1
|
Cheng X, Yang J, Bi X, Yang Q, Zhou D, Zhang S, Ding L, Wang K, Hua S, Cheng Z. Molecular characteristics and pathogenicity of a Tibet-origin mutant avian leukosis virus subgroup J isolated from Tibetan chickens in China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 109:105415. [PMID: 36775048 DOI: 10.1016/j.meegid.2023.105415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/02/2022] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Tibetan chicken is found in China Tibet (average altitude; ˃4500 m). However, little is known about avian leukosis virus subgroup J (ALV-J) found in Tibetan chickens. ALV-J is a typical alpharetrovirus that causes immunosuppression and myelocytomatosis and thus seriously affects the development of the poultry industry. In this study, Tibet-origin mutant ALV-J was isolated from Tibetan chickens and named RKZ-1-RKZ-5. A Myelocytomatosis outbreak occurred in a commercial Tibetan chicken farm in Shigatse of Rikaze, Tibet, China, in March 2022. About 20% of Tibetan chickens in the farm showed severe immunosuppression, and mortality increased to 5.6%. Histopathological examination showed typical myelocytomas in various tissues. Virus isolation and phylogenetic analysis demonstrated that ALV-J caused the disease. Gene-wide phylogenetic analysis showed the RKZ isolates were the original strains of the previously reported Tibetan isolates (TBC-J4 and TBC-J6) (identity; 94.5% to 94.9%). Furthermore, significant nucleotide mutations and deletions occurred in the hr1 and hr2 hypervariable regions of gp85 gene, 3'UTR, Y Box, and TATA Box of 3'LTR. Pathogenicity experiments demonstrated that the viral load, viremia, and viral shedding level were significantly higher in RKZ-1-infected chickens than in NX0101-infected chickens. Notably, RKZ-1 caused more severe cardiopulmonary damage in SPF chickens. These findings prove the origin of Tibet ALV-J and provide insights into the molecular characteristics and pathogenic ability of ALV-J in the plateau area. Therefore, this study may provide a basis for ALV-J prevention and eradication in Tibet.
Collapse
Affiliation(s)
- Xiangyu Cheng
- College of Veterinary Medicine, Shandong Agriculture University, Taian 271018, China
| | - Jianhao Yang
- College of Veterinary Medicine, Shandong Agriculture University, Taian 271018, China
| | - Xiaoqing Bi
- College of Veterinary Medicine, Shandong Agriculture University, Taian 271018, China
| | - Qi Yang
- College of Veterinary Medicine, Shandong Agriculture University, Taian 271018, China
| | - Defang Zhou
- College of Veterinary Medicine, Shandong Agriculture University, Taian 271018, China
| | - Shicheng Zhang
- College of Veterinary Medicine, Shandong Agriculture University, Taian 271018, China
| | - Longying Ding
- College of Veterinary Medicine, Shandong Agriculture University, Taian 271018, China
| | - Kang Wang
- College of Veterinary Medicine, Shandong Agriculture University, Taian 271018, China
| | - Shuhan Hua
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agriculture University, Taian 271018, China.
| |
Collapse
|
2
|
The Bipartite Sequence Motif in the N and C Termini of gp85 of Subgroup J Avian Leukosis Virus Plays a Crucial Role in Receptor Binding and Viral Entry. J Virol 2020; 94:JVI.01232-20. [PMID: 32878894 DOI: 10.1128/jvi.01232-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/29/2020] [Indexed: 01/24/2023] Open
Abstract
Subgroup J avian leukemia virus (ALV-J), belonging to the genus Alpharetrovirus, enters cells through its envelope surface unit (gp85) via specifically recognizing the cellular receptor chicken Na+/H+ exchanger type I (chNHE1), the 28 to 39 N-terminal residues of which were characterized as the minimal receptor functional domain in our previous studies. In this study, to further clarify the precise organization and properties of the interaction between ALV-J gp85 and chNHE1, we identified the chNHE1-binding domain of ALV-J gp85 using a series of gp85 mutants with segment substitutions and evaluating their effects on chNHE1 binding in protein-cell binding assays. Our results showed that hemagglutinin (HA) substitutions of amino acids (aa) 38 to 131 (N terminus of gp85) and aa 159 to 283 (C terminus of gp85) significantly inhibited the interaction between gp85 and chNHE1/chNHE1 loop 1. In addition, these HA-substituted chimeric gp85 proteins could not effectively block the entry of ALV-J into chNHE1-expressing cells. Furthermore, analysis of various N-linked glycosylation sites and cysteine mutants in gp85 revealed that glycosylation sites (N6 and N11) and cysteines (C3 and C9) were directly involved in receptor-gp85 binding and important for the entry of ALV-J into cells. Taken together, our findings indicated that the bipartite sequence motif, spanning aa 38 to 131 and aa 159 to 283, of ALV-J gp85 was essential for binding to chNHE1, with its two N-linked glycosylation sites and two cysteines being important for its receptor-binding function and subsequent viral infection steps.IMPORTANCE Infection of a cell by retroviruses requires the attachment and fusion of the host and viral membranes. The specific adsorption of envelope (Env) surface proteins to cell receptors is a key step in triggering infections and has been the target of antiviral drug screening. ALV-J is an economically important avian pathogen that belongs to the genus Alpharetrovirus and has a wider host range than other ALV subgroups. Our results showed that the amino acids 38 to 131 of the N terminus and 159 to 283 of the C terminus of ALV-J gp85 controlled the efficiency of gp85 binding to chNHE1 and were critical for viral infection. In addition, the glycosylation sites (N6 and N11) and cysteines (C3 and C9) of gp85 played a crucial role in the receptor binding and viral entry. These findings might help elucidate the mechanism of the entry of ALV-J into host cells and provide antiviral targets for the control of ALV-J.
Collapse
|
3
|
Yehia N, El-Sayed HS, Omar SE, Amer F. Genetic variability of the Avian leukosis virus subgroup J gp85 gene in layer flocks in Lower Egypt. Vet World 2020; 13:1065-1072. [PMID: 32801556 PMCID: PMC7396352 DOI: 10.14202/vetworld.2020.1065-1072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/15/2020] [Indexed: 11/16/2022] Open
Abstract
Aim This study aimed to determine the prevalence of layer flock tumor disease in Lower Egypt during the period of 2018-2019 and to undertake molecular characterization and determine the genetic diversity of all identified viruses. Materials and Methods Forty samples were collected from layer chicken located in six governorates of Lower Egypt during the period of 2018-2019. Samples were taken from tumors in different organs. Tumor tissues were identified by histopathological sectioning and then further confirmed by a reverse-transcription polymerase chain reaction. Finally, genetic evolution of Avian leukosis virus (ALV-J) gp85 gene was studied. Results All the study samples were negative for Marek's disease virus, reticuloendotheliosis virus, ALV (A,B,C and D) and 20 samples were positive for ALV-J in backyard in six governrates. Sequencing of ALV-J gp85 gene was performed for six representative samples (one from each governorate), and they were found to be genetically related to prototype virus HPRS-1003 (identity percentage: 91.2-91.8%), but they were from a different group that was similar to the AF88-USA strain (first detected in 2000) with specific mutations, and they differed from a strain that was previously isolated in Egypt in 2005, forming two different subgroups (I and II) that had mutations in the hr1domain (V128F, R136A) and hr2 domain (S197G, E202K). Conclusion The ALV-J virus was the main cause of neoplastic disease in layer chickens from Lower Egypt in the period of 2018-2019. We found that the genetic evolution of ALV-J gp85 gene was related to prototype virus HPRS-1003 but in a different group with a specific mutation. Further studies are needed to evaluate the antigenicity and pathogenicity of recently detected ALV-J strains.
Collapse
Affiliation(s)
- Nahed Yehia
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Hemat S El-Sayed
- Department of Poultry Diseases, Benha Provincial Laboratory, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Sabry E Omar
- Department of Poultry Diseases, Benha Provincial Laboratory, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Fatma Amer
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| |
Collapse
|
4
|
Avian Sarcoma and Leukosis Virus Envelope Glycoproteins Evolve to Broaden Receptor Usage Under Pressure from Entry Competitors †. Viruses 2019; 11:v11060519. [PMID: 31195660 PMCID: PMC6630762 DOI: 10.3390/v11060519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
The subgroup A through E avian sarcoma and leukosis viruses (ASLV(A) through ASLV(E)) are a group of highly related alpharetroviruses that have evolved their envelope glycoproteins to use different receptors to enable efficient virus entry due to host resistance and/or to expand host range. Previously, we demonstrated that ASLV(A) in the presence of a competitor to the subgroup A Tva receptor, SUA-rIgG immunoadhesin, evolved to use other receptor options. The selected mutant virus, RCASBP(A)Δ155–160, modestly expanded its use of the Tvb and Tvc receptors and possibly other cell surface proteins while maintaining the binding affinity to Tva. In this study, we further evolved the Δ155–160 virus with the genetic selection pressure of a soluble form of the Tva receptor that should force the loss of Tva binding affinity in the presence of the Δ155–160 mutation. Viable ASLVs were selected that acquired additional mutations in the Δ155–160 Env hypervariable regions that significantly broadened receptor usage to include Tvb and Tvc as well as retaining the use of Tva as a receptor determined by receptor interference assays. A similar deletion in the hr1 hypervariable region of the subgroup C ASLV glycoproteins evolved to broaden receptor usage when selected on Tvc-negative cells.
