for Bio-Medical Convergence, International St. Mary's Hospital, College of Medicine, Catholic Kwangdong University, Incheon, Republic of Korea
| | - Hyojeung Kang
- College of Pharmacy and Institute of microorganisms, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
6
|
Gao L, Zhang W, Sun Y, Yang Q, Ren J, Liu J, Wang H, Feng WH. Cryptoporus volvatus extract inhibits porcine reproductive and respiratory syndrome virus (PRRSV) in vitro and in vivo. PLoS One 2013; 8:e63767. [PMID: 23704937 PMCID: PMC3660591 DOI: 10.1371/journal.pone.0063767] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 04/02/2013] [Indexed: 01/08/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an important arterivirus that can cause significant losses in swine industry. At present, there are no adequate control strategies against PRRSV. Thus, there is an urgent need for new treatment regimens that have efficacious antiviral activity to compensate for vaccines. Cryptoporus volvatus commonly serves as an anti-infective agent in Tradational Chinese Medicines. In this report, we exploited whether the aqueous extract from the fruiting body of Cryptoporus volvatus had the potential to inhibit PRRSV infection. Our results showed that the extract significantly inhibited PRRSV infection by repressing virus entry, viral RNA expression, and possibly viral protein synthesis, cell-to-cell spread, and releasing of virus particles. However, it did not block PRRSV binding to cells. Further studies confirmed that the extract directly inhibited PRRSV RNA-dependent RNA polymerase (RdRp) activity, thus interfering with PRRSV RNA and protein synthesis. More importantly, the extract efficiently inhibited highly pathologic PRRSV (HP-PRRSV) infection in vivo, reduced virus load in serum, and increased the survival rate of pigs inoculated with HP-PRRSV strain. Collectively, our findings imply that the aqueous extract from the fruiting body of Cryptoporus volvatus has the potential to be used for anti-PRRSV therapies.
Collapse
Affiliation(s)
- Li Gao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Weiwei Zhang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yipeng Sun
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qian Yang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jie Ren
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, China Agricultural University, Beijing, China
| | - Jinhua Liu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hexiang Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail: (WHF); (HW)
| | - Wen-hai Feng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail: (WHF); (HW)
| |
Collapse
|
7
|
Zhang S, Feng H, Li X, Jin Y, Dong W. Genome research profile of two Cordyceps sinensis cDNA libraries. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11434-010-0113-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Insight into poliovirus genome replication and encapsidation obtained from studies of 3B-3C cleavage site mutants. J Virol 2009; 83:9370-87. [PMID: 19587035 DOI: 10.1128/jvi.02076-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A poliovirus (PV) mutant (termed GG), which is incapable of producing 3AB, VPg, and 3CD proteins due to a defective cleavage site between the 3B and 3C proteins, replicated, producing 3BC-linked RNA rather than the VPg-linked RNA produced by the wild type (WT). GG PV RNA is quasi-infectious. The yield of infectious GG PV relative to replicated RNA is reduced by almost 5 logs relative to that of WT PV. Proteolytic activity required for polyprotein processing is normal for the GG mutant. 3BC-linked RNA can be encapsidated as efficiently as VPg-linked RNA. However, a step after genome replication but preceding virus assembly that is dependent on 3CD and/or 3AB proteins limits production of infectious GG PV. This step may involve release of replicated genomes from replication complexes. A pseudorevertant (termed EG) partially restored cleavage at the 3B-3C cleavage site. The reduced rate of formation of 3AB and 3CD caused corresponding reductions in the observed rate of genome replication and infectious virus production by EG PV without impacting the final yield of replicated RNA or infectious virus relative to that of WT PV. Using EG PV, we showed that genome replication and encapsidation were distinct steps in the multiplication cycle. Ectopic expression of 3CD protein reversed the genome replication phenotype without alleviating the infectious-virus production phenotype. This is the first report of a trans-complementable function for 3CD for any picornavirus. This observation supports an interaction between 3CD protein and viral and/or host factors that is critical for genome replication, perhaps formation of replication complexes.
Collapse
|
9
|
Dawson WO. Tobacco mosaic virus protein synthesis is correlated with double-stranded RNA synthesis and not single-stranded RNA synthesis. Virology 1983; 125:314-22. [PMID: 6601327 DOI: 10.1016/0042-6822(83)90204-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The synthesis rates of three proteins of tobacco mosaic virus (TMV), 160, 110, and 17.5 kDa, were monitored at intervals after interruption of synthesis of TMV RNA. Following inhibition of synthesis of both single-stranded and double-stranded RNAs by shifting wild type TMV to 40 degrees or ts mutant III2-35 to 35 degrees, the synthesis rates of viral proteins declined sequentially, with that of the larger proteins declining faster. When viral RNA synthesis was prevented with cordycepin, synthesis rates of the 110 and 160-kDa proteins declined rapidly, while the 17.5-kDa protein decreased more slowly. These data imply that the functional mRNA is transitory, probably nascent RNA, and that each protein is produced independently. The process of translation of viral mRNA was not temperature sensitive and occurred normally for brief periods after shift to restrictive temperatures. When single-stranded RNA synthesis was inhibited differentially from double-stranded RNA synthesis, protein synthesis was correlated with double-stranded RNA synthesis and not single-stranded RNA synthesis. Following a shift of ts mutant IV-35 to 35 degrees, a shift that immediately stopped single-stranded RNA synthesis without inhibiting double-stranded RNA synthesis, all three viral proteins continued to be produced normally. Also, after return of wild type TMV to 25 degrees after a 1-hr incubation at 40 degrees, viral protein and double-stranded RNA synthesis recovered in parallel to the normal rate after 8 hr whereas single-stranded RNA synthesis, which had been reduced more drastically, recovered more slowly after 16 hr.
Collapse
|