1
|
Khan MSI, Gao X, Liang K, Mei S, Zhan J. Virulent Drexlervirial Bacteriophage MSK, Morphological and Genome Resemblance With Rtp Bacteriophage Inhibits the Multidrug-Resistant Bacteria. Front Microbiol 2021; 12:706700. [PMID: 34504479 PMCID: PMC8421802 DOI: 10.3389/fmicb.2021.706700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Phage-host interactions are likely to have the most critical aspect of phage biology. Phages are the most abundant and ubiquitous infectious acellular entities in the biosphere, where their presence remains elusive. Here, the novel Escherichia coli lytic bacteriophage, named MSK, was isolated from the lysed culture of E. coli C (phix174 host). The genome of phage MSK was sequenced, comprising 45,053 bp with 44.8% G + C composition. In total, 73 open reading frames (ORFs) were predicted, out of which 24 showed a close homology with known functional proteins, including one tRNA-arg; however, the other 49 proteins with no proven function in the genome database were called hypothetical. Electron Microscopy and genome characterization have revealed that MSK phage has a rosette-like tail tip. There were, in total, 46 ORFs which were homologous to the Rtp genome. Among these ORFs, the tail fiber protein with a locus tag of MSK_000019 was homologous to Rtp 43 protein, which determines the host specificity. The other protein, MSK_000046, encodes lipoprotein (cor gene); that protein resembles Rtp 45, responsible for preventing adsorption during cell lysis. Thirteen MSK structural proteins were identified by SDS-PAGE analysis. Out of these, 12 were vital structural proteins, and one was a hypothetical protein. Among these, the protein terminase large (MSK_000072) subunit, which may be involved in DNA packaging and proposed packaging strategy of MSK bacteriophage genome, takes place through headful packaging using the pac-sites. Biosafety assessment of highly stable phage MSK genome analysis has revealed that the phage did not possess virulence genes, which indicates proper phage therapy. MSK phage potentially could be used to inhibit the multidrug-resistant bacteria, including AMP, TCN, and Colistin. Further, a comparative genome and lifestyle study of MSK phage confirmed the highest similarity level (87.18% ANI). These findings suggest it to be a new lytic isolated phage species. Finally, Blast and phylogenetic analysis of the large terminase subunit and tail fiber protein put it in Rtp viruses' genus of family Drexlerviridae.
Collapse
Affiliation(s)
- Muhammad Saleem Iqbal Khan
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangzheng Gao
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou, China
| | - Keying Liang
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou, China
| | - Shengsheng Mei
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinbiao Zhan
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Hamdi S, Rousseau GM, Labrie SJ, Tremblay DM, Kourda RS, Ben Slama K, Moineau S. Characterization of two polyvalent phages infecting Enterobacteriaceae. Sci Rep 2017; 7:40349. [PMID: 28091598 PMCID: PMC5238451 DOI: 10.1038/srep40349] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/05/2016] [Indexed: 01/30/2023] Open
Abstract
Bacteriophages display remarkable genetic diversity and host specificity. In this study, we explore phages infecting bacterial strains of the Enterobacteriaceae family because of their ability to infect related but distinct hosts. We isolated and characterized two novel virulent phages, SH6 and SH7, using a strain of Shigella flexneri as host bacterium. Morphological and genomic analyses revealed that phage SH6 belongs to the T1virus genus of the Siphoviridae family. Conversely, phage SH7 was classified in the T4virus genus of the Myoviridae family. Phage SH6 had a short latent period of 16 min and a burst size of 103 ± 16 PFU/infected cell while the phage SH7 latent period was 23 min with a much lower burst size of 26 ± 5 PFU/infected cell. Moreover, phage SH6 was sensitive to acidic conditions (pH < 5) while phage SH7 was stable from pH 3 to 11 for 1 hour. Of the 35 bacterial strains tested, SH6 infected its S. flexneri host strain and 8 strains of E. coli. Phage SH7 lysed additionally strains of E. coli O157:H7, Salmonella Paratyphi, and Shigella dysenteriae. The broader host ranges of these two phages as well as their microbiological properties suggest that they may be useful for controlling bacterial populations.