Collapse
|
5
|
Yin X, Melder DC, Payne WS, Dodgson JB, Federspiel MJ. Mutations in Both the Surface and Transmembrane Envelope Glycoproteins of the RAV-2 Subgroup B Avian Sarcoma and Leukosis Virus Are Required to Escape the Antiviral Effect of a Secreted Form of the Tvb S3 Receptor †. Viruses 2019; 11:v11060500. [PMID: 31159208 PMCID: PMC6630269 DOI: 10.3390/v11060500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/24/2022] Open
Abstract
The subgroup A through E avian sarcoma and leukosis viruses ASLV(A) through ASLV(E) are a group of highly related alpharetroviruses that have evolved to use very different host protein families as receptors. We have exploited genetic selection strategies to force the replication-competent ASLVs to naturally evolve and acquire mutations to escape the pressure on virus entry and yield a functional replicating virus. In this study, evolutionary pressure was exerted on ASLV(B) virus entry and replication using a secreted for of its Tvb receptor. As expected, mutations in the ASLV(B) surface glycoprotein hypervariable regions were selected that knocked out the ability for the mutant glycoprotein to bind the sTvbS3-IgG inhibitor. However, the subgroup B Rous associated virus 2 (RAV-2) also required additional mutations in the C-terminal end of the SU glycoprotein and multiple regions of TM highlighting the importance of the entire viral envelope glycoprotein trimer structure to mediate the entry process efficiently. These mutations altered the normal two-step ASLV membrane fusion process to enable infection.
Collapse
Affiliation(s)
- Xueqian Yin
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Deborah C Melder
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - William S Payne
- Department of Microbiology, Michigan State University, East Lansing, MI 48824, USA.
| | - Jerry B Dodgson
- Department of Microbiology, Michigan State University, East Lansing, MI 48824, USA.
| | - Mark J Federspiel
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
6
|
Reverse Engineering Provides Insights on the Evolution of Subgroups A to E Avian Sarcoma and Leukosis Virus Receptor Specificity. Viruses 2019; 11:v11060497. [PMID: 31151254 PMCID: PMC6630264 DOI: 10.3390/v11060497] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022] Open
Abstract
The initial step of retrovirus entry—the interaction between the virus envelope glycoprotein trimer and a cellular receptor—is complex, involving multiple, noncontiguous determinants in both proteins that specify receptor choice, binding affinity and the ability to trigger conformational changes in the viral glycoproteins. Despite the complexity of this interaction, retroviruses have the ability to evolve the structure of their envelope glycoproteins to use a different cellular protein as receptors. The highly homologous subgroup A to E Avian Sarcoma and Leukosis Virus (ASLV) glycoproteins belong to the group of class 1 viral fusion proteins with a two-step triggering mechanism that allows experimental access to intermediate structures during the fusion process. We and others have taken advantage of replication-competent ASLVs and exploited genetic selection strategies to force the ASLVs to naturally evolve and acquire envelope glycoprotein mutations to escape the pressure on virus entry and still yield a functional replicating virus. This approach allows for the simultaneous selection of multiple mutations in multiple functional domains of the envelope glycoprotein that may be required to yield a functional virus. Here, we review the ASLV family and experimental system and the reverse engineering approaches used to understand the evolution of ASLV receptor usage.
Collapse
|
7
|
Chen S, Zheng H, Kishima Y. Genomic fossils reveal adaptation of non-autonomous pararetroviruses driven by concerted evolution of noncoding regulatory sequences. PLoS Pathog 2017; 13:e1006413. [PMID: 28662199 PMCID: PMC5491270 DOI: 10.1371/journal.ppat.1006413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/16/2017] [Indexed: 11/19/2022] Open
Abstract
The interplay of different virus species in a host cell after infection can affect the adaptation of each virus. Endogenous viral elements, such as endogenous pararetroviruses (PRVs), have arisen from vertical inheritance of viral sequences integrated into host germline genomes. As viral genomic fossils, these sequences can thus serve as valuable paleogenomic data to study the long-term evolutionary dynamics of virus-virus interactions, but they have rarely been applied for this purpose. All extant PRVs have been considered autonomous species in their parasitic life cycle in host cells. Here, we provide evidence for multiple non-autonomous PRV species with structural defects in viral activity that have frequently infected ancient grass hosts and adapted through interplay between viruses. Our paleogenomic analyses using endogenous PRVs in grass genomes revealed that these non-autonomous PRV species have participated in interplay with autonomous PRVs in a possible commensal partnership, or, alternatively, with one another in a possible mutualistic partnership. These partnerships, which have been established by the sharing of noncoding regulatory sequences (NRSs) in intergenic regions between two partner viruses, have been further maintained and altered by the sequence homogenization of NRSs between partners. Strikingly, we found that frequent region-specific recombination, rather than mutation selection, is the main causative mechanism of NRS homogenization. Our results, obtained from ancient DNA records of viruses, suggest that adaptation of PRVs has occurred by concerted evolution of NRSs between different virus species in the same host. Our findings further imply that evaluation of within-host NRS interactions within and between populations of viral pathogens may be important.
Collapse
Affiliation(s)
- Sunlu Chen
- Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Huizhen Zheng
- Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yuji Kishima
- Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
8
|
Model of the TVA receptor determinants required for efficient infection by subgroup A avian sarcoma and leukosis viruses. J Virol 2014; 89:2136-48. [PMID: 25473063 DOI: 10.1128/jvi.02339-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The study of the interactions of subgroup A avian sarcoma and leucosis viruses [ASLV(A)] with the TVA receptor required to infect cells offers a powerful experimental model of retroviral entry. Several regions and specific residues in the TVA receptor have previously been identified to be critical determinants of the binding affinity with ASLV(A) envelope glycoproteins and to mediate efficient infection. Two homologs of the TVA receptor have been cloned: the original quail TVA receptor, which has been the basis for most of the initial characterization of the ASLV(A) TVA, and the chicken TVA receptor, which is 65% identical to the quail receptor overall but identical in the region thought to be critical for infection. Our previous work characterized three mutant ASLV(A) isolates that could efficiently bind and infect cells using the chicken TVA receptor homolog but not using the quail TVA receptor homolog, with the infectivity of one mutant virus being >500-fold less with the quail TVA receptor. The mutant viruses contained mutations in the hr1 region of the surface glycoprotein. Using chimeras of the quail and chicken TVA receptors, we have identified new residues of TVA critical for the binding affinity and entry of ASLV(A) using the mutant glycoproteins and viruses to probe the function of those residues. The quail TVA receptor required changes at residues 10, 14, and 31 of the corresponding chicken TVA residues to bind wild-type and mutant ASLV(A) glycoproteins with a high affinity and recover the ability to mediate efficient infection of cells. A model of the TVA determinants critical for interacting with ASLV(A) glycoproteins is proposed. IMPORTANCE A detailed understanding of how retroviruses enter cells, evolve to use new receptors, and maintain efficient entry is crucial for identifying new targets for combating retrovirus infection and pathogenesis, as well as for developing new approaches for targeted gene delivery. Since all retroviruses share an envelope glycoprotein organization, they likely share a mechanism of receptor triggering to begin the entry process. Multiple, noncontiguous interaction determinants located in the receptor and the surface (SU) glycoprotein hypervariable domains are required for binding affinity and to restrict or broaden receptor usage. In this study, further mechanistic details of the entry process were elucidated by characterizing the ASLV(A) glycoprotein interactions with the TVA receptor required for entry. The ASLV(A) envelope glycoproteins are organized into functional domains that allow changes in receptor choice to occur by mutation and/or recombination while maintaining a critical level of receptor binding affinity and an ability to trigger glycoprotein conformational changes.
Collapse
|
9
|
Detection and molecular characterization of J subgroup avian leukosis virus in wild ducks in China. PLoS One 2014; 9:e94980. [PMID: 24733260 PMCID: PMC3986388 DOI: 10.1371/journal.pone.0094980] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 03/21/2014] [Indexed: 12/01/2022] Open
Abstract
To assess the status of avian leukosis virus subgroup J (ALV-J) in wild ducks in China, we examined samples from 528 wild ducks, representing 17 species, which were collected in China over the past 3 years. Virus isolation and PCR showed that 7 ALV-J strains were isolated from wild ducks. The env genes and the 3′UTRs from these isolates were cloned and sequenced. The env genes of all 7 wild duck isolates were significantly different from those in the prototype strain HPRS-103, American strains, broiler ALV-J isolates and Chinese local chicken isolates, but showed close homology with those found in some layer chicken ALV-J isolates and belonged to the same group. The 3′UTRs of 7 ALV-J wild ducks isolates showed close homology with the prototype strain HPRS-103 and no obvious deletion was found in the 3′UTR except for a 1 bp deletion in the E element that introduced a binding site for c-Ets-1. Our study demonstrated the presence of ALV-J in wild ducks and investigated the molecular characterization of ALV-J in wild ducks isolates.
Collapse
|
10
|
Li D, Qin L, Gao H, Yang B, Liu W, Qi X, Wang Y, Zeng X, Liu S, Wang X, Gao Y. Avian leukosis virus subgroup A and B infection in wild birds of Northeast China. Vet Microbiol 2013; 163:257-63. [PMID: 23434189 DOI: 10.1016/j.vetmic.2013.01.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 01/17/2013] [Accepted: 01/21/2013] [Indexed: 10/27/2022]
Abstract
To analyze the status of wild birds infected with avian leukosis virus (ALV) in China, we collected 300 wild birds from various areas. Virus isolation and PCR showed that wild birds were infected by ALV-A and ALV-B. Two ALV-A and 4 ALV-B env sequences were obtained by PCR using primers designed to detect ALV-A and -B respectively. Our results showed that the gp85 genes of the 2 ALV-A strains have the highest homology with RAV-1, 99.8%, and more than 92% homology with other American strains. However, the gp85 genes of the two ALV-A strains showed slightly lower homology with Chinese strains (87.2-92.6%). Additionally, the 4 ALV-B strains have high homology with the prototype strain (RAV-2), from 99.1 to 99.4%, but they have slightly lower identity with Schmidt-Ruppin B and Prague subgroup B, from 93.3 to 98.4%. The 4 ALV-B strains showed the lowest identity with SDAU09C2 and SDAU09E3 (90%). In total, these results suggested that avian leukosis virus has infected wild birds in China.
Collapse
Affiliation(s)
- Delong Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Molecular epidemiology of avian leukosis virus subgroup J in layer flocks in China. J Clin Microbiol 2012; 50:953-60. [PMID: 22205787 DOI: 10.1128/jcm.06179-11] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) was first isolated from meat-type chickens in 1988. No field cases of ALV-J infection or tumors in layer chickens were observed worldwide until 2004. However, layer flocks in China have experienced outbreaks of this virus in recent years. The molecular epidemiology of ALV-J strains isolated from layer flocks was investigated. The env genes of 77.8% (21/27) of the ALV-J layer isolates with a high degree of genetic variation were significantly different from the env genes of the prototype strain of ALV-J (HPRS-103) and American and Chinese strains from meat-type chickens (designated ALV-J broiler isolates). A total of 205 nucleotides were deleted from the 3' untranslated region of 89.5% (17/19) of the ALV-J layer isolates. Approximately 94.7% (16/17) of the layer isolates contained a complete E element of 146 to 149 residues. The U3 sequences of 84.2% (16/19) of the ALV-J layer isolates displayed less than 92.5% sequence homology to those of the ALV-J broiler isolates, although the transcriptional regulatory elements that are typical of avian retroviruses were highly conserved. Several unique nucleotide substitutions in the env gene, the U3 region, and the E element of most of the ALV-J layer isolates were detected. These results suggested that the env gene, E element, and U3 region in the ALV-J layer isolates have evolved rapidly and were significantly different from those of the ALV-J broiler isolates. These findings will contribute to a better understanding of the pathogenic mechanism of layer tumor diseases induced by ALV-J.
Collapse
|
12
|
Martínez Barrio Á, Ekerljung M, Jern P, Benachenhou F, Sperber GO, Bongcam-Rudloff E, Blomberg J, Andersson G. The first sequenced carnivore genome shows complex host-endogenous retrovirus relationships. PLoS One 2011; 6:e19832. [PMID: 21589882 PMCID: PMC3093408 DOI: 10.1371/journal.pone.0019832] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 04/18/2011] [Indexed: 11/25/2022] Open
Abstract
Host-retrovirus interactions influence the genomic landscape and have contributed substantially to mammalian genome evolution. To gain further insights, we analyzed a female boxer (Canis familiaris) genome for complexity and integration pattern of canine endogenous retroviruses (CfERV). Intriguingly, the first such in-depth analysis of a carnivore species identified 407 CfERV proviruses that represent only 0.15% of the dog genome. In comparison, the same detection criteria identified about six times more HERV proviruses in the human genome that has been estimated to contain a total of 8% retroviral DNA including solitary LTRs. These observed differences in man and dog are likely due to different mechanisms to purge, restrict and protect their genomes against retroviruses. A novel group of gammaretrovirus-like CfERV with high similarity to HERV-Fc1 was found to have potential for active retrotransposition and possibly lateral transmissions between dog and human as a result of close interactions during at least 10.000 years. The CfERV integration landscape showed a non-uniform intra- and inter-chromosomal distribution. Like in other species, different densities of ERVs were observed. Some chromosomal regions were essentially devoid of CfERVs whereas other regions had large numbers of integrations in agreement with distinct selective pressures at different loci. Most CfERVs were integrated in antisense orientation within 100 kb from annotated protein-coding genes. This integration pattern provides evidence for selection against CfERVs in sense orientation relative to chromosomal genes. In conclusion, this ERV analysis of the first carnivorous species supports the notion that different mammals interact distinctively with endogenous retroviruses and suggests that retroviral lateral transmissions between dog and human may have occurred.
Collapse
Affiliation(s)
- Álvaro Martínez Barrio
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Marie Ekerljung
- Department of Animal Breeding and Genetics, Biomedical Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Patric Jern
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Farid Benachenhou
- Department of Animal Breeding and Genetics, Biomedical Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Section of Virology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Göran O. Sperber
- Department of Neuroscience, Physiology, Uppsala University, Uppsala, Sweden
| | - Erik Bongcam-Rudloff
- Department of Animal Breeding and Genetics, Biomedical Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jonas Blomberg
- Section of Virology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Göran Andersson
- Department of Animal Breeding and Genetics, Biomedical Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
13
|
Abstract
For millions of years, retroviral infections have challenged vertebrates, occasionally leading to germline integration and inheritance as ERVs, genetic parasites whose remnants today constitute some 7% to 8% of the human genome. Although they have had significant evolutionary side effects, it is useful to view ERVs as fossil representatives of retroviruses extant at the time of their insertion into the germline and not as direct players in the evolutionary process itself. Expression of particular ERVs is associated with several positive physiological functions as well as certain diseases, although their roles in human disease as etiological agents, possible contributing factors, or disease markers-well demonstrated in animal models-remain to be established. Here we discuss ERV contributions to host genome structure and function, including their ability to mediate recombination, and physiological effects on the host transcriptome resulting from their integration, expression, and other events.
Collapse
Affiliation(s)
- Patric Jern
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| | | |
Collapse
|
14
|
Mays JK, Pandiri AR, Fadly AM. Susceptibility of various parental lines of commercial white leghorn layers to infection with a naturally occurring recombinant avian leukosis virus containing subgroup B envelope and subgroup J long terminal repeat. Avian Dis 2006; 50:342-7. [PMID: 17039832 DOI: 10.1637/7493-121505r.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chickens from seven different parental lines of commercial White Leghorn layer flocks from three independent breeders were inoculated with a naturally occurring avian leukosis virus (ALV) containing an ALV-B envelope and an ALV-J long terminal repeat (LTR) termed ALV-B/J. Additional groups of chickens from the same seven parental lines were inoculated with ALV-B. Chickens were tested for ALV viremia and antibody at 0, 4, 8, 16, and 32 wk postinfection. Chickens from all parental lines studied were susceptible to infection with ALV-B with 40%-100% of inoculated chickens positive for ALV at hatch following embryo infection. Similarly, infection of egg layer flocks with the ALV-B/J recombinant virus at 8 days of embryonation induced tolerance to ALV with 86%-100% of the chickens viremic, 40%-75% of the chickens shedding virus, and only 2/125 (2%) of the chickens producing serum-neutralizing antibodies against homologous ALV-B/J recombinant virus at 32 wk postinfection. In contrast, when infected with the ALV-B/J recombinant virus at hatch, 33%-82% of the chickens were viremic, 28%-47% shed virus, and 0%-56% produced serum-neutralizing antibodies against homologous ALV-B/J recombinant virus at 32 wk postinfection. Infection with the ALV-B/J recombinant virus at embryonation and at hatch induced predominately lymphoid leukosis (LL), along with other common ALV neoplasms, including erythroblastosis, osteopetrosis, nephroblastomas, and rhabdosarcomas. No incidence of myeloid leukosis (ML) was observed in any of the commercial White Leghorn egg layer flocks infected with ALV-B/J in the present study. Data suggest that the parental line of commercial layers may influence development of ALV-B/J-induced viremia and antibody, but not tumor type. Differences in type of tumors noted in the present study and those noted in the field case where the ALV-B/J was first isolated may be attributed to differences in the genetics of the commercial layer flock in which ML was first diagnosed and the present commercial layer flocks tested in the present study.
Collapse
Affiliation(s)
- Jody K Mays
- U.S. Department of Agriculture, Agricultural Research Service, Avian Disease and Oncology Laboratory, 3606 East Mount Hope Road, East Lansing, MI 48823, USA
| | | | | |
Collapse
|
15
|
Elleder D, Stepanets V, Melder DC, Senigl F, Geryk J, Pajer P, Plachý J, Hejnar J, Svoboda J, Federspiel MJ. The receptor for the subgroup C avian sarcoma and leukosis viruses, Tvc, is related to mammalian butyrophilins, members of the immunoglobulin superfamily. J Virol 2005; 79:10408-19. [PMID: 16051833 PMCID: PMC1182627 DOI: 10.1128/jvi.79.16.10408-10419.2005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The five highly related envelope subgroups of the avian sarcoma and leukosis viruses (ASLVs), subgroup A [ASLV(A)] to ASLV(E), are thought to have evolved from an ancestral envelope glycoprotein yet utilize different cellular proteins as receptors. Alleles encoding the subgroup A ASLV receptors (Tva), members of the low-density lipoprotein receptor family, and the subgroup B, D, and E ASLV receptors (Tvb), members of the tumor necrosis factor receptor family, have been identified and cloned. However, alleles encoding the subgroup C ASLV receptors (Tvc) have not been cloned. Previously, we established a genetic linkage between tvc and several other nearby genetic markers on chicken chromosome 28, including tva. In this study, we used this information to clone the tvc gene and identify the Tvc receptor. A bacterial artificial chromosome containing a portion of chicken chromosome 28 that conferred susceptibility to ASLV(C) infection was identified. The tvc gene was identified on this genomic DNA fragment and encodes a 488-amino-acid protein most closely related to mammalian butyrophilins, members of the immunoglobulin protein family. We subsequently cloned cDNAs encoding Tvc that confer susceptibility to infection by subgroup C viruses in chicken cells resistant to ASLV(C) infection and in mammalian cells that do not normally express functional ASLV receptors. In addition, normally susceptible chicken DT40 cells were resistant to ASLV(C) infection after both tvc alleles were disrupted by homologous recombination. Tvc binds the ASLV(C) envelope glycoproteins with low-nanomolar affinity, an affinity similar to that of binding of Tva and Tvb with their respective envelope glycoproteins. We have also identified a mutation in the tvc gene in line L15 chickens that explains why this line is resistant to ASLV(C) infection.
Collapse
Affiliation(s)
- Daniel Elleder
- Department of Cellular and Viral Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Infection by all enveloped viruses occurs via the fusion of viral and cellular membranes and delivery of the viral nucleocapsid into the cell cytoplasm, after association of the virus with cognate receptors at the cell surface. This process is mediated by viral fusion proteins anchored in the viral envelope and can be defined based on the requirement for low pH to trigger membrane fusion. In viruses that utilize a pH-dependent entry mechanism, such as influenza virus, viral fusion is triggered by the acidic environment of intracellular organelles after uptake of the virus from the cell surface and trafficking to a low-pH compartment. In contrast, in viruses that utilize a pH-independent entry mechanism, such as most retroviruses, membrane fusion is triggered solely by the interaction of the envelope glycoprotein with cognate receptors, often at the cell surface. However, recent work has indicated that the alpharetrovirus, avian sarcoma and leukosis virus (ASLV), utilizes a novel entry mechanism that combines aspects of both pH-independent and pH-dependent entry. In ASLV infection, the interaction of the envelope glycoprotein (Env) with cognate receptors at the cell surface causes an initial conformational change that primes (activates) Env and renders it sensitive to subsequent low-pH triggering from an intracellular compartment. Thus unlike other pH-dependent viruses, ASLV Env is only sensitive to low-pH triggering following interaction with its cognate receptor. In this manuscript we review current research on ASLV Env-receptor interactions and focus on the specific molecular requirements of both the viral fusion protein and cognate receptors for ASLV entry. In addition, we review data pertaining to the novel two-step entry mechanism of ASLV entry and propose a model by which ASLV Env elicits membrane fusion.