Collapse
Affiliation(s)
- Sana Hamdi
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
- Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Geneviève M. Rousseau
- Département de Biochimie, de Microbiologie, et de Bio-informatique and PROTEO, Faculté des Sciences et de Génie, Félix d’Hérelle Reference Center for Bacterial Viruses, and GREB, Faculté de Médecine Dentaire, Université Laval, Québec City, Québec, Canada
| | - Simon J. Labrie
- Département de Biochimie, de Microbiologie, et de Bio-informatique and PROTEO, Faculté des Sciences et de Génie, Félix d’Hérelle Reference Center for Bacterial Viruses, and GREB, Faculté de Médecine Dentaire, Université Laval, Québec City, Québec, Canada
| | - Denise M. Tremblay
- Département de Biochimie, de Microbiologie, et de Bio-informatique and PROTEO, Faculté des Sciences et de Génie, Félix d’Hérelle Reference Center for Bacterial Viruses, and GREB, Faculté de Médecine Dentaire, Université Laval, Québec City, Québec, Canada
| | - Rim Saïed Kourda
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
- Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Karim Ben Slama
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
- Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Sylvain Moineau
- Département de Biochimie, de Microbiologie, et de Bio-informatique and PROTEO, Faculté des Sciences et de Génie, Félix d’Hérelle Reference Center for Bacterial Viruses, and GREB, Faculté de Médecine Dentaire, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
3
|
Roberts MD, Martin NL, Kropinski AM. The genome and proteome of coliphage T1. Virology 2004; 318:245-66. [PMID: 14972552 DOI: 10.1016/j.virol.2003.09.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Revised: 09/18/2003] [Accepted: 09/22/2003] [Indexed: 11/19/2022]
Abstract
The genome of enterobacterial phage T1 has been sequenced, revealing that its 50.7-kb terminally redundant, circularly permuted sequence contains 48,836 bp of nonredundant nucleotides. Seventy-seven open reading frames (ORFs) were identified, with a high percentage of small genes located at the termini of the genomes displaying no homology to existing phage or prophage proteins. Of the genes showing homologs (47%), we identified those involved in host DNA degradation (three endonucleases) and T1 replication (DNA helicase, primase, and single-stranded DNA-binding proteins) and recombination (RecE and Erf homologs). While the tail genes showed homology to those from temperate coliphage N15, the capsid biosynthetic genes were unique. Phage proteins were resolved by 2D gel electrophoresis, and mass spectrometry was used to identify several of the spots including the major head, portal, and tail proteins, thus verifying the annotation.
Collapse
Affiliation(s)
- Mary D Roberts
- Biology Department, Radford University, Radford, VA 24142, USA
| | | | | |
Collapse
|
4
|
Casjens S, Sampson L, Randall S, Eppler K, Wu H, Petri JB, Schmieger H. Molecular genetic analysis of bacteriophage P22 gene 3 product, a protein involved in the initiation of headful DNA packaging. J Mol Biol 1992; 227:1086-99. [PMID: 1433288 DOI: 10.1016/0022-2836(92)90523-m] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bacteriophage P22 DNA packaging events occur in processive series on concatemeric phage DNA molecules. At the point where such series initiate, the DNA is recognized at a site called pac, and most molecular left ends are generated within six short regions called end sites, which are present in a 120 base-pair region surrounding the pac site. The bacteriophage P22 genes 2 and 3 proteins are required for successful generation of these ends and DNA packaging during progeny virion assembly. Mutants lacking the 162-amino-acid gene 3 protein replicate DNA and assemble functional procapsids. In this report we describe the nucleotide changes and DNA packaging phenotypes of a number of missense mutations of gene 3, which give the phage a higher than normal frequency of generalized transduction. In cells infected by these mutants, more packaging events initiate on the host chromosome than in wild-type infections, so the mutations are thought to affect the specificity of packaging initiation. In addition to having this phenotype, these mutations affect the process of phage DNA packaging in detectable ways. They may: (1) alter the target site specificity for packaging; (2) make target site recognition more promiscuous; (3) affect end site utilization; (4) alter the pac site; and (5) cause apparent random DNA packaging series initiation on phage DNA.
Collapse
Affiliation(s)
- S Casjens
- Department of Cellular, Viral and Molecular Biology, University of Utah Medical Center, Salt Lake City 84132
| | | | | | | | | | | | | |
Collapse
|
5
|
Drexler H, Christensen JR. T1 pip: a mutant which affects packaging initiation and processive packaging of T1 DNA. Virology 1986; 150:373-80. [PMID: 3008415 DOI: 10.1016/0042-6822(86)90302-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The pip mutation of phage T1 is located between the tar (gene 2.5) and am6 (gene 3) mutations in the region of the T1 genome which codes for early functions. The tar and pip mutations are additive in increasing the efficiency of transduction by T1. When T1 carries the pip mutation the initiation of DNA packaging by the phage at the non-T1, esp-lambda site is more efficient than when the phage is pip+; the small average burst size of 8 to 10 by T1pip suggests that pip causes a reduction in the efficiency with which T1 utilizes pac, the normal packaging initiation site of the phage. The presence of the BglII-D fragment (cut at one end at pac and the other by BglII) after digestion of T1pip DNA by BglII shows that T1pip continues to initiate DNA packaging at pac. The increased molarity of BglII-D coupled with the absence of the BglII-C fragment (which contains DNA on both sides of pac and can only be cut from processively packaged genomes) shows that T1pip packages only genomes which are initiated at pac and is defective in processive packaging.
Collapse
|
6
|
Chesney RH. Anomalous T1 transduction of the attP7 region of Escherichia coli. FEMS Microbiol Lett 1983. [DOI: 10.1111/j.1574-6968.1983.tb00312.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
7
|
Wagner EF, Auer B, Schweiger M. Escherichia coli virus T1: genetic controls during virus infection. Curr Top Microbiol Immunol 1983; 102:131-52. [PMID: 6340981 DOI: 10.1007/978-3-642-68906-2_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Roberts MD, Drexler H. T1 mutants with increased transduction frequency are defective in host chromosome degradation. Virology 1981; 112:670-7. [PMID: 7020237 DOI: 10.1016/0042-6822(81)90312-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
Roberts MD, Drexler H. Isolation and genetic characterization of T1-transducing mutants with increased transduction frequency. Virology 1981; 112:662-9. [PMID: 7257186 DOI: 10.1016/0042-6822(81)90311-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|