Collapse
Affiliation(s)
- R J O Barnard
- McArdle Laboratories for Cancer Research, Department of Oncology, University of Wisconsin Madison, 1400 University Ave, Madison, WI 53706, USA
| | | |
Collapse
|
17
|
Conklin KF, Coffin JM, Robinson HL, Groudine M, Eisenman R. Role of methylation in the induced and spontaneous expression of the avian endogenous virus ev-1: DNA structure and gene products. Mol Cell Biol 2003; 2:638-52. [PMID: 14582159 PMCID: PMC369840 DOI: 10.1128/mcb.2.6.638-652.1982] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The endogenous avian provirus ev-1 is widespread in white leghorn chickens. Although it has no major structural defects, ev-1 has not been associated with any phenotype and is ordinarily expressed at a very low level. In this report, we describe a chicken embryo (Number 1836) cell culture containing both ev-1 and ev-6 which spontaneously expressed the ev-1 provirus. This culture released a high level of noninfectious virions containing a full complement of virion structural (gag) proteins but devoid of reverse transcriptase activity or antigen. These virions contained 70S RNA closely related to the genome of Rous-associated virus type 0, but identifiable as the ev-1 genome by oligonucleotide mapping. A fraction of the RNA molecules in the 70S complex were unusual in that they were polyadenylated 100 to 200 nucleotides downstream of the usual polyadenylation site. Eight sibling embryo cultures did not share this unusual phenotype with 1836, indicating that it was not inherited. However, an identical phenotype was inducible in the sibling cultures by treatment with 5-azacytidine, an inhibitor of DNA methylation, and the induced expression was stable for more than 10 generations. Analysis of chromatin structure and DNA methylation of the ev-1 provirus in 1836 cells revealed the presence (in a fraction of the proviruses) of both DNase I hypersensitive sites in the long terminal repeats and in gag and a pattern of cleavage sites for methyl-sensitive restriction endonuclease not found in a nonexpressing sibling. These results lend strong support to the role of DNA methylation in the control of gene expression. Additionally, they explain the lack of phenotype associated with ev-1 as due to a combination of its low expression and defectiveness in pol and env.
Collapse
Affiliation(s)
- K F Conklin
- Department of Molecular Biology and Microbiology and Cancer Research Center, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
18
|
Role of methylation in the induced and spontaneous expression of the avian endogenous virus ev-1: DNA structure and gene products. Mol Cell Biol 2003. [PMID: 14582159 DOI: 10.1128/mcb.2.6.638] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The endogenous avian provirus ev-1 is widespread in white leghorn chickens. Although it has no major structural defects, ev-1 has not been associated with any phenotype and is ordinarily expressed at a very low level. In this report, we describe a chicken embryo (Number 1836) cell culture containing both ev-1 and ev-6 which spontaneously expressed the ev-1 provirus. This culture released a high level of noninfectious virions containing a full complement of virion structural (gag) proteins but devoid of reverse transcriptase activity or antigen. These virions contained 70S RNA closely related to the genome of Rous-associated virus type 0, but identifiable as the ev-1 genome by oligonucleotide mapping. A fraction of the RNA molecules in the 70S complex were unusual in that they were polyadenylated 100 to 200 nucleotides downstream of the usual polyadenylation site. Eight sibling embryo cultures did not share this unusual phenotype with 1836, indicating that it was not inherited. However, an identical phenotype was inducible in the sibling cultures by treatment with 5-azacytidine, an inhibitor of DNA methylation, and the induced expression was stable for more than 10 generations. Analysis of chromatin structure and DNA methylation of the ev-1 provirus in 1836 cells revealed the presence (in a fraction of the proviruses) of both DNase I hypersensitive sites in the long terminal repeats and in gag and a pattern of cleavage sites for methyl-sensitive restriction endonuclease not found in a nonexpressing sibling. These results lend strong support to the role of DNA methylation in the control of gene expression. Additionally, they explain the lack of phenotype associated with ev-1 as due to a combination of its low expression and defectiveness in pol and env.
Collapse
|
19
|
Melder DC, Pankratz VS, Federspiel MJ. Evolutionary pressure of a receptor competitor selects different subgroup a avian leukosis virus escape variants with altered receptor interactions. J Virol 2003; 77:10504-14. [PMID: 12970435 PMCID: PMC228527 DOI: 10.1128/jvi.77.19.10504-10514.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2002] [Accepted: 06/28/2003] [Indexed: 11/20/2022] Open
Abstract
A complex interaction between the retroviral envelope glycoproteins and a specific cell surface protein initiates viral entry into cells. The avian leukosis-sarcoma virus (ALV) group of retroviruses provides a useful experimental system for studying the retroviral entry process and the evolution of receptor usage. In this study, we demonstrate that evolutionary pressure on subgroup A ALV [ALV(A)] entry exerted by the presence of a competitive inhibitor, a soluble form of the ALV(A) Tva receptor linked to a mouse immunoglobulin G tag (quail sTva-mIgG), can select different populations of escape variants. This escape population contained three abundant ALV(A) variant viruses, all with mutations in the surface glycoprotein hypervariable regions: a previously identified variant containing the Y142N mutation in the hr1 region; a new variant with two mutations, W141G in hr1 and K261E in vr3; and another new variant with two mutations, W145R in hr1 and K261E. The W141G K261E and W145R K261E viruses escape primarily by lowering their binding affinities for the quail Tva receptor competitive inhibitor while retaining wild-type levels of binding affinity for the chicken Tva receptor. A secondary phenotype of the new variants was an alteration in receptor interference patterns from that of wild-type ALV(A), indicating that the mutant glycoproteins are possibly interacting with other cellular proteins. One result of these altered interactions was that the variants caused a transient period of cytotoxicity. We could also directly demonstrate that the W141G K261E variant glycoproteins bound significant levels of a soluble form of the Tvb(S3) ALV receptor in a binding assay. Alterations in the normally extreme specificity of the ALV(A) glycoproteins for Tva may represent an evolutionary first step toward expanding viral receptor usage in response to inefficient viral entry.
Collapse
Affiliation(s)
- Deborah C Melder
- Department of Health Sciences Research, Section of Biostatistics, Mayo Clinic Rochester, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
20
|
Abstract
Alpharetroviruses provide a useful system for the study of the molecular mechanisms of host range and receptor interaction. These viruses can be divided into subgroups based on diverse receptor usage due to variability within the two host range determining regions, hr1 and hr2, in their envelope glycoprotein SU (gp85). In previous work, our laboratory described selection from a subgroup B avian sarcoma-leukosis virus of an extended-host-range variant (LT/SI) with two adjacent amino acid substitutions in hr1. This virus retains its ability to use the subgroup BD receptor but can also infect QT6/BD cells, which bear a related subgroup E receptor (R. A. Taplitz and J. M. Coffin, J. Virol 71:7814-7819, 1997). Here, we report further analysis of this unusual variant. First, one (L154S) of the two substitutions is sufficient for host range extension, while the other (T155I) does not alter host range. Second, these mutations extend host range to non-avian cell types, including human, dog, cat, mouse, rat, and hamster. Third, interference experiments imply that the mutants interact efficiently with the subgroup BD receptor and possibly the related subgroup E receptor, but they have another means of entry that is not dependent on these interactions. Fourth, binding studies indicate that the mutant SU proteins retain the ability to interact as monomers with subgroup BD and BDE receptors but only bind the subgroup E receptor in the context of an Env trimer. Further, the mutant SU proteins bind well to chicken cells but do not bind any better than wild-type subgroup B to QT6 or human cells, even though the corresponding viruses are capable of infecting these cells.
Collapse
Affiliation(s)
- G Jonah A Rainey
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
21
|
Holmen SL, Melder DC, Federspiel MJ. Identification of key residues in subgroup A avian leukosis virus envelope determining receptor binding affinity and infectivity of cells expressing chicken or quail Tva receptor. J Virol 2001; 75:726-37. [PMID: 11134286 PMCID: PMC113969 DOI: 10.1128/jvi.75.2.726-737.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2000] [Accepted: 10/13/2000] [Indexed: 11/20/2022] Open
Abstract
To better understand retroviral entry, we have characterized the interactions between subgroup A avian leukosis virus [ALV(A)] envelope glycoproteins and Tva, the receptor for ALV(A), that result in receptor interference. We have recently shown that soluble forms of the chicken and quail Tva receptor (sTva), expressed from genes delivered by retroviral vectors, block ALV(A) infection of cultured chicken cells ( approximately 200-fold antiviral effect) and chickens (>98% of the birds were not infected). We hypothesized that inhibition of viral replication by sTva would select virus variants with mutations in the surface glycoprotein (SU) that altered the binding affinity of the subgroup A SU for the sTva protein and/or altered the normal receptor usage of the virus. Virus propagation in the presence of quail sTva-mIgG, the quail Tva extracellular region fused to the constant region of the mouse immunoglobulin G (IgG) protein, identified viruses with three mutations in the subgroup A hr1 region of SU, E149K, Y142N, and Y142N/E149K. These mutations reduced the binding affinity of the subgroup A envelope glycoproteins for quail sTva-mIgG (32-, 324-, and 4,739-fold, respectively) but did not alter their binding affinity for chicken sTva-mIgG. The ALV(A) mutants efficiently infected cells expressing the chicken Tva receptor but were 2-fold (E149K), 10-fold (Y142N), and 600-fold (Y142N/E149K) less efficient at infecting cells expressing the quail Tva receptor. These mutations identify key determinants of the interaction between the ALV(A) glycoproteins and the Tva receptor. We also conclude from these results that, at least for the wild-type and variant ALV(A)s tested, the receptor binding affinity was directly related to infection efficiency.
Collapse
Affiliation(s)
- S L Holmen
- Molecular Medicine Program, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
22
|
Holmen SL, Federspiel MJ. Selection of a subgroup A avian leukosis virus [ALV(A)] envelope resistant to soluble ALV(A) surface glycoprotein. Virology 2000; 273:364-73. [PMID: 10915607 DOI: 10.1006/viro.2000.0424] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The host developing resistance to retroviral infection is believed to be a major force in the evolution of multiple receptor usage by retroviruses. The avian leukosis-sarcoma virus (ALV) group of retroviruses provides a powerful system for studying the envelope-receptor interactions involved in retrovirus entry; different members of this group of closely related viruses use distinct cellular receptors. Analysis of the ALV envelope subgroups suggests that the different ALVs evolved from a common ancestor by mutations in the env gene. Cells and animals that express subgroup A ALV envelope glycoproteins are highly resistant to ALV(A) infection due to receptor interference. In this study, we tested whether expression of a soluble form of subgroup A surface glycoprotein (SU) would result in receptor interference and whether this interference would select for resistant viruses with altered receptor usage. Chicken cells expressing the secreted ALV(A) SU immunoadhesin SU(A)-rIgG, which contains the subgroup A SU domain fused to the constant region of a rabbit immunoglobulin (IgG) heavy chain, showed significant receptor interference. A variant virus resistant to SU(A)-rIgG receptor interference was obtained. This virus had a six-amino-acid deletion in the subgroup A hr1 that altered receptor usage. This approach may identify regions of SU that play a critical role in receptor specificity.
Collapse
Affiliation(s)
- S L Holmen
- Molecular Medicine Program, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
23
|
Aschoff JM, Foster D, Coffin JM. Point mutations in the avian sarcoma/leukosis virus 3' untranslated region result in a packaging defect. J Virol 1999; 73:7421-9. [PMID: 10438832 PMCID: PMC104269 DOI: 10.1128/jvi.73.9.7421-7429.1999] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/1999] [Accepted: 05/25/1999] [Indexed: 11/20/2022] Open
Abstract
The 3' untranslated region (3' UTR) between the 3' end of env and the long terminal repeat is well conserved among avian retroviruses and is essential for efficient replication. Deletion of the dr1 element within the 3' UTR has been reported to have various effects, including reduced levels of unspliced RNA in the cytoplasm, decreased stability of unspliced RNA, decreased particle production, and decreased genomic RNA packaging. To probe the role of specific sequences within dr1 in virus replication, site-directed mutagenesis was utilized to perturb parts of the predicted secondary structure of dr1. Seven of thirteen mutations had no significant effect; the others resulted in an approximately 10- to 20-fold reduction in replication. These mutants were further characterized and found to impair cytoplasmic accumulation of unspliced RNA only slightly. Furthermore, no decreases were observed in the stability of the unspliced RNA or in the production of virus particles. Genomic RNA packaging, however, was reduced by about 10-fold. Similar amounts of particles were produced by cells containing the mutant and wild-type DNA, and all particles contained similar levels of reverse transcriptase activity. The results suggest that the region of the dr1 disrupted by the mutations plays a role in genomic RNA packaging, although that packaging may not be the only role for dr1.
Collapse
Affiliation(s)
- J M Aschoff
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
24
|
Abstract
Receptor recognition by avian retroviruses is thought to involve the interaction of two regions of the SU protein, hr1 and hr2, with the host cell surface receptor. These regions exhibit considerable variation, concordant with differences in receptor usage among the many avian leukosis virus subgroups. We hypothesize that some retroviruses have altered receptor usage in response to selective pressures imposed by receptor polymorphisms in their hosts. To test this hypothesis, we passaged td-Pr-RSV-B on cocultured permissive chicken (C/E) and nonpermissive quail (QT6/BD) cells. A variant virus with an expanded host range was identified at passage 29 and ultimately shown to be identical in sequence to td-Pr-RSV-B, except for changes at codons 155 and 156 of SU amino acid corresponding to two amino acid changes within hr1. Superinfection resistance studies suggest that the variant virus recognizes the subgroup B receptor on chicken cells and the subgroup E receptor on quail cells. These findings indicate that altered receptor usage can be conferred by small changes in env and may point to a key region for receptor interaction. Further, they demonstrate the evolutionary potential of retroviral env genes to alter receptor usage in response to appropriate selective pressure.
Collapse
Affiliation(s)
- R A Taplitz
- Department of Medicine, Tufts University/New England Medical Center, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
25
|
Morrison HL, Soni B, Lenz J. Long terminal repeat enhancer core sequences in proviruses adjacent to c-myc in T-cell lymphomas induced by a murine retrovirus. J Virol 1995; 69:446-55. [PMID: 7983741 PMCID: PMC188593 DOI: 10.1128/jvi.69.1.446-455.1995] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The transcriptional enhancer in the long terminal repeat (LTR) of the T-lymphomagenic retrovirus SL3-3 differs from that of the nonleukemogenic virus Akv at several sites, including a single base pair difference in an element termed the enhancer core. Mutation of this T-A base pair to the C-G C-G sequence found in Akv significantly attenuated the leukemogenicity of SL3-3. Thus, this difference is important for viral leukemogenicity. Since Akv is an endogenous virus, this suggests that the C-G in its core is an adaptation to being minimally pathogenic. Most tumors that occurred in mice inoculated with the mutant virus, called SAA, contained proviruses with reversion or potential suppressor mutations in the enhancer core. We also found that the 72-bp tandem repeats constituting the viral enhancer could vary in number. Most tumors contained mixtures of proviruses with various numbers of 72-bp units, usually between one and four. Variation in repeat number was most likely due to recombination events involving template misalignment during viral replication. Thus, two processes during viral replication, misincorporation and recombination, combined to alter LTR enhancer structure and generate more pathogenic variants from the mutant virus. In SAA-induced tumors, enhancers of proviruses adjacent to c-myc had the largest number of core reversion or suppressor mutations of all of the viral enhancers in those tumors. This observation was consistent with the hypothesis that one function of the LTR enhancers in leukemogenesis is to activate proto-oncogenes such as c-myc.
Collapse
Affiliation(s)
- H L Morrison
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | |
Collapse
|
26
|
Lazo PA. Leukaemogenesis and Lymphomagenesis by Nontransforming Murine Retroviruses. Rev Med Virol 1993. [DOI: 10.1002/rmv.1980030105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Winandy S, Renjifo B, Li Y, Hopkins N. Nuclear factors that bind two regions important to transcriptional activity of the simian immunodeficiency virus long terminal repeat. J Virol 1992; 66:5216-23. [PMID: 1501272 PMCID: PMC289074 DOI: 10.1128/jvi.66.9.5216-5223.1992] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Previous studies identified two regions in the U3 region of a molecular clone of simian immunodeficiency virus, SIVmac142, that are important to transcriptional activity under conditions of induction as well as basal-level expression (B. Renjifo, N. A. Speck, S. Winandy, N. Hopkins, and Y. Li, J. Virol. 64:3130-3134, 1990). One region includes the NF-kappa B binding site, while the other lies just 5' of this site between nucleotides -162 and -114 (the -162 to -114 region). The fact that the NF-kappa B site mutation attenuated transcriptional activity in uninduced T cells and fibroblasts where activated NF-kappa B would not be present suggested that a factor(s) other than NF-kappa B could be acting through this site. In this study, we have identified a factor which binds to a cis element overlapping the NF-kappa B site. This factor, which we call simian factor 3 (SF3), would play a role in regulation under conditions of basal level expression, whereas under conditions of induction, NF-kappa B would act via this region. SF3 may also bind to an element in the -162 to -114 region. In addition, we have identified two other factors that bind the -162 to -114 region. One, which we designated SF1, is a ubiquitous basal factor, and the other, SF2, is a T-cell-predominant phorbol myristate acetate-inducible factor. Through identification of nuclear factors that interact with the U3 region of the SIVmac142 long terminal repeat, we can gain insight into how this virus is transcriptionally regulated under conditions of basal-level expression as well as conditions of T-cell activation.
Collapse
Affiliation(s)
- S Winandy
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | |
Collapse
|
28
|
Tsichlis PN, Bear SE. Infection by mink cell focus-forming viruses confers interleukin 2 (IL-2) independence to an IL-2-dependent rat T-cell lymphoma line. Proc Natl Acad Sci U S A 1991; 88:4611-5. [PMID: 2052545 PMCID: PMC51715 DOI: 10.1073/pnas.88.11.4611] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The development of T-cell lymphomas in rodents infected with type C retroviruses has been linked to the generation of a class of envelope (env) recombinant viruses called mink cell focus-forming viruses (MCF viruses) in the preleukemic thymus. To determine whether infection by MCF viruses altered the growth phenotype of retrovirus-induced T-cell lymphomas, a Moloney murine leukemia virus-induced interleukin-2 (IL-2)-dependent rat T-cell lymphoma line (4437A) was infected with MCF-247, modified MCF-V33 (mMCF-V33), or NZB-xenotropic (NZB-X) virus. The effects of virus infection on the IL-2 dependence of these cells was examined by cultivating them in the absence of IL-2. After IL-2 withdrawal, the uninfected and NZB-X-infected cells went through a crisis period characterized by massive death. All the independently maintained cultures of MCF- and mMCF-V33-infected cells, on the other hand, became IL-2 independent without a crisis. All the polytropic virus-infected IL-2-independent cultures contained a population of cells that was polyclonal with regard to polytropic provirus integration. Over this polyclonal background each culture produced multiple clones of cells that were selected rapidly after IL-2 withdrawal. Furthermore, the resulting MCF- or mMCF-V33-infected IL-2-independent cells retained the expression of IL-2 receptor. These data show that MCF and mMCF-V33 viruses may alter the growth phenotype of a T-cell lymphoma line and suggest that their effect on cell growth may be due to the direct interaction of the MCF envelope glycoprotein with cellular components, perhaps the IL-2 receptor.
Collapse
Affiliation(s)
- P N Tsichlis
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111
| | | |
Collapse
|
29
|
Plumb M, Fulton R, Breimer L, Stewart M, Willison K, Neil JC. Nuclear factor 1 activates the feline leukemia virus long terminal repeat but is posttranscriptionally down-regulated in leukemia cell lines. J Virol 1991; 65:1991-9. [PMID: 1848314 PMCID: PMC240038 DOI: 10.1128/jvi.65.4.1991-1999.1991] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A recombinant feline leukemia virus (FeLV) proviral clone (T17T-22) with a long terminal repeat (LTR) which differs from prototype FeLV by a point mutation within a conserved nuclear factor 1 (NF1)-binding motif in the LTR enhancer domain was found to be poorly expressed after DNA transfection. The NF1 point mutation reduced in vitro protein binding as assessed by gel shift analysis and reduced promoter activity significantly (2- to 10-fold). However, the degree of promoter impairment due to the NF1 site mutation varied according to cell type and was least severe in a feline leukemia cell line (T3) which had low levels of nuclear NF1 DNA-binding activity. Low NF1 DNA-binding activity was observed in three FeLV-induced leukemia cell lines (T3, T17, and FL74) and in murine F9 embryonal carcinoma cells. While similar levels of NF1 gene mRNA transcripts were detected in all cell lines, Western immunoblot analysis of F9, T17, and FL74 but not T3 nuclear extracts revealed very low levels of nuclear NF1 protein. These results indicate that NF1 activity is down-regulated in FeLV-induced leukemia cells by diverse posttranscriptional mechanisms. We suggest that NF1 down-regulation may be an important characteristic of target cells susceptible to FeLV transformation in vivo and may provide the selective pressure which favors duplication of the LTR core enhancer sequence in T-cell leukemogenic FeLV variants.
Collapse
Affiliation(s)
- M Plumb
- Beatson Institute for Cancer Research, Glasgow, Scotland
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The spontaneous leukemias of AKR mice are caused by mink cell focus-forming (MCF) viruses. These viruses are generated by recombination between several endogenous murine retroviruses. The virological events leading to the generation of the leukemogenic agent were investigated by using an oligonucleotide specific for the U3 region of the leukemogenic virus and env-reactive oligonucleotide probes specific for the different classes of endogenous murine leukemia virus. It was shown that (i) the leukemogenic MCF virus is formed by recombination between at least three different endogenous sequences; (ii) the U3 donor for the leukemogenic virus is the inducible xenotropic virus Bxv-1; (iii) all spontaneous tumors contain viruses with duplicated enhancer regions in their long terminal repeats; (iv) enhancer duplication is a somatic event, since Bxv-1 contains only one copy; (v) the first recombinant virus detectable in mass populations of thymocytes by Southern hybridization analysis contains all structural features of the ultimate leukemogenic virus; and (vi) the multiple novel viruses in a given tumor represent progeny of the same unique recombination events. On the basis of these results, an analysis of the virological events leading to AKR thymomas is presented.
Collapse
Affiliation(s)
- J P Stoye
- Tufts University School of Medicine, Boston, Massachusetts 02111
| | | | | |
Collapse
|
31
|
Tsichlis PN, Lazo PA. Virus-host interactions and the pathogenesis of murine and human oncogenic retroviruses. Curr Top Microbiol Immunol 1991; 171:95-171. [PMID: 1667631 DOI: 10.1007/978-3-642-76524-7_5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
MESH Headings
- Animals
- Base Sequence
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Viral
- Gene Expression Regulation, Neoplastic
- Gene Expression Regulation, Viral
- Genes, Viral
- Genetic Markers
- Genetic Predisposition to Disease
- Growth Substances/genetics
- Growth Substances/physiology
- Humans
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/pathogenicity
- Leukemia Virus, Murine/physiology
- Mice/genetics
- Mice/microbiology
- Molecular Sequence Data
- Mutagenesis, Insertional
- Neoplasms/genetics
- Neoplasms/microbiology
- Neoplasms/veterinary
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/microbiology
- Oncogenes
- Proto-Oncogenes
- Proviruses/genetics
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Repetitive Sequences, Nucleic Acid
- Retroviridae/genetics
- Retroviridae/pathogenicity
- Retroviridae/physiology
- Rodent Diseases/genetics
- Rodent Diseases/microbiology
- Signal Transduction
- Virus Integration
- Virus Replication
Collapse
Affiliation(s)
- P N Tsichlis
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111
| | | |
Collapse
|
32
|
Comparison of the transcriptional activity of the long terminal repeats of simian immunodeficiency viruses SIVmac251 and SIVmac239 in T-cell lines and macrophage cell lines. J Virol 1991; 65:51-60. [PMID: 1985214 PMCID: PMC240488 DOI: 10.1128/jvi.65.1.51-60.1991] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The U3 regions of the long terminal repeats (LTRs) of simian immunodeficiency viruses SIVmac251 and SIVmac239 were analyzed for basal transcriptional activity and for interaction with cellular factors in the T-cell line HUT-78 and the monocyte/macrophage cell line U937. A number of 5' deletions and mutations were made in the U3 regions of the two LTRs, and these constructs were placed upstream of a plasmid containing the bacterial chloramphenicol acetyltransferase reporter gene. The nucleotide sequences between -225 and +18 were sufficient to maintain full transcriptional activity of both LTRs in HUT-78 and U937 cells. Nucleotide sequence analysis revealed several differences between SIVmac251 and SIVmac239 within this region. Analysis of deletion mutants revealed that an additional removal of bases, from -124 to -225, had little effect on the transcriptional activity of the clone 239 LTR, whereas this deletion resulted in a significant reduction of activity in the clone 251 LTR. DNase protection assays using nuclear extracts from HUT-78 and U937 cells showed that bases within this region bound cellular factors. In addition, the NF-kappa B site was protected in DNase assays with HUT-78 cells and 12-O-tetradecanoylphorbol-13-acetate-treated U937 cells. An additional DNase footprint was detected in SIVmac239, at -52 to -38, just upstream of the TATA box. This site overlaps the 3' half of the 3'-most Sp-1 site and is downstream of 11 bases that are found in SIVmac239 but not SIVmac251. Thus, differences in the sequences in the U3 region of the LTRs of SIVmac251 and SIVmac239 have been identified which appear to alter the transcriptional activity of these promoters as well as changing the interaction of cellular proteins with sequences in the LTRs.
Collapse
|
33
|
Burstein H, Resnick-Roguel N, Hamburger J, Arad G, Malkinson M, Kotler M. Unique sequences in the env gene of avian hemangioma retrovirus are responsible for cytotoxicity and endothelial cell perturbation. Virology 1990; 179:512-6. [PMID: 2171223 DOI: 10.1016/0042-6822(90)90327-n] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An avian retrovirus isolated from spontaneous cavernous hemangiomas of layer hens codes for an env protein that induces a cytopathic effect on a wide variety of cultured avian and mammalian cells and also causes thrombogenicity of endothelial cells. Sequence analysis of the avian hemangioma inducing virus revealed unique elements in both its env gene and its LTR. We propose that these elements are responsible for the biological and pathogenic characteristics of the virus.
Collapse
Affiliation(s)
- H Burstein
- Department of Molecular Genetics, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
34
|
Renjifo B, Speck NA, Winandy S, Hopkins N, Li Y. cis-acting elements in the U3 region of a simian immunodeficiency virus. J Virol 1990; 64:3130-4. [PMID: 2335831 PMCID: PMC249509 DOI: 10.1128/jvi.64.6.3130-3134.1990] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A series of 5' deletions and a point mutation in the binding site for nuclear factor kappa B were introduced into the U3 region of a molecular clone of simian immunodeficiency virus from macaques (SIVmac142). The transcriptional activity of the mutated U3 regions was analyzed by transient chloramphenicol acetyltransferase assays. Two distinct regions in U3 appeared to contain important cis-acting sequences for transcriptional activity. Mutation of the single nuclear factor kappa B site in the SIVmac142 U3 region attenuated transcription in Rat-1 fibroblasts and Jurkat T cells. A second cis-acting element was localized to sequences between -162 and -114 in U3; deletion of long terminal repeat sequences up to -114 significantly attenuated transcriptional activity in Rat-1 cells. Furthermore, sequences between -162 and -114 contributed to inducibility of transcription by 1,3-phorbol myristate acetate in Jurkat T cells. Deletion of long terminal repeat sequences to -114, in addition to mutation of the nuclear factor kappa B site, was necessary to attenuate the response to 1,3-phorbol myristate acetate completely. A negative regulatory element analogous to that identified in the U3 region from the human immunodeficiency virus was not found in the U3 region from SIVmac142.
Collapse
Affiliation(s)
- B Renjifo
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | | | |
Collapse
|
35
|
Tikhonenko AT, Lomovskaya OL. Avian endogenous provirus (ev-3) env gene sequencing: implication for pathogenic retrovirus origination. Virus Genes 1990; 3:251-8. [PMID: 2161159 DOI: 10.1007/bf00393184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The avian endogenous env gene product blocks the surface receptor and, as a result, cells become immune to related exogenous retroviruses. On the other hand, the same sequence can be included in the pathogenic retrovirus genome, as shown by oligonucleotide mapping. However, since the complete env gene sequence was not known, the comparison of genomic nucleotide sequences was not possible. Therefore an avian endogenous provirus with an intact env gene was cloned from a chicken gene bank and the regions coding for the C terminus of the gp85 and gp37 proteins were sequenced. Comparison of this sequence with those of other retroviruses proved that one of the pathogenic viruses associated with osteopetrosis is a cross between avian endogenous virus and Rous sarcoma virus. Retroviruses and, especially, endogenous retroviruses are traditionally of the most developed models of viral carcinogenesis. Many endogenous retroviruses are implicated in neoplastic transformation of the cell. For instance, endogenous mouse mammary tumor virus of some inbred lines appears to be the only causative agent in these mammary cancers. Other even nonpathogenic murine endogenous retroviruses are involved in the origination of MCF-type recombinant acute leukosis viruses. Some endogenous retroviruses are implicated in the transduction or activation of cellular protooncogenes. Our interest in endogenous viruses is based on their ability to make cells resistant to exogenous retroviruses. Expression of their major envelope glycoprotein leads to cellular surface receptor blockage and imparts immunity to infection by the related leukemia retroviruses. This problem is quite elaborated for chicken endogenous virus RAV-O (7-9).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A T Tikhonenko
- Laboratory of Oncovirus Immunology, USSR Academy of Medical Sciences, Moscow
| | | |
Collapse
|
36
|
Holland CA, Thomas CY, Chattopadhyay SK, Koehne C, O'Donnell PV. Influence of enhancer sequences on thymotropism and leukemogenicity of mink cell focus-forming viruses. J Virol 1989; 63:1284-92. [PMID: 2536834 PMCID: PMC247825 DOI: 10.1128/jvi.63.3.1284-1292.1989] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Oncogenic mink cell focus-forming (MCF) viruses, such as MCF 247, show a positive correlation between the ability to replicate efficiently in the thymus and a leukemogenic phenotype. Other MCF viruses, such as MCF 30-2, replicate to high titers in thymocytes and do not accelerate the onset of leukemia. We used these two MCF viruses with different biological phenotypes to distinguish the effect of specific viral genes and genetic determinants on thymotropism and leukemogenicity. Our goal was to identify the viral sequences that distinguish thymotropic, nonleukemogenic viruses such as MCF 30-2 from thymotropic, leukemogenic viruses such as MCF 247. We cloned MCF 30-2, compared the genetic hallmarks of MCF 30-2 with those of MCF 247, constructed a series of recombinants, and tested the ability of recombinant viruses to replicate in the thymus and to induce leukemia. The results established that (i) MCF 30-2 and MCF 247 differ in the numbers of copies of the enhancer sequences in the long terminal repeats. (ii) The thymotropic phenotype of both viruses is independent of the number of copies of the enhancer sequences. (iii) The oncogenic phenotype of MCF 247 is correlated with the presence in the virus of duplicated enhancer sequences or with the presence of an enhancer with a specific sequence. These results show that the pathogenic phenotypes of MCF viruses are dissociable from the thymotropic phenotype and depend, at least in part, upon the enhancer sequences. On the basis of these results, we suggest that the molecular mechanisms by which the enhancer sequences determine thymotropism are different from those that determine oncogenicity.
Collapse
Affiliation(s)
- C A Holland
- Department of Radiation Oncology, University of Massachusetts Medical Center, Worcester 01605
| | | | | | | | | |
Collapse
|
37
|
Abstract
Rous associated virus type-0 (RAV-0), a subgroup E replication-competent endogenous virus of chickens, is associated with a low efficiency of virus shedding into the egg albumen and failure to establish congenital transmission. In contrast, RAV-1, a subgroup A virus of exogenous origin, is efficiently shed into the albumen and readily infects the embryo. Among a series of in vitro constructed recombinants between RAV-0 and RAV-1, we have identified subgroup E recombinants that efficiently shed virus into the egg albumen but do not undergo efficient congenital transmission. The LTR region, subgroup-determining sequences in env, and sequences within a 375 bp Sacl-Xhol fragment at the 5' end of the genome each influenced the efficiency of virus shedding into the albumen. Egg inoculations with viruses differing only in env were used to confirm the low rate of congenital transmission of subgroup E viruses. These studies revealed that subgroup A envelope antigens are at least 100-fold more effective for the establishment of embryonic infection than subgroup E.
Collapse
Affiliation(s)
- D W Brown
- University of Massachusetts Medical School, Worcester 01655
| | | |
Collapse
|
38
|
Brown DW, Robinson HL. Influence of env and long terminal repeat sequences on the tissue tropism of avian leukosis viruses. J Virol 1988; 62:4828-31. [PMID: 2846895 PMCID: PMC253609 DOI: 10.1128/jvi.62.12.4828-4831.1988] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Adsorption and penetration of retroviruses into eucaryotic cells is mediated by retroviral envelope glycoproteins interacting with host receptors. Recombinant avian leukosis viruses (ALVs) differing only in envelope determinants that interact with host receptors for subgroup A or E ALVs have been found to have unexpectedly distinctive patterns of tissue-specific replication. Recombinants of both subgroups were highly expressed in bursal lymphocytes as well as in cultured chicken embryo fibroblasts. In contrast, the subgroup A but not subgroup E host range allowed high levels of expression in skeletal muscle, while subgroup E but not subgroup A envelope glycoproteins permitted efficient replication in the thymus. A subgroup B virus (RAV-2), like the subgroup E viruses, demonstrated a distinct bursal and thymic tropism, further supporting the theory that genes encoding receptors for subgroup B and E viruses are allelic. The source of long terminal repeats (LTRs) or adjacent sequences also influenced tissue-specific replication, with the LTRs from endogenous virus RAV-0 supporting efficient replication in the bursa and thymus but not in skeletal muscle. These results indicate that ALV env and LTR regions are responsible for unexpectedly distinctive tissue tropisms.
Collapse
Affiliation(s)
- D W Brown
- University of Massachusetts Medical School, Worcester 01655
| | | |
Collapse
|
39
|
Brown DW, Blais BP, Robinson HL. Long terminal repeat (LTR) sequences, env, and a region near the 5' LTR influence the pathogenic potential of recombinants between Rous-associated virus types 0 and 1. J Virol 1988; 62:3431-7. [PMID: 2841495 PMCID: PMC253467 DOI: 10.1128/jvi.62.9.3431-3437.1988] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A series of recombinants between Rous-associated virus type 0 (RAV-0), RAV-1, and a replication-competent avian leukosis virus vector (RCAN) have been tested for disease potential in day-old inoculated K28 chicks. RAV-0 is a benign virus, whereas RAV-1 and RCAN induce lymphoma and a low incidence of a variety of other neoplasms. The results of the oncogenicity tests indicate that (i) the long terminal repeat regions of RAV-1 and RCAN play a major role in disease potential, (ii) subgroup A envelope glycoproteins are associated with a two- to fourfold higher incidence of lymphoma than subgroup E glycoproteins, and (iii) certain combinations of 5' viral and env sequences cause osteopetrosis in a highly context-dependent manner. Long terminal repeat and env sequences appeared to influence lymphomogenic potential by determining the extent of bursal infection within the first 2 to 3 weeks of life. This would suggest that bursal but not postbursal stem cells are targets for avian leukosis virus-induced lymphomogenesis. The induction of neutralizing antibody had no obvious influence on the incidence of lymphoma.
Collapse
Affiliation(s)
- D W Brown
- Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545
| | | | | |
Collapse
|
40
|
Song ZX, Thomas C, Innes D, Waheed A, Shadduck RK, Quesenberry PJ. Characterization of two clones isolated from the TC-1 murine marrow stromal cell line: growth factor and retrovirus production and physical support of hemopoiesis. INTERNATIONAL JOURNAL OF CELL CLONING 1988; 6:125-45. [PMID: 3373034 DOI: 10.1002/stem.5530060206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We previously reported the isolation of an adherent murine marrow cell line termed TC-1, and the initial characterization of two subclones derived from this line. In this study we report a further characterization of two subclones from the non-cloned TC-1 cell line. One subclone, TC-1-C-3, consisted of large, slow-growing syncytial polypoid cells that grew to relatively low saturation densities, did not form colonies in soft agar and showed desmosome-like junctions. The other subclone, TC-1-C-11, consisted of smaller, rapidly growing fibroblast-like diploid cells which showed anchorage-independent growth in soft agar. Both these subclones produced growth factors which stimulated giant macrophage colonies in soft agar culture in vitro, but only the TC-1-C-3 subclone produced a retrovirus, whose source was most likely the endogenous ecotropic Emv-2 provirus present in chromosomal DNA in C57BL mice. This retrovirus from the TC-1-C-3 subclone did not appear capable of transforming TC-1-C-11 cells. Together, these data suggest that TC-1-C-3 cells have a special capacity for supporting hemopoiesis. The question of whether the mechanism of this support relates to an intrinsic property of the cell or is possibly related to retrovirus production remains unanswered.
Collapse
Affiliation(s)
- Z X Song
- Department of Internal Medicine, University of Virginia School of Medicine, Charlottesville 22908
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
A cis-acting enhancer element has been detected within the gag gene of several avian retroviruses, including Rous sarcoma virus, Fujinami sarcoma virus, and the endogenous Rous-associated virus-0. A consensus enhancer core sequence, GTGGTTTG, is present in all of these viral genomes, approximately 900 bases downstream from the site of initiation of transcription. When an internal fragment derived from the gag gene of any of these viruses (spanning nucleotides 533 to approximately 1149) was inserted into a plasmid containing the chloramphenicol acetyltransferase (cat) gene under control of the simian virus 40 promoter, 9- or 21-fold enhancement of CAT expression was observed after transfection into mouse L cells and chicken embryo fibroblasts, respectively. This enhancement was not dependent on the position of insertion of the gag fragment into the plasmid. However, there was a strong dependence on orientation, with higher levels of CAT expression in constructs in which the 5' end of the gag fragment was nearest to the promoter, suggesting a possible negative regulatory element at the 3' end of this fragment. Deletion of the 3' end of the insert resulted in a gag fragment, containing nucleotides 533 to 1017, which enhanced expression equally in either orientation. When the gag fragment was inserted into a plasmid containing the cat gene under the control of an intact Rous sarcoma virus long terminal repeat, it induced a two- to threefold increase in CAT activity and CAT mRNA levels. Translation of the gag fragment did not appear to be necessary for the observed enhancement, since two insertional mutations resulting in frameshifts in the gag insert did not affect CAT expression. However, deletion of a 330-base internal fragment from the gag insert restored a basal level of CAT activity. These results suggest that retroviruses have regulatory elements within their genes distinct from those in the long terminal repeats that flank the genes.
Collapse
|
42
|
Neil JC, Forrest D. Mechanisms of retrovirus-induced leukaemia: selected aspects. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 907:71-91. [PMID: 3032259 DOI: 10.1016/0304-419x(87)90019-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
43
|
Norton PA, Coffin JM. Characterization of Rous sarcoma virus sequences essential for viral gene expression. J Virol 1987; 61:1171-9. [PMID: 3029412 PMCID: PMC254078 DOI: 10.1128/jvi.61.4.1171-1179.1987] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Using the Escherichia coli lacZ gene product beta-galactosidase as an indicator of gene expression, we analyzed sequences that are required for expression of the Rous sarcoma virus (RSV) genome in avian cells. The RSV long terminal repeat (LTR) and leader region were sufficient to direct the synthesis of high levels of enzymatically active gag-lacZ fusion proteins. A portion of U3 greater than 140 nucleotides upstream from the cap site was essential for gene expression. This element functioned in either orientation, but its activity was attenuated when it was relocated further away from the cap site. The insertion of exogenous LTRs 3' of lacZ augmented the expression of that gene by increasing the level of stable gag-lacZ transcripts. Furthermore, 3' LTRs could partially compensate for certain defects within the 5' LTR. Insertion of various fragmentary LTRs allowed the identification of at least three synergistically acting domains within the 3' LTR that influence gene expression. Interestingly, the gag-lacZ expression was only stimulated by a 3' LTR when the exogenous 3'-untranslated region was adjacent. Our results imply that the two LTRs of a provirus interact in a complex manner to promote high levels of stable transcripts. It was also found that gag-lacZ expression was independent of viral gene products, suggesting that trans-activation is not a key mechanism regulating RSV expression in avian cells.
Collapse
|
44
|
Hodgson CP, Arora P, Fisk RZ. Nucleotide sequence of the long terminal repeat of the avian retrovirus RAV-1: evolution of avian retroviruses. Nucleic Acids Res 1987; 15:2393. [PMID: 3031596 PMCID: PMC340647 DOI: 10.1093/nar/15.5.2393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
45
|
Stoltzfus CM, Lorenzen SK, Berberich SL. Noncoding region between the env and src genes of Rous sarcoma virus influences splicing efficiency at the src gene 3' splice site. J Virol 1987; 61:177-84. [PMID: 3023695 PMCID: PMC255230 DOI: 10.1128/jvi.61.1.177-184.1987] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Viral RNA and proteins in chicken embryo fibroblasts infected with different cloned variants of the Prague strain Rous sarcoma virus (RSV) were analyzed. The ratio of immunoprecipitated pp60src to the gag gene product p27 in Prague A (PrA) and Prague B (PrB) RSV-infected cells was two to three times that in Prague C (PrC) RSV-infected cells. A significant increase in the steady-state ratio of spliced 2.7-kilobase src gene mRNA to unspliced 9.3-kilobase genome-size RNA was observed in PrA- and PrB- compared with PrC-infected cells, consistent with the differences in the ratios of the gag to src gene protein products. Similar results were obtained when hybrid-selected RNA, which had been labeled for 3 h with [3H]uridine, was analyzed on formaldehyde-agarose gels, suggesting that the observed differences were due to splicing rather than RNA stability. Recombinant plasmids from infectious molecular clones of PrA and PrC were constructed to localize the regions responsible for the effects on src gene splicing. The substitution in place of the corresponding PrA region of the 262-base-pair region between the env gene and the src gene coding sequences from the PrC clone into the infectious PrA plasmid conferred the low src splicing efficiency of the PrC strain. The nucleotide sequence of this region of the PrA plasmid was determined and compared with the sequence of the PrC strain. Only four nucleotide differences were found; two changes were within the intron sequence, and two were in the exon sequence. The possible role of these differences in determining the extent of viral RNA splicing is discussed.
Collapse
|
46
|
Abstract
A cis-acting enhancer element has been detected within the gag gene of several avian retroviruses, including Rous sarcoma virus, Fujinami sarcoma virus, and the endogenous Rous-associated virus-0. A consensus enhancer core sequence, GTGGTTTG, is present in all of these viral genomes, approximately 900 bases downstream from the site of initiation of transcription. When an internal fragment derived from the gag gene of any of these viruses (spanning nucleotides 533 to approximately 1149) was inserted into a plasmid containing the chloramphenicol acetyltransferase (cat) gene under control of the simian virus 40 promoter, 9- or 21-fold enhancement of CAT expression was observed after transfection into mouse L cells and chicken embryo fibroblasts, respectively. This enhancement was not dependent on the position of insertion of the gag fragment into the plasmid. However, there was a strong dependence on orientation, with higher levels of CAT expression in constructs in which the 5' end of the gag fragment was nearest to the promoter, suggesting a possible negative regulatory element at the 3' end of this fragment. Deletion of the 3' end of the insert resulted in a gag fragment, containing nucleotides 533 to 1017, which enhanced expression equally in either orientation. When the gag fragment was inserted into a plasmid containing the cat gene under the control of an intact Rous sarcoma virus long terminal repeat, it induced a two- to threefold increase in CAT activity and CAT mRNA levels. Translation of the gag fragment did not appear to be necessary for the observed enhancement, since two insertional mutations resulting in frameshifts in the gag insert did not affect CAT expression. However, deletion of a 330-base internal fragment from the gag insert restored a basal level of CAT activity. These results suggest that retroviruses have regulatory elements within their genes distinct from those in the long terminal repeats that flank the genes.
Collapse
|
47
|
Abstract
Hematopoietic tissues obtained from avian leukosis virus (ALV)-infected Hyline SC chickens were analyzed for the presence of integrated viral DNA sequences. Cells were prepared from bone marrow, bursa, spleen, thymus, and peripheral blood. Following the removal of erythrocytes, cellular DNAs from each of these tissues were examined by Southern analysis. During the first few weeks of infection, DNA from the bone marrow contained as many as 0.5 copies of viral DNA per haploid genome. Cells from the bursa and peripheral blood contained between 0.05 and 0.15 copies per haploid genome. In contrast, neither splenic nor thymic DNA contained significant levels of viral DNA sequences even though infected birds developed titers of circulating virus between 10(5) and 10(6) IU/ml of plasma. DNA prepared from erythrocytes isolated from the peripheral blood of these birds contained approximately 0.4 copies of integrated viral sequences per haploid genome at 2 weeks after infection. Despite greater levels of integrated sequences in other tissues, by 9 weeks after infection viral sequences were detected only in DNA from bursal lymphocytes. Cells prepared from the spleen and thymus of infected birds were also examined for their size distribution, their internal complexity and their surface expression of immunoglobulin. None of the populations examined differed from normal, uninfected control preparations. These results suggest that ALV infection occurs primarily in the bone marrow and that the different tissues of the hematopoietic system are selectively infected. Further, these results indicate that ALV infection persists longer in bursal lymphocytes than in other hematopoietic tissues. Previous studies have demonstrated that the lymphoid tumors that develop in white leghorn chickens following ALV infection are bursal-dependent B-cell lymphomas that express immunoglobulin M. The observations presented in this communication offer, in part, an explanation for the restricted phenotype of the lymphoid tumor that develops in the SC chicken. Further, the data suggest an explanation for the bursal-dependent nature of the ALV-induced lymphoma.
Collapse
|
48
|
Wright SE, Bennett DD. Region coding for subgroup specificity of envelope of avian retroviruses does not determine lymphomagenicity. Virus Res 1986; 6:173-80. [PMID: 2432740 DOI: 10.1016/0168-1702(86)90048-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to test whether the region coding for subgroup envelope specificity was a determinant of oncogenic potential. An avian retrovirus recombinant was constructed to contain the envelope gene (env) determinant for subgroup A of an avian RNA tumor virus in one of the non-oncogenic, endogenous avian retroviruses, RAV-0. The results show that such a recombinant virus does not induce lymphoma when injected into susceptible, newborn chicks. Thus, it is concluded that the envelope determinant for subgroup of avian RNA tumor viruses does not determine malignant potential.
Collapse
|
49
|
Leamnson RN, Shank PR. Nucleotide sequence comparison of the 3' regions of avian retroviruses NY203 and NTRE-2. Virology 1986; 151:139-45. [PMID: 3008429 DOI: 10.1016/0042-6822(86)90112-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have been characterizing molecular clones of two subgroup E avian retroviruses (NTRE-2 and NY203RAV-60) that produce different proliferative diseases after inoculation into susceptable K28 chickens. Both viruses arose by recombination between exogenous and endogenous viral genomes. To further characterize regions of these viruses that are important for the production of disease, we have determined the nucleotide sequence of a 1.2-kb EcoRI fragment extending from the carboxyl end of gp85 through 150 bases of the U3 region of the LTR. From the sequence data it is possible to precisely define one point where recombination occurred between PrRSV-B and RAV-0 to produce NTRE-2. We suggest a hypothesis, based on the core enhancer consensus sequence, for the higher incidence of disease when chickens are infected with viruses bearing the LTR of NY203RAV-60.
Collapse
|
50
|
Robinson HL, Gagnon GC. Patterns of proviral insertion and deletion in avian leukosis virus-induced lymphomas. J Virol 1986; 57:28-36. [PMID: 3001351 PMCID: PMC252695 DOI: 10.1128/jvi.57.1.28-36.1986] [Citation(s) in RCA: 110] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sixty-eight lymphomas induced by eight different avian leukosis viruses have been analyzed on Southern blots for virus-induced mutations in the chicken c-myc gene. Sixty-six of the lymphomas exhibited a proviral insertion in c-myc, whereas one exhibited a new transduction of c-myc. Sixty-four of the proviral insertions were in the same transcriptional orientation as c-myc. Two were in the opposite transcriptional orientation. All of the insertions were upstream of the protein-coding sequences of c-myc, with most residing in the first exon or the first intron of c-myc. All of the lymphoma-inducing proviruses had deletions that included either sequences near the 5' long terminal repeat (LTR) or an LTR. The most frequent lymphoma-inducing provirus appeared to have retained both of its LTRs, but had lost sequences near its 5' LTR. The second and third most frequent lymphoma-inducing proviruses consisted of solo LTRs or of proviruses that had lost the 5' LTR as well as some internal sequences. Twenty-four insertions were mapped in c-myc. Each of these mapped to within 150 base pairs of one of the five DNase I-hypersensitive sites that occur in a 3-kilobase region immediately 5' to the protein-coding sequences of c-myc. One lymphoma contained a new c-myc transducing virus. This virus, MYC-3475, caused rapid-onset myelocytomatosis.
Collapse
|